Profile of Richard P. Novick

Total Page:16

File Type:pdf, Size:1020Kb

Profile of Richard P. Novick PROFILE Profile of Richard P. Novick acteria are infinitely versatile, occupying every imaginable ecological niche, from miles- B deep ice cores to fuming hot springs to high-pressure cauldrons of the deep. Much of their versatility results from a remarkable ability to exchange genetic material between relatives as well as total biological strangers. To do this, they use ‘‘mobile genetic elements’’ (MGEs), which carry from one to sev- eral hundred specialization genes and maintain the ability to self-replicate and transfer themselves from one bacterium to another. Although MGEs have helped bacteria diversify, they are also responsible for virtually all lethal bacte- rial toxins, for most resistance to antibi- otics, and for much of the ability of bacteria to attach to body surfaces. Richard Novick, Professor of Microbi- ology and Medicine at New York Uni- versity (NYU, New York, NY), has Richard Novick made critical discoveries about MGEs in staphylococci. In his Inaugural Article published in this issue, Novick, who was other mouse, which it would then at- head of medicine, Paul Beeson. Beeson’s elected to the National Academy of Sci- tack,’’ says Novick. research on endocarditis and infectious ences in 2006, details the mechanism of Despite a growing interest in biology disease inspired Novick and piqued a replication of a fascinating member of and research, after graduating from lifelong interest in how microbes cause the MGE family (1). Yale in 1954, Novick entered medical disease. school at NYU, still unsure of a career Then, in 1960, Novick crossed the Reluctant Biologist goal. ‘‘Although I went to medical Atlantic to the National Institute for Medical Research in London for a post- Born and raised in New York City, Nov- school because of its rough ballpark fo- doctoral fellowship, working with micro- ick developed a love of nature during cus on science,’’ he says, ‘‘I still did not bial biochemist Martin Pollock. During weekends and summers at his family’s quite understand that my calling was research rather than medical practice.’’ his two years in London, the threads of second home in Westport, Connecticut. interest in bacterial genetics and regula- ‘‘I became an outdoor biologist very After his first year of medical school, Novick entered the laboratory of tion, plus infectious diseases, combined early,’’ says Novick. ‘‘My mom would Charles Gilvarg, with whom he would into a career-determining focus on the have a fit when she wanted to take a work for two summers on basic bacterial genetics and biology of the staphylo- bath, only to find a frog or an eel in the biochemistry. As his interest in research cocci. Pollock had put him to work on bathtub.’’ However, he did not realize became clearer, Novick considered leav- ␤-lactamase, a bacterial enzyme respon- that biology was his calling until much ing medical school to pursue a doctorate sible for staphylococcal resistance to ␤ later. In high school, he focused more at The Rockefeller University (New -lactam antibiotics, the penicillins and on the ‘‘hard’’ sciences, such as mathe- York, NY). He did not do it. Instead, he cephalosporins. Researchers had just matics, physics, and chemistry. ‘‘In those took advantage of a newly established synthesized a new penicillin drug, days, a very long time ago, biology was ‘‘Honors Program’’ at NYU that allowed called methicillin. Pollock wanted Nov- ␤ counting flies and photographing ferns,’’ medical students to take a year off to ick to test whether he could get the - he quips. ‘‘I didn’t even take the course conduct research. Novick spent his year lactamase gene in Staphylococcus to in high school because it was for sis- in the laboratory of Werner Maas, mutate to become resistant to methicil- sies.’’ His perspective changed as an un- where he studied genetic regulation of lin. ‘‘This was ethically slightly dubious; dergraduate at Yale (New Haven, CT). the arginine biosynthetic pathway in one might think twice about encourag- ‘‘I took a very inspiring biology course Escherichia coli. The experience ‘‘initi- ing resistance to a critically important with Norman Giles, which focused on ated a lifelong interest in gene regula- new antibiotic,’’ Novick says. ‘‘In the genetics and evolution,’’ he recalls. tion,’’ Novick says. course of those experiments, which ‘‘From that, I developed an interest in failed by the way, I discovered that the Rather than giving up on medicine ␤ the human mind, resulting in a major in entirely, Novick completed his medical -lactamase gene in staph was carried psychology.’’ Novick got his first taste of degree in 1959. ‘‘Then I did a series of by a plasmid,’’ he says (2). Joshua Lederberg discovered plas- serious research when he worked on a what I call ‘yo-yo’ bounces, back and mids, arguably the most important and senior thesis project with biopsychologist forth between clinical medicine and ba- Frank Beach, titled ‘‘Reward value of sic science and couldn’t quite decide aggression in mice.’’ ‘‘As I remember which way to go,’’ he says. In his first This is a Profile of a recently elected member of the National with some satisfaction, a mouse, most clinical bounce, Novick went to Yale– Academy of Sciences to accompany the member’s Inaugural likely male, would learn to perform New Haven Medical Center for an in- Article on page 14182. some task in order to gain access to an- ternship under the direction of Yale’s © 2007 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0707438104 PNAS ͉ September 4, 2007 ͉ vol. 104 ͉ no. 36 ͉ 14179–14181 Downloaded by guest on September 29, 2021 widespread class of MGEs, in the late spected would not acknowledge anything mids regulate their own replication (8). 1940s, determining that they were the novel in our work unless it had been He then identified a plasmid-encoded mediators of bacterial conjugation (mat- confirmed with E. coli. Then they would protein responsible for initiating plasmid ing) in E. coli. However, at the time of quote the E. coli results and not bother replication (9) and demonstrated that an Novick’s discovery, they were still poorly referring to ours. That has been a thorn anti-sense RNA molecule (10) controls understood and had been identified in in my side throughout my career.’’ replication by attenuating production of only a handful of bacterial species. ‘‘This the initiator protein (11). This protein was the first plasmid discovered in Probing Plasmids limited the rate of plasmid replication. Gram-positive bacteria,’’ says Novick. After completing the fellowship with Novick’s studies also led him to suspect ‘‘It was a discovery that was instrumen- Hotchkiss in 1965, Novick began his inde- that this regulation could work only if tal in the development of my career.’’ pendent research career at New York’s the protein were inactivated after use, Before recognition of the plasmid’s bio- Public Health Research Institute (PHRI), a hypothesis later confirmed by Avi Ra- logical significance, clinicians assumed a private, nonprofit institute founded by sooly, a postdoctoral fellow in Novick’s that conventional mutations caused clini- the city to provide a venue for basic re- laboratory (12). cal antibiotic resistance, Novick recalls. ‘‘I search on infectious diseases connected to In parallel with its plasmid studies, was taught in medical school that two the city health department. At PHRI, the Novick laboratory cloned the plas- antibiotics should always be used in treat- Novick discovered that, in addition to an- mid-encoded gene for lysostaphin, an ment since the probability of simultaneous tibiotic resistance, plasmids also carried enzyme that effectively degrades the mutations causing resistance to both was genes for resistance to toxic inorganic ions staphylococcal cell wall (13). Lyso- vanishingly small.’’ However, adds Novick, including cadmium, arsenate, arsenite, and staphin’s ability to lyse staphylococci ‘‘a remarkable observation by the late lead, which could help the bacteria sur- made it a useful reagent for laboratories Tsutomo Watanabe that the dysentery vive in a polluted environment (5). He researching the bacteria. It also sug- bacillus could become resistant to three also demonstrated the in vivo transmission gested that the enzyme could be used to or four antibiotics simultaneously during of plasmid-encoded antibiotic resistance treat staphylococcal infections. Indeed, treatment with only one, and that acquisi- among staphylococcal strains in infected Mead Johnson initiated the develop- tion of a plasmid was responsible, radically mouse kidneys (6) and began a series of ment of lysostaphin as a therapeutic changed this view and led to the realiza- studies of plasmid replication and its agent in the 1960s but quickly dropped tion that plasmids were a major source of control. it for fear that it could spark an immu- antibiotic resistance in bacteria.’’ The theory at the time was that a nological reaction, says Novick. ‘‘I didn’t This finding was ample encourage- plasmid had to be attached to the cell agree with their dropping it,’’ he says. ment for Novick to pursue the study of membrane to replicate. If this was true, ‘‘We thought it could be used therapeu- plasmids and antibiotic resistance in it would mean that the host cell con- tically even if allergenic. It was, mole- staphylococci during his time in Pol- trolled plasmid replication. Researchers for-mole, 100-fold more effective than lock’s laboratory. He developed a also thought then that the plasmid was penicillin for curing an infection in mice number of tools for the study of staphy- an accessory to the bacterial genome, (his unpublished data).’’ ‘‘It’s never lococcal genetics, including a highly sen- merely the provider of useful gene func- really gotten a fair trial,’’ he adds. In sitive assay for ␤-lactamase (3), which tions that were not encoded in the chro- addition, given the growing threat of enabled him to demonstrate that, con- mosomes.
Recommended publications
  • 158273443.Pdf
    Cover: A single cell from a mouse embryo, moving about on a glass slide. The cell was fixed and then stained with antibody to actomyosin, a contractile protein complexof muscle cells. The antibody was visualized by fluorescence, and its pattern revealed thatthe embryo cell contained actomyosin in sheaths, even though it was not a muscle cell. (Photo by B. Pollack, K. Weber, G. Felsten) ANNUAL REPORT 1974 COLD SPRING HARBOR LABORATORY COLD SPRING HARBOR, NEW YORK COLD SPRINGHARBOR LABORATORY Cold Spring Harbor, Long Island,New York OFFICERS OF THE CORPORATION Chairman: Robert H. P. Olney Secretary: Dr. Bayard Clarkson 1st Vice Chairman: Edward Pulling Treasurer: Angus P. McIntyre 2nd Vice Chairman: Arthur Trottenberg Assistant Secretary-Treasurer: William R. Udry Laboratory Director: Dr. James D. Watson Administrative Director: William R. Udry BOARD OF TRUSTEES INSTITUTIONAL TRUSTEES Albert Einstein College of Medicine New York University MedicalCenter Dr. Harry Eagle Dr. Milton R. J. Salton The City University of New York Princeton University Dr. Norman R. Eaton Dr. Bruce Alberts Columbia University The Rockefeller University Dr. James E. Darnell, Jr. Dr. Rollin Hotchkiss Duke UniversityMedical Center Sloan-Kettering Institute Dr. Robert E. Webster Dr. Bayard Clarkson Harvard MedicalSchool University of Chicago Dr. Charles A.Thomas, Jr. Dr. Robert Haselkorn Long IslandBiological Association University of Wisconsin Mr. Edward Pulling Dr. Julian Davies Massachusetts Wawepex Society Institute of Technology J. Knight Dr. HermanEisen Mr. Townsend INDIVIDUALTRUSTEES Dr. DavidP. Jacobus Colton P. Wagner Watson Mrs. GeorgeN. Lindsay Dr. James D. White Angus P.McIntyre Mrs. Alex M. A. Woodcock RobertH. P. Olney Mr. William WalterII. Page Honorary Trustees: Hollaender CharlesS.
    [Show full text]
  • Laboratory Harbor Spring Cold Annual Report 1990
    YEAR CENTENNIAL THE LABORATORY HARBOR SPRING COLD ANNUAL REPORT 1990 COLD SPRING HARBOR LABORATORY THE CENTENNIAL YEAR ANNUAL REPORT 1990 Cold Spring Harbor Laboratory Box 100 1 Bungtown Road Cold Spring Harbor, New York 11724 Book design Emily Harste Editors Dorothy Brown, Lee Martin Photography Margot Bennett, Herb Parsons, Edward Campodonico Typography Marie Sullivan Front cover: Jones Laboratory, during the Centennial fireworks dis- play. This building, completed in 1893, was the first structure built expressly for science at Cold Spring Harbor. (Photograph by Ross Meurer and Margot Bennett.) Back Cover: (Top) Centennial reenactment of the first biology class at Cold Spring Harbor on board the launch "Rotifer." (Inset) The original class of 1890. Reenactments for the Centennial were directed by Rob Gensel. (Photograph by Randy Wilfong.) (Bottom) Centennial reenactment of the Laboratory's first biology class on the Jones Laboratory porch. (Inset) The original 1890 class on the porch of the old Fish Hatchery building before the completion of Jones Laboratory. (Photograph by Margot Bennett.) Contents Officers of the Corporation/Board of Trustees v Governance and Major Affiliations vi Committees vii Edward Pulling (1898-1991)viii DIRECTOR'S REPORT DEPARTMENTAL REPORTS 21 Administration 23 Buildings and Grounds 25 Development 28 Library Services 30 Public Affairs 32 RESEARCH 35 Tumor Viruses 37 Molecular Genetics of Eukaryotic Cells 93 Genetics 155 Structure and Computation 197 Neuroscience 213 CSH Laboratory Junior Fellows217 COLD SPRING
    [Show full text]
  • Transformation
    BNL-71843-2003-BC The Ptieumococcus Editor : E. Tuomanen Associate Editors : B. Spratt, T. Mitchell, D. Morrison To be published by ASM Press, Washington. DC Chapter 9 Transformation Sanford A. Lacks* Biology Department Brookhaven National Laboratory Upton, NY 11973 Phone: 631-344-3369 Fax: 631-344-3407 E-mail: [email protected] Introduction Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S.
    [Show full text]
  • Friend of the Good Earth: [Dr. Reneㄆ Dubos]
    Rockefeller University Digital Commons @ RU Rockefeller University Research Profiles Campus Publications Summer 1989 Friend of the Good Earth: [Dr. ReneÌ Dubos] Carol L. Moberg Follow this and additional works at: http://digitalcommons.rockefeller.edu/research_profiles Part of the Life Sciences Commons Recommended Citation Moberg, Carol L., "Friend of the Good Earth: [Dr. ReneÌ Dubos]" (1989). Rockefeller University Research Profiles. Book 33. http://digitalcommons.rockefeller.edu/research_profiles/33 This Article is brought to you for free and open access by the Campus Publications at Digital Commons @ RU. It has been accepted for inclusion in Rockefeller University Research Profiles by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. THE ROCKEFELLER UNIVERSITY RESEARCH Gramicidin Crystals PROFILES SUMMER 1989 Friend ofthe Good Earth Fifty years ago, microbiologist Rene Dubos taught the world the principles offinding and producing antibiotics. His discovery of gramicidin in 1939, at The Rockefeller Institute for Medical Re­ search, represents the first systematic research and developmentof an antibiotic, from its isolation and purification to an analysis of how it cures disease. Gramicidin and its less pure fonn tyrothricin were the first antibiotics to be produced commercially and used clinically. They fonned the cornerstone in the antibiotic arsenal and remain in use today. This remarkable achievement was not Dubos's first, last, or even his most important contribution. To Rene Dubos, a living Rene Dubas (1901-1982) organism-microbe, man, society, or eanh--eould be under­ stood only in the context of the relationships it forms with everything else. This ecologic view led him from investigating problems ofsoil microbes to those ofspecific infectious diseases, to social aspects of disease, and, finally, to large environmental issues affecting the whole earth.
    [Show full text]
  • Discovering Genes Are Made of DNA Maclyn Mccarty
    feature Discovering genes are made of DNA Maclyn McCarty The Rockefeller University, 1230 York Avenue, New York 10021, USA (e-mail: [email protected]) Maclyn McCarty is the sole surviving member of the team that made the remarkable discovery that DNA is the material of inheritance. This preceded by a decade the discovery of the structure of DNA itself. Here he shares his personal perspective of those times and the impact of the double helix. Editor’s note — For a long time, biologists thought that ‘genes’, the units of inheritance, were made up of protein. In 1944, in what was arguably the defining moment for nucleic acid research, Oswald Avery, Maclyn McCarty and Colin MacLeod, at Rockefeller Institute (now University) Hospital, New York, proved that DNA was the material of inheritance, the so-called stuff of life. They showed that the heritable property of virulence from one infectious strain of pneumococcus (the bacterial agent of pneumonia) could be transferred to a noninfectious bacterium with pure DNA1. They further supported their conclusions by showing that this ‘transforming’ activity could be destroyed by the DNA-digesting enzyme DNAase2,3. This work first linked genetic information with DNA and provided the historical platform of modern genetics. Their discovery was greeted initially with scepticism, however, in part because many scientists believed that DNA was too simple a molecule to be the genetic material. And the fact that McCarty, Avery and MacLeod were not awarded the Nobel prize is an oversight that, to this day, still puzzles. “The pivotal t the time of our discovery and publication isolated from various sources, and that despite this discovery of in 1944 (ref.
    [Show full text]
  • Oswald Avery and the Sugar-Coated Microbe: [Dr
    Rockefeller University Digital Commons @ RU Rockefeller University Research Profiles Campus Publications Spring 1988 Oswald Avery and the Sugar-Coated Microbe: [Dr. Oswald T. Avery] Fulvio Bardossi Follow this and additional works at: http://digitalcommons.rockefeller.edu/research_profiles Part of the Life Sciences Commons Recommended Citation Bardossi, Fulvio, "Oswald Avery and the Sugar-Coated Microbe: [Dr. Oswald T. Avery]" (1988). Rockefeller University Research Profiles. Book 28. http://digitalcommons.rockefeller.edu/research_profiles/28 This Article is brought to you for free and open access by the Campus Publications at Digital Commons @ RU. It has been accepted for inclusion in Rockefeller University Research Profiles by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. THE ROCKEFELLER UNIVERSITY RESEARCH PROFILES SPRING 1988 Oswald Avery and the Sugar-coated Microbe When, in 1910, Director Rufus Cole and his small staff of It was a time when infectious diseases commanded major scientists at the newly opened hospital ofThe Rockefeller Insti­ medical attention, and microbiology grew in glamour as it tute for Medical Research picked their first targets for study, promised to track down and control the germs that caused the list included poliomyelitis, syphilis, heart disease, and them. The Rockefeller Institute was lobar pneumonia. Dr. Cole chose lobar pneumonia, the greatest established in 1901, and its hospital killer ofall, as his special problem. At the time, medicine had nine years later, to be the standard Oswald T Avery, 1877-1955 no specific weapon with which to fight this "captain of the bearers of medical science in men ofdeath," as it was called.
    [Show full text]
  • ANIMUA Pat 022
    ANIMUA PaT 022 COLD SPRING HARBOR LABORATORY ANNUAL REPORT 1992 Cold Spring Harbor Laboratory Box 100 1 Bungtown Road Cold Spring Harbor, New York 11724 Book design Emily Harste Managing Editor Susan Cooper Editor Dorothy Brown Photography Margot Bennett, Herb Parsons, Edward Campodonico, Scott McBride, Julie Timmins Typography Marie Sullivan Front cover: Blackford Hall (Renovated 1992) (Photographby Margot Bennett) Back cover: Aerial view of Cold Spring HarborLaboratory (Photog- raph by Margot Bennett) Contents Officers of the Corporation/Board of Trustees v Governance and Major Affiliations vi Committeesvii Barbara McClintock (1902-1992) viii Taggert Whipple (1912-1992) xii DIRECTOR'S REPORT 1 DEPARTMENTAL REPORTS 23 Administration 25 Buildings and Grounds 28 Development 30 Library Services 34 Public Affairs 36 RESEARCH 41 Tumor Viruses43 Molecular Genetics of Eukaryotic Cells 85 Genetics 151 Structure and Computation 199 Neuroscience 227 CSH Laboratory Fellows249 Author Index253 COLD SPRING HARBOR MEETINGS 255 Symposium on Quantitative Biology259 Meetings263 EDUCATIONAL ACTIVITIES 289 Postgraduate Courses 291 Seminars325 Undergraduate Research327 Nature Study329 BANBURY CENTER 331 Director's Report333 Meetings 341 DNA LEARNING CENTER 371 COLD SPRING HARBOR LABORATORY PRESS 395 FINANCIAL STATEMENTS 401 FINANCIAL SUPPORT OF THE LABORATORY 407 Grants 409 Corporate Sponsor Program416 Capital Gifts417 Annual Contributions 421 Cold Spring Harbor Laboratory Association422 LABORATORY STAFF 431 Front row: D.L. Luke III, M.F. Gerry, T.J. Knight, J.D. Watson, B.D. Clarkson, M.D. Lindsay, L.J. Landeau Second row: W. Everdell, E.S. Marks, W.R. Miller, C.F. Dolan, S.M.C. Tilghman, G.R. Fink Third row: D.B. Pall, T.M. Jessell, T.
    [Show full text]
  • The Surface of a Small Cell: [Dr. Alexander Tomasz]
    Rockefeller University Digital Commons @ RU Rockefeller University Research Profiles Campus Publications Fall 1986 The urS face of a Small Cell: [Dr. Alexander Tomasz] Fulvio Bardossi Judith N. Schwartz Follow this and additional works at: http://digitalcommons.rockefeller.edu/research_profiles Part of the Life Sciences Commons Recommended Citation Bardossi, Fulvio and Schwartz, Judith N., "The urS face of a Small Cell: [Dr. Alexander Tomasz]" (1986). Rockefeller University Research Profiles. Book 24. http://digitalcommons.rockefeller.edu/research_profiles/24 This Article is brought to you for free and open access by the Campus Publications at Digital Commons @ RU. It has been accepted for inclusion in Rockefeller University Research Profiles by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. THE ROCKEFELLER UNIVERSITY RESEARCH Bacterial "suicide. I! A pneumococcal cell explosion PROFILES triggered by penicillin. FALL 1986 The Surface ofa Small Cell To the naked eye it is a milky liquid in a test tube. But when a droplet of it is seen through the thousandfold magnifying power of the microscope in Alexander Tomasz's laboratory, the field of vision suddenly becomes filled with hundreds of foot­ ball-like objects, remarkably uniform in shape and size, some of them arranged in pairs, some aligned tip-to-tip like a necklace. "You are looking at pneumococci," explains Dr. Tomasz, "bacteria that are among the most dangerous agents of human disease. You are also looking at the microbe that provided the clues to what many consider the most important discovery of biology in this century: the identification of DNA as the mat­ erial ofthe genes." In the preantibiotic era, up to the 1940s, pneumococcal infection was a leading cause of death, surpassing heart disease Pneumococcus surrounded by its and cancer.
    [Show full text]
  • Stanley N. Cohen SCIENCE, BIOTECHNOLOGY, And
    Regional Oral History Office University of California The Bancroft Library Berkeley, California Stanley N. Cohen SCIENCE, BIOTECHNOLOGY, and RECOMBINANT DNA: A PERSONAL HISTORY With an Introduction by Stanley Falkow, Ph.D. Interviews conducted by Sally Smith Hughes, Ph.D. in 1995 Copyright © 2009 by The Regents of the University of California ii Since 1954 the Regional Oral History Office has been interviewing leading participants in or well-placed witnesses to major events in the development of Northern California, the West, and the nation. Oral History is a method of collecting historical information through tape- recorded interviews between a narrator with firsthand knowledge of historically significant events and a well-informed interviewer, with the goal of preserving substantive additions to the historical record. The tape recording is transcribed, lightly edited for continuity and clarity, and reviewed and corrected by the interviewee. The corrected manuscript is bound with photographs and illustrative materials and placed in The Bancroft Library at the University of California, Berkeley, and in other research collections for scholarly use. Because it is primary material, oral history is not intended to present the final, verified, or complete narrative of events. It is a spoken account, offered by the interviewee in response to questioning, and as such it is reflective, partisan, deeply involved, and irreplaceable. ********************************* All uses of this manuscript are covered by a legal agreement between The Regents of the University of California and Stanley N. Cohen dated September 24, 2003. The manuscript is thereby made available for research purposes. All literary rights in the manuscript, including the right to publish, are reserved to The Bancroft Library of the University of California, Berkeley.
    [Show full text]
  • The Professor, the Institute And
    ae PROFESSOR, iuees INSTITUTE, maint DNA BY RENE J. DUBOS $14.50 The Professor, the Institute, and DNA BY RENEJ.DUBOS OSWALD THEODOREAVERYislittle knownoutside of the scientific commu- nity. Yet, this extraordinary man, here brought vividly to life by a perceptive friend and sophisticated scientific colleague, was amonumentalforce in the developmentof medical research in the United States. Even amongscientists, Avery is known chiefly as the senior author of a paper published in 1944 that identified DNA as the purveyorof genetic information. Twothings makethis highly personalized biography a landmark volume. First, its technical chaptersclarify the philosophi- cal conceptsthatlie behind today’s understanding of the immunology of -bacterial infection. Second, nota single existing textbook has ever described the laborious methods by which the men in Avery’s laboratory discovered the genetic import of DNA. continued on back flap THE PROFESSOR, THE INSTITUTE, AND DNA OSWALD THEODORE AVERY THE PROFESSOR, THE INSTITUTE, AND DNA BY RENE J. DUBOS THE ROCKEFELLER UNIVERSITY PRESS NEW YORK 1976 .- Copyright© 1976 The Rockefeller University Press Library of Congress Catalogue Card Number 76-26812 ISBN 87470-022-1 Printed in the United States of America Second printing 1978 CONTENTS INTRODUCTION 3 CHAPTER ONE: The Professor and the Institute 5 A dynamic institution Workshops of science The Professor and the genius loci CHAPTER lWO: From the Bedside to the Laboratory 13 The rise of scientific medicine in the United States The Rockefeller Institute
    [Show full text]
  • Remembering Rollin Hotchkiss (1911–2004)
    Copyright © 2005 by the Genetics Society of America Perspectives Anecdotal, Historical and Critical Commentaries on Genetics Edited by James F. Crow and William F. Dove Remembering Rollin Hotchkiss (1911–2004) Evelyn M. Witkin1 The Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08855-0759 OLLIN HOTCHKISS, the distinguished biochem- but he always seemed more intensely interested in know- R ist and geneticist, died last December at the age ing what others were doing and thinking, be they scien- of 93. I met Rollin in the summer of 1945 in Cold Spring tific stars or lowly graduate students. It was not all seri- Harbor. He had come to take the phage course, which ous, however, and humor ran high. Rollin’s playfulness was being offered for the first time that year. He returned was legendary, and I remember the inspired nonsense as a summer investigator for many years thereafter, and he created at the mock “graduation ceremonies” that during those summers I came to know him well and to took place every summer at the end of the phage course admire him as a superb scientist and an exceptionally (Susman 1995). He brought the house down with his fine human being. The last time I saw Rollin was at performance as the decrepit “oldest living alumnus” of a gathering to celebrate his 85th birthday, a festivity the course, a role that he had earned by having taken arranged by his wife, Magda Gabor-Hotchkiss, in Lenox, the course the first time it was offered. Massachusetts, where they had lived since 1982.
    [Show full text]
  • Ments, at Least 15 Transformations Took Place In10 of a Series of 49
    INDUCTION OF MELANIN SYNTHESIS IN ALBINO MOUSE SKIN BY DNA FROM PIGMENTED MICE* BY ELENA OTTOLENGHI-NIGHTINGALE DEPARTMENT OF MICROBIOLOGY, CORNELL UNIVERSITY MEDICAL COLLEGE, NEW YORK, NEW YORK Communicated by Colin M. MacLeod, July 11, 1969 Abstract.-Skin cells from albino mouse embryos have been shown to synthe- size melanin after exposure to a nucleoprotein fraction of cells from pigmented mice. Although transformed clones were not found in any of 37 control experi- ments, at least 15 transformations took place in 10 of a series of 49 experiments using undegraded DNA. The active component in the transforming material appears to be DNA because DNase-treated preparations did not induce melanin synthesis. The possibility of altering the genetic makeup of mammalian cells by DNA- mediated transformation has interested biologists since 1944 when it was shown that pneumococcal transforming principle was deoxyribonucleate.1 A number of investigators have reported that mammalian cells bind DNA and can incorporate it.2'- Transformation of amelanotic melanoma hamster cells by DNA from a melanotic line to increased pigment production has been reported by Glick and Salim.6 The observed change was of a quantitative nature rather than of a qualitative one. t Transformation of a tissue culture cell line deficient in inosinate pyrophosphorylase to enzyme production was observed by Szybalska and Szybalski,7 but confirmation of this finding has not been reported. Previous attempts at transformation of normal mammalian cells have not been successful.8 The literature in this field has been reviewed by Ledoux. 9 The experiments reported in the present communication demonstrate induc- tion of melanin synthesis in albino mouse cells after exposure to deoxyribonucle- ate from tissues of pigmented mice.
    [Show full text]