Balanced Flow Natural Coordinates

Total Page:16

File Type:pdf, Size:1020Kb

Balanced Flow Natural Coordinates Balanced Flow • The pressure and velocity distributions in atmospheric systems are related by relatively simple, approximate force balances. • We can gain a qualitative understanding by considering steady-state conditions, in which the fluid flow does not vary with time, and by assuming there are no vertical motions. • To explore these balanced flow conditions, it is useful to define a new coordinate system, known as natural coordinates. Natural Coordinates • Natural coordinates are defined by a set of mutually orthogonal unit vectors whose orientation depends on the direction of the flow. Unit vector tˆ points along the direction of the flow. ˆ k kˆ Unit vector nˆ is perpendicular to ˆ t the flow, with positive to the left. kˆ nˆ ˆ t nˆ Unit vector k ˆ points upward. ˆ ˆ t nˆ tˆ k nˆ ˆ r k kˆ Horizontal velocity: V = Vtˆ tˆ kˆ nˆ ˆ V is the horizontal speed, t nˆ ˆ which is a nonnegative tˆ tˆ k nˆ scalar defined by V ≡ ds dt , nˆ where s ( x , y , t ) is the curve followed by a fluid parcel moving in the horizontal plane. To determine acceleration following the fluid motion, r dV d = ()Vˆt dt dt r dV dV dˆt = ˆt +V dt dt dt δt δs δtˆ δψ = = = δtˆ t+δt R tˆ δψ δψ R radius of curvature (positive in = R δs positive n direction) t n R > 0 if air parcels turn toward left R < 0 if air parcels turn toward right ˆ dtˆ nˆ k kˆ = (taking limit as δs → 0) tˆ R < 0 ds R kˆ nˆ ˆ ˆ ˆ t nˆ dt dt ds nˆ ˆ ˆ = = V t nˆ tˆ k dt ds dt R R > 0 nˆ r dV dV dˆt = ˆt +V dt dt dt r 2 dV dV V vector form of acceleration following = ˆt + nˆ dt dt R fluid motion in natural coordinates r − fkˆ ×V = − fVnˆ Coriolis (always acts normal to flow) ⎛ˆ ∂Φ ∂Φ ⎞ − ∇ pΦ = −⎜t + nˆ ⎟ pressure gradient ⎝ ∂s ∂n ⎠ dV ∂Φ = − dt ∂s component equations of horizontal V 2 ∂Φ momentum equation (isobaric) in + fV = − natural coordinate system R ∂n dV ∂Φ = − Balance of forces parallel to flow. dt ∂s V 2 ∂Φ + fV = − Balance of forces normal to flow. R ∂n ∂Φ For motion parallel to geopotential height contours, = 0 , which means ∂s that the speed is constant following the motion. If the geopotential gradient normal to the direction of motion is constant along a trajectory, the normal component equation implies that the radius of curvature R is also constant. When these assumptions are met we can define several simple categories of balanced flow that depend on the relative contributions of the three terms in the normal component equation. Geostrophic Flow Straight-line flow parallel to the height contours ( R → ±∞ ). 0 V 2 ∂Φ + fV = − R ∂n Horizontal components of Coriolis force and pressure gradient force are in exact balance. PGF V ∂Φ g fV = − g ∂n Φ0 Coriolis Φ0 + ΔΦ Inertial Flow If the geopotential field is uniform on a constant pressure surface, then 0 V 2 ∂Φ V + fV = − R = − R ∂n f Because uniform geopotential implies constant speed, then the radius of curvature is constant if we assume f is approximately constant. Air parcels will follow circular paths in anticyclonic rotation with period 2πR 2π P = = V f Cyclostrophic Flow If the horizontal scale of an atmospheric disturbance is sufficiently small, such as in a tornado, waterspout, or dust devil, then the Coriolis term will be substantially smaller than the pressure gradient and centrifugal terms: 2 0 1 2 V ∂Φ ⎛ ∂Φ ⎞ + fV = − V = ⎜− R ⎟ R ∂n ⎝ ∂n ⎠ There are four possible orientations for the direction of curvature and the pressure gradient: ∂Φ ∂Φ R > 0, < 0 V is real R < 0, < 0 V is imaginary ∂n ∂n ∂Φ ∂Φ R > 0, > 0 V is imaginary R < 0, > 0 V is real ∂n ∂n V PGF Centrifugal L ∂Φ Only low pressure R > 0, < 0 systems can have ∂n cyclostrophic flow. ∂Φ R < 0, > 0 ∂n PGF Centrifugal L Cyclostrophic flow can either be V clockwise or counterclockwise. Cyclostrophic Flow in the Real World • Because the Coriolis acceleration is neglected in cyclostrophic flow, there should be no preferred direction of rotation. • In fact, waterspouts and (especially) dust devils can show both clockwise and counterclockwise rotation. • Most (but not all) tornadoes in the Northern Hemisphere rotate counterclockwise, because they develop from large, rotating supercell thunderstorms. Because of their relatively large scale (~10 km), supercell thunderstorms do feel the effects of Coriolis acceleration. Gradient Flow For large-scale weather disturbances in which the flow is not required to be in a straight line, a three-way balance among the Coriolis, centrifugal, and pressure gradient forces exists. 1 2 V 2 ∂Φ fR ⎛ f 2 R 2 ∂Φ ⎞ + fV = − V = − ± ⎜ − R ⎟ R ∂n 2 ⎝ 4 ∂n ⎠ There are four possible orientations for the direction of curvature and the pressure gradient, each with two roots: R > 0 R < 0 Positive root: unphysical Positive root: anomalous low ∂Φ ∂n > 0 Negative root: unphysical Negative root: unphysical Positive root: regular low Positive root: anomalous high ∂Φ ∂n < 0 Negative root: unphysical Negative root: regular high regular V regular low high PGF Centrifugal Centrifugal H L Coriolis Coriolis PGF V ∂Φ ∂Φ R > 0, < 0, positive root R < 0, < 0, negative root ∂n ∂n anomalous anomalous low high PGF Centrifugal Centrifugal L H Coriolis Coriolis PGF V V ∂Φ ∂Φ R < 0, > 0, positive root R < 0, < 0, positive root ∂n ∂n Geostrophic Wind vs. Gradient Wind V 2 ∂Φ + fV = − Start with balance of forces normal to flow. R ∂n V 2 + fV − fV = 0 Rewrite using definition of geostrophic wind. R g V V g =1+ Solve for ratio of geostrophic wind to gradient wind. V fR Rossby For normal cyclonic flow (fR > 0) the geostrophic wind overestimates number the gradient wind, while for anticyclonic flow (fR < 0) the geostrophic wind underestimates the gradient wind. The geostrophic wind is a good estimate of the gradient wind when the Rossby number is small..
Recommended publications
  • Balanced Dynamics in Rotating, Stratified Flows
    Balanced Dynamics in Rotating, Stratified Flows: An IPAM Tutorial Lecture James C. McWilliams Atmospheric and Oceanic Sciences, UCLA tutorial (n) 1. schooling on a topic of common knowledge. 2. opinion offered with incomplete proof or illustration. These are notes for a lecture intended to introduce a primarily mathematical audience to the idea of balanced dynamics in geophysical fluids, specifically in relation to climate modeling. A more formal presentation of some of this material is in McWilliams (2003). 1 A Fluid Dynamical Hierarchy The vast majority of the kinetic and available potential energy in the general circulation of the ocean and atmosphere, hence in climate, is constrained by approximately “balanced” forces, i.e., geostrophy in the horizontal plane (Coriolis force vs. pressure gradient) and hydrostacy in the vertical direction (gravitational buoyancy force vs. pressure gradient), with the various external and phase-change forces, molecular viscosity and diffusion, and parcel accelerations acting as small residuals in the momentum balance. This lecture is about the theoretical framework associated with this type of diagnostic force balance. Parametric measures of dynamical influence of rotation and stratification are the Rossby and Froude numbers, V V Ro = and F r = : (1) fL NH V is a characteristic horizontal velocity magnitude, f = 2Ω is Coriolis frequency (Ω is Earth’s rotation rate), N is buoyancy frequency for the stable density stratification, and (L; H) are (hor- izontal, vertical) length scales. For flows on the planetary scale and mesoscale, Ro and F r are typically not large. Furthermore, since for these flows the atmosphere and ocean are relatively thin, the aspect ratio, H λ = ; (2) L is small.
    [Show full text]
  • Symmetric Instability in the Gulf Stream
    Symmetric instability in the Gulf Stream a, b c d Leif N. Thomas ⇤, John R. Taylor ,Ra↵aeleFerrari, Terrence M. Joyce aDepartment of Environmental Earth System Science,Stanford University bDepartment of Applied Mathematics and Theoretical Physics, University of Cambridge cEarth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology dDepartment of Physical Oceanography, Woods Hole Institution of Oceanography Abstract Analyses of wintertime surveys of the Gulf Stream (GS) conducted as part of the CLIvar MOde water Dynamic Experiment (CLIMODE) reveal that water with negative potential vorticity (PV) is commonly found within the surface boundary layer (SBL) of the current. The lowest values of PV are found within the North Wall of the GS on the isopycnal layer occupied by Eighteen Degree Water, suggesting that processes within the GS may con- tribute to the formation of this low-PV water mass. In spite of large heat loss, the generation of negative PV was primarily attributable to cross-front advection of dense water over light by Ekman flow driven by winds with a down-front component. Beneath a critical depth, the SBL was stably strat- ified yet the PV remained negative due to the strong baroclinicity of the current, suggesting that the flow was symmetrically unstable. A large eddy simulation configured with forcing and flow parameters based on the obser- vations confirms that the observed structure of the SBL is consistent with the dynamics of symmetric instability (SI) forced by wind and surface cooling. The simulation shows that both strong turbulence and vertical gradients in density, momentum, and tracers coexist in the SBL of symmetrically unstable fronts.
    [Show full text]
  • GEF 1100 – Klimasystemet Chapter 7: Balanced Flow
    GEF1100–Autumn 2014 30.09.2014 GEF 1100 – Klimasystemet Chapter 7: Balanced flow Prof. Dr. Kirstin Krüger (MetOs, UiO) 1 Ch. 7 – Balanced flow 1. Motivation Ch. 7 2. Geostrophic motion 2.1 Geostrophic wind – 2.2 Synoptic charts 2.3 Balanced flows 3. Taylor-Proudman theorem 4. Thermal wind equation* 5. Subgeostrophic flow: The Ekman layer 5.1 The Ekman layer* 5.2 Surface (friction) wind 5.3 Ageostrophic flow 6. Summary Lecture Outline Lecture 7. Take home message *With add ons. 2 1. Motivation Motivation x Oslo wind forecast for today 12–18: 2 m/s light breeze, east-northeast x www.yr.no 3 2. Geostrophic motion Scale analysis – geostrophic balance Consider magnitudes of first 2 terms in momentum eq. for a fluid on a rotating 퐷퐮 1 sphere (Eq. 6-43 + f 풛 × 풖 + 훻푝 + 훻훷 = ℱ) for horizontal components 퐷푡 휌 in a free atmosphere (ℱ=0,훻훷=0): 퐷퐮 휕푢 • +f 풛 × 풖 = +풖 ∙ 훻풖 + f 풛 × 풖 퐷푡 휕푡 Large-scale flow magnitudes in atmosphere: 푈 푈2 fU 푢 and 푣 ∼ 풰, 풰∼10 m/s, length scale: L ∼106 m, 5 2 -4 -2 푇 time scale: 풯 ∼10 s, U/ 풯≈ 풰 /L ∼10 ms , 퐿 f ∼ 10-4 s-1 10−4 10−4 10−3 45° • Rossby number: - Ratio of acceleration terms (U2/L) to Coriolis term (f U), - R0=U/f L - R0≃0.1 for large-scale flows in atmosphere -3 (R0≃10 in ocean, Chapter 9) 4 2. Geostrophic motion Scale analysis – geostrophic balance • Coriolis term is left (≙ smallness of R0) together with the pressure gradient term (~10-3): 1 f 풛 × 풖 + 훻푝 = 0 Eq.
    [Show full text]
  • A Generalization of the Thermal Wind Equation to Arbitrary Horizontal Flow CAPT
    A Generalization of the Thermal Wind Equation to Arbitrary Horizontal Flow CAPT. GEORGE E. FORSYTHE, A.C. Hq., AAF Weather Service, Asheville, N. C. INTRODUCTION N THE COURSE of his European upper-air analysis for the Army Air Forces, Major R. C. I Bundgaard found that the shear of the observed wind field was frequently not parallel to the isotherms, even when allowance was made for errors in measuring the wind and temperature. Deviations of as much as 30 degrees were occasionally found. Since the ther- mal wind relation was found to be very useful on the occasions where it did give the direction and spacing of the isotherms, an attempt was made to give qualitative rules for correcting the observed wind-shear vector, to make it agree more closely with the shear of the geostrophic wind (and hence to make it lie along the isotherms). These rules were only partially correct and could not be made quantitative; no general rules were available. Bellamy, in a recent paper,1 has presented a thermal wind formula for the gradient wind, using for thermodynamic parameters pressure altitude and specific virtual temperature anom- aly. Bellamy's discussion is inadequate, however, in that it fails to demonstrate or account for the difference in direction between the shear of the geostrophic wind and the shear of the gradient wind. The purpose of the present note is to derive a formula for the shear of the actual wind, assuming horizontal flow of the air in the absence of frictional forces, and to show how the direction and spacing of the virtual-temperature isotherms can be obtained from this shear.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Climatology of the Great Plains Low Level Jet Using a Balanced Flow Model with Linear Friction By
    Climatology of the Great Plains Low Level Jet Using a Balanced Flow Model with Linear Friction by Stephanie Marder Vaughn Submitted to the Department of Civil and Environmental Engineering in Partial Fulfillment of the Requirements of the Degree of Master of Science in Civil and Environmental Engineering at the Massachusetts Institute of Technology June 1996 @ Massachusetts Institute of Technology 1996. All Rights Reserved. Signature of Author....................... .. .......... ................. Department of Civil and Environmenal Engineering March 29, 1996 Certified by................................... ........................................... ............ .. Dara Entekhabi Associate Professor Thesis Supervisor •i Chairman, Departmental Connmittee on Graduate Studih. iMASSACHUSETTS INS'ITiJ TE OF TECHNOLOGY JUN 0 5 1996 LIBRARIES . ·1 Climatology of the Great Plains Low Level Jet Using a Balanced Flow Model with Linear Friction by Stephanie Marder Vaughn Submitted to the Department of Civil and Environmental Engineering on March 29, 1996 in Partial Fulfillment of the Requirements of the Degree of Master of Science in Civil and Environmental Engineering Abstract The nighttime low-level-jet (LLJ) originating from the Gulf of Mexico carries moisture into the Great Plains area of the United States. The LLJ is considered to be a major contributor to the low-level transport of water vapor into this region. In order to study the effects of this jet on the climatology of the Great Plains, a balanced-flow model of low- level winds incorporating a linear friction assumption is applied. Two summertime data sets are used in the analysis. The first covers an area from the Gulf of Mexico up to the Canadian border. This 10 x 10 resolution data is used, first, to determine the viability of the linear friction assumption and, second, to examine the extent of the LLJ effects.
    [Show full text]
  • Chapter 7 Balanced Flow
    Chapter 7 Balanced flow In Chapter 6 we derived the equations that govern the evolution of the at- mosphere and ocean, setting our discussion on a sound theoretical footing. However, these equations describe myriad phenomena, many of which are not central to our discussion of the large-scale circulation of the atmosphere and ocean. In this chapter, therefore, we focus on a subset of possible motions known as ‘balanced flows’ which are relevant to the general circulation. We have already seen that large-scale flow in the atmosphere and ocean is hydrostatically balanced in the vertical in the sense that gravitational and pressure gradient forces balance one another, rather than inducing accelera- tions. It turns out that the atmosphere and ocean are also close to balance in the horizontal, in the sense that Coriolis forces are balanced by horizon- tal pressure gradients in what is known as ‘geostrophic motion’ – from the Greek: ‘geo’ for ‘earth’, ‘strophe’ for ‘turning’. In this Chapter we describe how the rather peculiar and counter-intuitive properties of the geostrophic motion of a homogeneous fluid are encapsulated in the ‘Taylor-Proudman theorem’ which expresses in mathematical form the ‘stiffness’ imparted to a fluid by rotation. This stiffness property will be repeatedly applied in later chapters to come to some understanding of the large-scale circulation of the atmosphere and ocean. We go on to discuss how the Taylor-Proudman theo- rem is modified in a fluid in which the density is not homogeneous but varies from place to place, deriving the ‘thermal wind equation’. Finally we dis- cuss so-called ‘ageostrophic flow’ motion, which is not in geostrophic balance but is modified by friction in regions where the atmosphere and ocean rubs against solid boundaries or at the atmosphere-ocean interface.
    [Show full text]
  • ATM 316 - the “Thermal Wind” Fall, 2016 – Fovell
    ATM 316 - The \thermal wind" Fall, 2016 { Fovell Recap and isobaric coordinates We have seen that for the synoptic time and space scales, the three leading terms in the horizontal equations of motion are du 1 @p − fv = − (1) dt ρ @x dv 1 @p + fu = − ; (2) dt ρ @y where f = 2Ω sin φ. The two largest terms are the Coriolis and pressure gradient forces (PGF) which combined represent geostrophic balance. We can define geostrophic winds ug and vg that exactly satisfy geostrophic balance, as 1 @p −fv ≡ − (3) g ρ @x 1 @p fu ≡ − ; (4) g ρ @y and thus we can also write du = f(v − v ) (5) dt g dv = −f(u − u ): (6) dt g In other words, on the synoptic scale, accelerations result from departures from geostrophic balance. z R p z Q δ δx p+δp x Figure 1: Isobaric coordinates. It is convenient to shift into an isobaric coordinate system, replacing height z by pressure p. Remember that pressure gradients on constant height surfaces are height gradients on constant pressure surfaces (such as the 500 mb chart). In Fig. 1, the points Q and R reside on the same isobar p. Ignoring the y direction for simplicity, then p = p(x; z) and the chain rule says @p @p δp = δx + δz: @x @z 1 Here, since the points reside on the same isobar, δp = 0. Therefore, we can rearrange the remainder to find δz @p = − @x : δx @p @z Using the hydrostatic equation on the denominator of the RHS, and cleaning up the notation, we find 1 @p @z − = −g : (7) ρ @x @x In other words, we have related the PGF (per unit mass) on constant height surfaces to a \height gradient force" (again per unit mass) on constant pressure surfaces.
    [Show full text]
  • Wind Power Meteorology. Part I: Climate and Turbulence 3
    WIND ENERGY Wind Energ., 1, 2±22 (1998) Review Wind Power Meteorology. Article Part I: Climate and Turbulence Erik L. Petersen,* Niels G. Mortensen, Lars Landberg, Jùrgen Hùjstrup and Helmut P. Frank, Department of Wind Energy and Atmospheric Physics, Risù National Laboratory, Frederiks- borgvej 399, DK-4000 Roskilde, Denmark Key words: Wind power meteorology has evolved as an applied science ®rmly founded on boundary wind atlas; layer meteorology but with strong links to climatology and geography. It concerns itself resource with three main areas: siting of wind turbines, regional wind resource assessment and assessment; siting; short-term prediction of the wind resource. The history, status and perspectives of wind wind climatology; power meteorology are presented, with emphasis on physical considerations and on its wind power practical application. Following a global view of the wind resource, the elements of meterology; boundary layer meteorology which are most important for wind energy are reviewed: wind pro®les; wind pro®les and shear, turbulence and gust, and extreme winds. *c 1998 John Wiley & turbulence; extreme winds; Sons, Ltd. rotor wakes Preface The kind invitation by John Wiley & Sons to write an overview article on wind power meteorology prompted us to lay down the fundamental principles as well as attempting to reveal the state of the artÐ and also to disclose what we think are the most important issues to stake future research eorts on. Unfortunately, such an eort calls for a lengthy historical, philosophical, physical, mathematical and statistical elucidation, resulting in an exorbitant requirement for writing space. By kind permission of the publisher we are able to present our eort in full, but in two partsÐPart I: Climate and Turbulence and Part II: Siting and Models.
    [Show full text]
  • Downloaded 09/23/21 08:03 PM UTC 2556 MONTHLY WEATHER REVIEW VOLUME 126 Centrated at the Tropopause
    OCTOBER 1998 MORGAN AND NIELSEN-GAMMON 2555 Using Tropopause Maps to Diagnose Midlatitude Weather Systems MICHAEL C. MORGAN Department of Atmospheric and Oceanic Sciences, University of WisconsinÐMadison, Madison, Wisconsin JOHN W. N IELSEN-GAMMON Department of Meteorology, Texas A&M University, College Station, Texas (Manuscript received 23 June 1997, in ®nal form 28 November 1997) ABSTRACT The use of potential vorticity (PV) allows the ef®cient description of the dynamics of nearly balanced at- mospheric ¯ow phenomena, but the distribution of PV must be simply represented for ease in interpretation. Representations of PV on isentropic or isobaric surfaces can be cumbersome, as analyses of several surfaces spanning the troposphere must be constructed to fully apprehend the complete PV distribution. Following a brief review of the relationship between PV and nearly balanced ¯ows, it is demonstrated that the tropospheric PV has a simple distribution, and as a consequence, an analysis of potential temperature along the dynamic tropopause (here de®ned as a surface of constant PV) allows for a simple representation of the upper-tropospheric and lower-stratospheric PV. The construction and interpretation of these tropopause maps, which may be termed ``isertelic'' analyses of potential temperature, are described. In addition, techniques to construct dynamical representations of the lower-tropospheric PV and near-surface potential temperature, which complement these isertelic analyses, are also suggested. Case studies are presented to illustrate the utility of these techniques in diagnosing phenomena such as cyclogenesis, tropopause folds, the formation of an upper trough, and the effects of latent heat release on the upper and lower troposphere.
    [Show full text]
  • Announcements
    Announcements • HW5 is due at the end of today’s class period • Exam 2 is due next Wednesday (4 Nov) • Let me know if you have any conflicts or problems with this due date related to election day on 3 Nov • The exam will be posted on the class Canvas web page after Friday’s review session on 30 Oct • The exam will be a closed book exam but you will be allowed to use one double-sided cheat sheet • You should plan to complete the exam in one sitting in about 2 hours • The completed exam needs to be e-mailed to me by no later than 1:45PM on Wednesday 4 Nov • During Friday’s review session I will be happy to answer any questions about material that may be on exam 2 Balanced Flow • We will consider balanced flows in which the wind is parallel to height (pressure) contours and the horizontal momentum equation reduces to: �! �Φ + �� = − � �� • We will look at all possible force balances represented by this equation and consider when each of these balances is most appropriate. Balanced Flow: Inertial Flow • Assume negligible pressure gradient �! + �� = 0 � • What is the path followed by an air parcel for this force balance? � � = − � Antarctic Inertial Flow Balanced Flow: Cyclostrophic Flow " ! " $ • Rossby number: �� = # = #$ #% • What conditions result in a large Rossby number? • What does a large Rossby number imply about the force balance acting on the flow? �! �Φ = − � �� Balanced Flow: Cyclostrophic Flow • Can cyclostrophic flow occur around both low and high pressure centers? �Φ &.( � = −� �� Balanced Flow: Cyclostropic Flow Example: A tornado is observed to have a radius of 600 m and a wind speed of 130 m s-1 - What is the Rossby number for this flow? - Estimate the pressure at the center of this tornado, assuming that the pressure at the outer edge of the tornado is 1000 mb.
    [Show full text]
  • UNIVERSITY of CALIFORNIA SAN DIEGO Mesoscale Dynamics Of
    UNIVERSITY OF CALIFORNIA SAN DIEGO Mesoscale Dynamics of Atmospheric Rivers A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Reuben Demirdjian Committee in charge: F. Martin Ralph, Chair Joel Norris, Co-Chair Amato Evan Jan Kleissl Richard Rotunno Shang-Ping Xie 2020 Copyright Reuben Demirdjian, 2020 All rights reserved. The Dissertation of Reuben Demirdjian is approved, and it is acceptable in quality and form for publication on microfilm and electronically: _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ Co-chair _____________________________________________________________ Chair University of California San Diego 2020 iii DEDICATION For my family (friends included) iv EPIGRAPH “Look again at that dot. That's here. That's home. That's us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives. The aggregate of our joy and suffering, thousands of confident religions, ideologies, and economic doctrines, every hunter and forager, every hero and coward, every creator and destroyer of civilization, every king and peasant, every young couple in love, every mother and father, hopeful child, inventor and explorer, every teacher of morals, every
    [Show full text]