Genetic Landscape of High Hyperdiploid Childhood Acute Lymphoblastic Leukemia

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Landscape of High Hyperdiploid Childhood Acute Lymphoblastic Leukemia Genetic landscape of high hyperdiploid childhood acute lymphoblastic leukemia Kajsa Paulssona,1, Erik Forestierb, Henrik Lilljebjörna, Jesper Heldrupc, Mikael Behrendtzd, Bryan D. Younge, and Bertil Johanssona aDepartment of Clinical Genetics, University and Regional Laboratories, and cDepartment of Pediatrics, Skåne University Hospital, Lund University, SE-221 85 Lund, Sweden; bDepartment of Clinical Sciences, Pediatrics, University of Umeå, SE-901 85 Umeå, Sweden; dDepartment of Pediatrics, Linköping University Hospital, SE-581 85 Linköping, Sweden; and eInstitute of Cancer, Barts and the Royal London School of Medicine, London EC1M 6BQ, United Kingdom Edited* by Janet D. Rowley, University of Chicago, Chicago, IL, and approved October 12, 2010 (received for review May 21, 2010) High hyperdiploid acute lymphoblastic leukemia (ALL) is one of the however, it is possible that as yet unidentified primary aberra- most common malignancies in children. It is characterized by gain tions are present but are not detected because of the low reso- of chromosomes, typically +X, +4, +6, +10, +14, +17, +18, and +21, lution of most genetic screening techniques. Such hidden primary +21; little is known about additional genetic aberrations. Approx- events have been reported previously in aneuploid tumors, e.g., fi imately 20% of the patients relapse; therefore it is clinically im- the recent identi cation of structural rearrangements resulting in CRLF2 portant to identify risk-stratifying markers. We used SNP array deregulation of cytokine receptor-like factor 2 ( )ina analysis to investigate a consecutive series of 74 cases of high large proportion of ALL in patients with Down syndrome and microdeletions leading to the transmembrane protease, serin 2 hyperdiploid ALL. We show that the characteristic chromosomal TMPRSS2 gains are even more frequent than previously believed, indicating ( )/v-ets erythroblastosis virus E26 oncogene homolog (ERG) hybrid gene in prostate cancer (16, 17). Identification of a that karyotyping mistakes are common, and that almost 80% of fusion gene in high hyperdiploid ALL would be of major clinical the cases display additional abnormalities detectable by SNP array importance, possibly simplifying diagnostic procedures and pro- analysis. Subclonality analysis strongly implied that the numerical viding novel treatment options. aberrations were primary and arose before structural events, Although high hyperdiploidy generally confers a favorable suggesting that step-wise evolution of the leukemic clone is com- prognosis in childhood ALL, ∼20% of the patients suffer a re- mon. An association between duplication of 1q and +5 was seen (P = lapse, and 10% succumb to the disease (5, 7). Identification of 0.003). Other frequent abnormalities included whole-chromosome additional recurrent changes could aid in the identification of the uniparental isodisomies (wUPIDs) 9 and 11, gain of 17q not associ- high-risk cases and would be of great clinical importance. The ated with isochromosome formation, extra gain of part of 21q, only specific genetic markers that now are used for risk stratifi- deletions of ETS variant 6 (ETV6), cyclin-dependent kinase inhibitor cation in some centers are the “triple trisomies” (i.e., +4, +10, 2A (CKDN2A) and paired box 5 (PAX5), and PAN3 poly(A) specific and +17), which denote a lower-risk group in the Children’s ribonuclease subunit homolog (PAN3) microdeletions. Comparison Oncology Group (COG) protocol (18, 19). None of the other of whole-chromosome and partial UPID9 suggested different path- genetic abnormalities that have been shown to be recurrent in ogenetic outcomes, with the former not involving CDKN2A. Finally, addition to the chromosomal gains—including point mutations two cases had partial deletions of AT rich interactive domain 5B of fms-related tyrosine kinase 3 (FLT3), neuroblastoma RAS (ARID5B), indicating that acquired as well as constitutional variants viral oncogene homolog (NRAS), v-Ki ras2 Kirsten rat sarcoma KRAS in this locus may be associated with pediatric ALL. Here we provide viral oncogene homolog ( ), and protein tyrosine phos- PTPN11 a comprehensive characterization of the genetic landscape of high phatase, non receptor type 11 ( ), microdeletions of, e.g., cyclin-dependent kinase inhibitor 2A (CDKN2A) (9p21.3), ETS hyperdiploid childhood ALL, including the heterogeneous pattern of ETV6 PAX5 secondary genetic events. variant 6 ( ) (12p13.2), and paired box 5 ( ) (9p13.2), and structural aberrations such as dup(1q) and i(17q)—has proved to affect outcome, and hence there is a need for novel cute lymphoblastic leukemia (ALL) is the most common prognostic markers in high hyperdiploid childhood ALL (2). ∼ form of childhood malignancy, with a yearly incidence of 4/ In the present study, we used SNP array analyses to investigate A – 100,000 person-years in children 1 14 y old (1). Twenty to the genomes of a consecutive series of high hyperdiploid child- fi – twenty- ve percent display high hyperdiploidy (51 67 chromo- hood ALL. We show that the pattern of chromosomal gains is somes), making high hyperdiploid cases one of the largest sub- even more specific than indicated by standard cytogenetic anal- groups of pediatric cancer (2). Clinically, high hyperdiploid ALL ysis and that there is a genetic heterogeneity in this subgroup – is associated with age of 3 5 y, a relatively low WBC count, and regarding the additional genetic events. a B-cell precursor immunophenotype (3–7). The prognosis is favorable, with 5-y overall survival rates (OS) close to 90% (5, 7). Results MEDICAL SCIENCES Several lines of evidence suggest that the initiating transforming – Chromosomal Gains in High Hyperdiploid ALL. The SNP array event may occur in utero (8 10), but the etiology remains un- analysis showed that the median modal number was 55 (range known. Recently, two independent, large, genome-wide associ- 51–63) among the 74 cases. Chromosome 21 was gained in 100% ation studies reported linkage to a locus in the gene AT rich of the cases, followed by chromosome X in 95%, chromosomes 6 interactive domain 5B (ARID5B) at 10q21.2, but it is unclear and 14 in 91%, chromosome 18 in 86%, chromosome 4 in 80%, how this region affects the risk of developing high hyperdiploid chromosome 17 in 77%, chromosome 10 in 76%, chromosome 8 childhood ALL (11, 12). in 36%, and chromosome 5 in 26% (Figs. 1 and 2 and Table S1; Genetically, high hyperdiploid ALL is characterized by mas- sive aneuploidy, manifesting as a nonrandom gain of chromo- somes, typically including some or all of +X, +4, +6, +10, +14, +17, +18, and +21,+21, but other trisomies and tetrasomies are Author contributions: K.P., B.D.Y., and B.J. designed research; K.P., H.L., J.H., and M.B. seen also. Monosomies, on the other hand, are exceedingly rare performed research; K.P., E.F., and B.J. analyzed data; and K.P. and B.J. wrote the paper. (2, 13). The pathogenetic consequences of the chromosomal The authors declare no conflict of interest. gains remain poorly understood, but it generally is believed that *This Direct Submission article had a prearranged editor. gene dosage effects are of importance (2, 14, 15). No other 1To whom correspondence should be addressed. E-mail: [email protected]. characteristic genetic abnormality, such as a fusion gene, has This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. been found in the vast majority of high hyperdiploid ALL cases; 1073/pnas.1006981107/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1006981107 PNAS | December 14, 2010 | vol. 107 | no. 50 | 21719–21724 Downloaded by guest on October 1, 2021 Fig. 1. Chromosome gains detected by SNP array analysis in 74 cases of high hyperdiploid childhood ALL. Xf denotes gain of the X chromosome in females; Xm in males. “Trisomy” and “Tetrasomy” of Xm and Y correspond to one and two extra copies of these chromosomes, respectively. Chromo- somes X, 4, 6, 10, 14, 17, 18, and 21 were all gained in more than 70% of the cases; chromosome 21 was gained in 100% of the cases. Extra copies of chromosomes 8 and 5 were present in 36% and 26% of the cases, re- spectively, whereas all other chromosomes were gained in <20% of the 74 cases. Tetrasomies were seen for chromosomes 4, 8, 10, 14, 18, 21, and X, and pentasomy was seen for chromosome 21 only. for examples of SNP array results, see Fig. 3). The remaining chromosomes were all gained in less than 20% of the cases (range 0–17%); extra chromosomes 1 and 19 were not present in any of the cases (Fig. 1). The majority of the gains were tri- somies, but tetrasomies were detected for chromosomes 21 (72% of the 74 cases), 14 (16%), 10 (11%), 18 (8.1%), X (6.1% of Fig. 2. Overview of acquired genetic imbalances and UPIDs detected by SNP girls), 8 (2.7%), and 4 (1.4%), and pentasomy was seen for array analysis in 74 cases of high hyperdiploid childhood ALL. Each line chromosome 21 (6.8%) (Fig. 1). All but one tetrasomy were corresponds to an aberration in the chromosome on the left. Thin lines “2:2”; i.e., both homologs had been duplicated. Thirty-nine cases correspond to aberrations detected in one case; thicker lines indicate aber- (53%) had concurrent gains of chromosomes 4, 10, and 17 [i.e., rations detected in eight cases. Blue lines denote gains, red lines denote fi were positive for the “triple trisomies” (18, 19)]. There were no losses, and green lines denote UPIDs. This gure was made using the fi Genome-Wide Viewer software, freely available at http://www.well.ox.ac. signi cant differences in event-free survival (EFS) or OS be- ∼ tween cases with and without the triple trisomies or between uk/ jcazier/GWA_View.html. cases positive and negative for gain of chromosome 18, as pre- viously has been debated (5) (Fig.
Recommended publications
  • ARID5B As a Critical Downstream Target of the TAL1 Complex That Activates the Oncogenic Transcriptional Program and Promotes T-Cell Leukemogenesis
    Downloaded from genesdev.cshlp.org on October 10, 2021 - Published by Cold Spring Harbor Laboratory Press ARID5B as a critical downstream target of the TAL1 complex that activates the oncogenic transcriptional program and promotes T-cell leukemogenesis Wei Zhong Leong,1 Shi Hao Tan,1 Phuong Cao Thi Ngoc,1 Stella Amanda,1 Alice Wei Yee Yam,1 Wei-Siang Liau,1 Zhiyuan Gong,2 Lee N. Lawton,1 Daniel G. Tenen,1,3,4 and Takaomi Sanda1,4 1Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore; 2Department of Biological Sciences, National University of Singapore, 117543 Singapore; 3Harvard Medical School, Boston, Massachusetts 02215, USA; 4Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore The oncogenic transcription factor TAL1/SCL induces an aberrant transcriptional program in T-cell acute lym- phoblastic leukemia (T-ALL) cells. However, the critical factors that are directly activated by TAL1 and contribute to T-ALL pathogenesis are largely unknown. Here, we identified AT-rich interactive domain 5B (ARID5B) as a col- laborating oncogenic factor involved in the transcriptional program in T-ALL. ARID5B expression is down-regulated at the double-negative 2–4 stages in normal thymocytes, while it is induced by the TAL1 complex in human T-ALL cells. The enhancer located 135 kb upstream of the ARID5B gene locus is activated under a superenhancer in T-ALL cells but not in normal T cells. Notably, ARID5B-bound regions are associated predominantly with active tran- scription. ARID5B and TAL1 frequently co-occupy target genes and coordinately control their expression.
    [Show full text]
  • Mutational Landscape Differences Between Young-Onset and Older-Onset Breast Cancer Patients Nicole E
    Mealey et al. BMC Cancer (2020) 20:212 https://doi.org/10.1186/s12885-020-6684-z RESEARCH ARTICLE Open Access Mutational landscape differences between young-onset and older-onset breast cancer patients Nicole E. Mealey1 , Dylan E. O’Sullivan2 , Joy Pader3 , Yibing Ruan3 , Edwin Wang4 , May Lynn Quan1,5,6 and Darren R. Brenner1,3,5* Abstract Background: The incidence of breast cancer among young women (aged ≤40 years) has increased in North America and Europe. Fewer than 10% of cases among young women are attributable to inherited BRCA1 or BRCA2 mutations, suggesting an important role for somatic mutations. This study investigated genomic differences between young- and older-onset breast tumours. Methods: In this study we characterized the mutational landscape of 89 young-onset breast tumours (≤40 years) and examined differences with 949 older-onset tumours (> 40 years) using data from The Cancer Genome Atlas. We examined mutated genes, mutational load, and types of mutations. We used complementary R packages “deconstructSigs” and “SomaticSignatures” to extract mutational signatures. A recursively partitioned mixture model was used to identify whether combinations of mutational signatures were related to age of onset. Results: Older patients had a higher proportion of mutations in PIK3CA, CDH1, and MAP3K1 genes, while young- onset patients had a higher proportion of mutations in GATA3 and CTNNB1. Mutational load was lower for young- onset tumours, and a higher proportion of these mutations were C > A mutations, but a lower proportion were C > T mutations compared to older-onset tumours. The most common mutational signatures identified in both age groups were signatures 1 and 3 from the COSMIC database.
    [Show full text]
  • ARID5B Influences Anti-Metabolite Drug Sensitivity and Prognosis of Acute Lymphoblastic Leukemia
    Author Manuscript Published OnlineFirst on October 1, 2019; DOI: 10.1158/1078-0432.CCR-19-0190 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. ARID5B influences antimetabolite drug sensitivity and prognosis of acute lymphoblastic leukemia Heng Xu1,2*, Xujie Zhao2*, Deepa Bhojwani3, Shuyu E2, Charnise Goodings2, Hui Zhang4,2, Nita L. Seibel5, Wentao Yang2, Chunliang Li6, William L. Carroll7, William Evans2,8, Jun J. Yang2,8 1Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China. 2Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA. 3Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, California, USA. 4Department of Pediatric Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China. 5Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland, USA. 6Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA. 7Departments of Pediatrics and Pathology, New York University Langone Medical Center, New York, New York, USA. 8Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA Running title: ARID5B and drug resistance in ALL Keywords: acute lymphoblastic leukemia, ARID5B, p21, relapse, antimetabolite drug resistance *these authors contributed equally to this work. Financial support: This work was supported by the National Institutes of Health (GM118578, CA021765 and GM115279), the American Lebanese Syrian Associated Charities of St. Jude Children’s Research Hospital, and the Specialized Center of Research of Leukemia and Lymphoma Society (7010-14). Corresponding author: Jun J.
    [Show full text]
  • FTO Obesity Variant Circuitry and Adipocyte Browning in Humans
    GENERAL COMMENTARY published: 23 October 2015 doi: 10.3389/fgene.2015.00318 Commentary: FTO obesity variant circuitry and adipocyte browning in humans Samantha Laber 1, 2* and Roger D. Cox 1 1 Mammalian Genetics Unit, Medical Research Council Harwell, Oxfordshire, UK, 2 Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK Keywords: adipocyte browning, genome editing, GWAS (genome-wide association study), FTO locus, IRX5, rs1421085, IRX3 A commentary on FTO obesity variant circuitry and adipocyte browning in humans by Claussnitzer, M., Dankel, S. N., Kim, K-H., Quon, G., Meuleman, W., Haugen, C., et al. (2015). N. Engl. J. Med. 373, 895–907. doi: 10.1056/NEJMoa1502214 Genome-wide association studies (GWAS) identified >90 loci containing genetic variants, many in intronic regions, associated with human obesity. Understanding how these variants regulate gene Edited by: expression has been challenging. Claussnitzer et al. present a strategy for deciphering non-coding Antonio Brunetti, complex trait genetic associations which greatly advances their functional analysis. Magna Græcia University of The strongest genetic association with risk to polygenic obesity are single-nucleotide variants Catanzaro, Italy in intron 1 and 2 of the FTO (fat mass and obesity associated) gene (Yang et al., 2012; Locke Reviewed by: et al., 2015). However, of the 89 genetic variants in FTO intron 1 and 2, the causal variants, and Helene Choquet, their mechanistic underpinning have been elusive. A new report by Claussnitzer et al. identified
    [Show full text]
  • Noncoding Rnas As Novel Pancreatic Cancer Targets
    NONCODING RNAS AS NOVEL PANCREATIC CANCER TARGETS by Amy Makler A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, FL August 2018 Copyright 2018 by Amy Makler ii ACKNOWLEDGEMENTS I would first like to thank Dr. Narayanan for his continuous support, constant encouragement, and his gentle, but sometimes critical, guidance throughout the past two years of my master’s education. His faith in my abilities and his belief in my future success ensured I continue down this path of research. Working in Dr. Narayanan’s lab has truly been an unforgettable experience as well as a critical step in my future endeavors. I would also like to extend my gratitude to my committee members, Dr. Binninger and Dr. Jia, for their support and suggestions regarding my thesis. Their recommendations added a fresh perspective that enriched our initial hypothesis. They have been indispensable as members of my committee, and I thank them for their contributions. My parents have been integral to my successes in life and their support throughout my education has been crucial. They taught me to push through difficulties and encouraged me to pursue my interests. Thank you, mom and dad! I would like to thank my boyfriend, Joshua Disatham, for his assistance in ensuring my writing maintained a logical progression and flow as well as his unwavering support. He was my rock when the stress grew unbearable and his encouraging words kept me pushing along.
    [Show full text]
  • POGLUT1, the Putative Effector Gene Driven by Rs2293370 in Primary
    www.nature.com/scientificreports OPEN POGLUT1, the putative efector gene driven by rs2293370 in primary biliary cholangitis susceptibility Received: 6 June 2018 Accepted: 13 November 2018 locus chromosome 3q13.33 Published: xx xx xxxx Yuki Hitomi 1, Kazuko Ueno2,3, Yosuke Kawai1, Nao Nishida4, Kaname Kojima2,3, Minae Kawashima5, Yoshihiro Aiba6, Hitomi Nakamura6, Hiroshi Kouno7, Hirotaka Kouno7, Hajime Ohta7, Kazuhiro Sugi7, Toshiki Nikami7, Tsutomu Yamashita7, Shinji Katsushima 7, Toshiki Komeda7, Keisuke Ario7, Atsushi Naganuma7, Masaaki Shimada7, Noboru Hirashima7, Kaname Yoshizawa7, Fujio Makita7, Kiyoshi Furuta7, Masahiro Kikuchi7, Noriaki Naeshiro7, Hironao Takahashi7, Yutaka Mano7, Haruhiro Yamashita7, Kouki Matsushita7, Seiji Tsunematsu7, Iwao Yabuuchi7, Hideo Nishimura7, Yusuke Shimada7, Kazuhiko Yamauchi7, Tatsuji Komatsu7, Rie Sugimoto7, Hironori Sakai7, Eiji Mita7, Masaharu Koda7, Yoko Nakamura7, Hiroshi Kamitsukasa7, Takeaki Sato7, Makoto Nakamuta7, Naohiko Masaki 7, Hajime Takikawa8, Atsushi Tanaka 8, Hiromasa Ohira9, Mikio Zeniya10, Masanori Abe11, Shuichi Kaneko12, Masao Honda12, Kuniaki Arai12, Teruko Arinaga-Hino13, Etsuko Hashimoto14, Makiko Taniai14, Takeji Umemura 15, Satoru Joshita 15, Kazuhiko Nakao16, Tatsuki Ichikawa16, Hidetaka Shibata16, Akinobu Takaki17, Satoshi Yamagiwa18, Masataka Seike19, Shotaro Sakisaka20, Yasuaki Takeyama 20, Masaru Harada21, Michio Senju21, Osamu Yokosuka22, Tatsuo Kanda 22, Yoshiyuki Ueno 23, Hirotoshi Ebinuma24, Takashi Himoto25, Kazumoto Murata4, Shinji Shimoda26, Shinya Nagaoka6, Seigo Abiru6, Atsumasa Komori6,27, Kiyoshi Migita6,27, Masahiro Ito6,27, Hiroshi Yatsuhashi6,27, Yoshihiko Maehara28, Shinji Uemoto29, Norihiro Kokudo30, Masao Nagasaki2,3,31, Katsushi Tokunaga1 & Minoru Nakamura6,7,27,32 Primary biliary cholangitis (PBC) is a chronic and cholestatic autoimmune liver disease caused by the destruction of intrahepatic small bile ducts. Our previous genome-wide association study (GWAS) identifed six susceptibility loci for PBC.
    [Show full text]
  • FTO Obesity Variant Circuitry and Adipocyte Browning in Humans Melina Claussnitzer, Ph.D., Simon N
    The new england journal of medicine established in 1812 September 3, 2015 vol. 373 no. 10 FTO Obesity Variant Circuitry and Adipocyte Browning in Humans Melina Claussnitzer, Ph.D., Simon N. Dankel, Ph.D., Kyoung‑Han Kim, Ph.D., Gerald Quon, Ph.D., Wouter Meuleman, Ph.D., Christine Haugen, M.Sc., Viktoria Glunk, M.Sc., Isabel S. Sousa, M.Sc., Jacqueline L. Beaudry, Ph.D., Vijitha Puviindran, B.Sc., Nezar A. Abdennur, M.Sc., Jannel Liu, B.Sc., Per‑Arne Svensson, Ph.D., Yi‑Hsiang Hsu, Ph.D., Daniel J. Drucker, M.D., Gunnar Mellgren, M.D., Ph.D., Chi‑Chung Hui, Ph.D., Hans Hauner, M.D., and Manolis Kellis, Ph.D.​​ abstract BACKGROUND Genomewide association studies can be used to identify disease-relevant genomic The authors’ affiliations are listed in the regions, but interpretation of the data is challenging. The FTO region harbors the Appendix. Address reprint requests to Dr. Claussnitzer at the Gerontology Division, strongest genetic association with obesity, yet the mechanistic basis of this asso- Beth Israel Deaconess Medical Center ciation remains elusive. and Hebrew SeniorLife, Harvard Medical School, 1200 Centre St., Boston, MA METHODS 02215, or at melina@ broadinstitute . org; We examined epigenomic data, allelic activity, motif conservation, regulator ex- or to Dr. Kellis at the Computer Science and Artificial Intelligence Laboratory, MIT, pression, and gene coexpression patterns, with the aim of dissecting the regula- 32 Vassar St., Cambridge, MA 02139, or tory circuitry and mechanistic basis of the association between the FTO region and at manoli@ mit . edu. obesity. We validated our predictions with the use of directed perturbations in Drs.
    [Show full text]
  • Entrez ID Gene Name Fold Change Q-Value Description
    Entrez ID gene name fold change q-value description 4283 CXCL9 -7.25 5.28E-05 chemokine (C-X-C motif) ligand 9 3627 CXCL10 -6.88 6.58E-05 chemokine (C-X-C motif) ligand 10 6373 CXCL11 -5.65 3.69E-04 chemokine (C-X-C motif) ligand 11 405753 DUOXA2 -3.97 3.05E-06 dual oxidase maturation factor 2 4843 NOS2 -3.62 5.43E-03 nitric oxide synthase 2, inducible 50506 DUOX2 -3.24 5.01E-06 dual oxidase 2 6355 CCL8 -3.07 3.67E-03 chemokine (C-C motif) ligand 8 10964 IFI44L -3.06 4.43E-04 interferon-induced protein 44-like 115362 GBP5 -2.94 6.83E-04 guanylate binding protein 5 3620 IDO1 -2.91 5.65E-06 indoleamine 2,3-dioxygenase 1 8519 IFITM1 -2.67 5.65E-06 interferon induced transmembrane protein 1 3433 IFIT2 -2.61 2.28E-03 interferon-induced protein with tetratricopeptide repeats 2 54898 ELOVL2 -2.61 4.38E-07 ELOVL fatty acid elongase 2 2892 GRIA3 -2.60 3.06E-05 glutamate receptor, ionotropic, AMPA 3 6376 CX3CL1 -2.57 4.43E-04 chemokine (C-X3-C motif) ligand 1 7098 TLR3 -2.55 5.76E-06 toll-like receptor 3 79689 STEAP4 -2.50 8.35E-05 STEAP family member 4 3434 IFIT1 -2.48 2.64E-03 interferon-induced protein with tetratricopeptide repeats 1 4321 MMP12 -2.45 2.30E-04 matrix metallopeptidase 12 (macrophage elastase) 10826 FAXDC2 -2.42 5.01E-06 fatty acid hydroxylase domain containing 2 8626 TP63 -2.41 2.02E-05 tumor protein p63 64577 ALDH8A1 -2.41 6.05E-06 aldehyde dehydrogenase 8 family, member A1 8740 TNFSF14 -2.40 6.35E-05 tumor necrosis factor (ligand) superfamily, member 14 10417 SPON2 -2.39 2.46E-06 spondin 2, extracellular matrix protein 3437
    [Show full text]
  • Molecular Studies Reveal MLL-MLLT10/AF10 and ARID5B-MLL Gene Fusions Displaced in a Case of Infantile Acute Lymphoblastic Leukemia with Complex Karyotype
    ONCOLOGY LETTERS 14: 2295-2299, 2017 Molecular studies reveal MLL-MLLT10/AF10 and ARID5B-MLL gene fusions displaced in a case of infantile acute lymphoblastic leukemia with complex karyotype MITSUTERU HIWATARI1,2, MASAFUMI SEKI1, SHOGO AKAHOSHI1, KENICHI YOSHIDA3, SATORU MIYANO4,5, YUICHI SHIRAISHI4, HIROKO TANAKA5, KENICHI CHIBA4, SEISHI OGAWA3 and JUNKO TAKITA1 1Department of Pediatrics, Graduate School of Medicine, University of Tokyo; 2Department of Cell Therapy and Transplantation Medicine, University of Tokyo, Tokyo 113-8655; 3Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501; 4Laboratory of DNA Information Analysis and 5Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan Received August 20, 2016; Accepted May 18, 2017 DOI: 10.3892/ol.2017.6430 Abstract. The present report describes a unique infantile different pathological disease mechanisms may be at play due acute lymphoblastic leukemia (ALL) case with cryptic to individual recombination events. mixed-lineage leukemia (MLL) rearrangements with 11q23 chromosomal translocation. MLL break-apart signals were Introduction identified by fluorescence in situ hybridization, and tran- scriptome sequencing revealed MLL-myeloid/lymphoid or The incidence of translocations in the mixed-lineage leukemia mixed-lineage leukemia; translocated To, 10 (MLLT10)/AF10 (MLL) gene at chromosome band 11q23 is high in acute fusion transcripts. Analysis also revealed a previously unre- lymphoblastic leukemia (ALL) and acute myeloid leukemia in ported MLLT10/AF10-homeobox protein Mohawk (MKX) infants (1,2). MLL forms rearrangements with >60 transloca- transcript, where the 5' portion of MLLT10/AF10 at 10p12.31 tion partner genes (3,4).
    [Show full text]
  • The International Mouse Phenotyping Consortium (IMPC): a Functional
    The International Mouse Phenotyping Consortium (IMPC): a functional catalogue of the mammalian genome that informs conservation × the IMPC consortium Violeta Muñoz-Fuentes, Pilar Cacheiro, Terrence Meehan, Juan Antonio Aguilar-Pimentel, Steve Brown, Ann Flenniken, Paul Flicek, Antonella Galli, Hamed Haseli Mashhadi, Martin Hrabě de Angelis, et al. To cite this version: Violeta Muñoz-Fuentes, Pilar Cacheiro, Terrence Meehan, Juan Antonio Aguilar-Pimentel, Steve Brown, et al.. The International Mouse Phenotyping Consortium (IMPC): a functional catalogue of the mammalian genome that informs conservation × the IMPC consortium. Conservation Genet- ics, Springer Verlag, 2018, 3 (4), pp.995-1005. 10.1007/s10592-018-1072-9. hal-02361601 HAL Id: hal-02361601 https://hal.archives-ouvertes.fr/hal-02361601 Submitted on 13 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Conservation Genetics (2018) 19:995–1005 https://doi.org/10.1007/s10592-018-1072-9 RESEARCH ARTICLE The International Mouse Phenotyping Consortium (IMPC): a functional catalogue of the mammalian genome that informs conservation Violeta Muñoz‑Fuentes1 · Pilar Cacheiro2 · Terrence F. Meehan1 · Juan Antonio Aguilar‑Pimentel3 · Steve D. M. Brown4 · Ann M. Flenniken5,6 · Paul Flicek1 · Antonella Galli7 · Hamed Haseli Mashhadi1 · Martin Hrabě de Angelis3,8,9 · Jong Kyoung Kim10 · K.
    [Show full text]
  • The Rs1421085 Variant Within FTO Promotes but Not Inhibits Thermogenesis and Is Potentially Associated with Human Migration
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.13.456245; this version posted August 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The rs1421085 variant within FTO promotes but not inhibits thermogenesis and is potentially associated with human migration Zhiyin Zhang,1,2,7 Na Chen,1,2,7 Ruixin Liu,1,2,7 Nan Yin,1,2,7 Yang He,1,2,7 Danjie Li,1,2 Muye Tong,1,2 Aibo Gao,1,2 Peng Lu,1,2 Huabing Li,3 Dan Zhang, 4 Weiqiong Gu,1,2 Jie Hong,1,2 Weiqing Wang,1,2 Lu Qi,4,5,6 Jiqiu Wang,1,2* Guang Ning1,2 1 Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China 2 Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China 3 Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China 4 Shengjing Hospital of China Medical University, Shenyang, China 5 Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA 6 Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA 7 These authors contribute equally to this work.
    [Show full text]
  • ARID5B As a Critical Downstream Target of the TAL1 Complex That Activates the Oncogenic Transcriptional Program and Promotes T-Cell Leukemogenesis
    Downloaded from genesdev.cshlp.org on October 7, 2021 - Published by Cold Spring Harbor Laboratory Press ARID5B as a critical downstream target of the TAL1 complex that activates the oncogenic transcriptional program and promotes T-cell leukemogenesis Wei Zhong Leong,1 Shi Hao Tan,1 Phuong Cao Thi Ngoc,1 Stella Amanda,1 Alice Wei Yee Yam,1 Wei-Siang Liau,1 Zhiyuan Gong,2 Lee N. Lawton,1 Daniel G. Tenen,1,3,4 and Takaomi Sanda1,4 1Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore; 2Department of Biological Sciences, National University of Singapore, 117543 Singapore; 3Harvard Medical School, Boston, Massachusetts 02215, USA; 4Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore The oncogenic transcription factor TAL1/SCL induces an aberrant transcriptional program in T-cell acute lym- phoblastic leukemia (T-ALL) cells. However, the critical factors that are directly activated by TAL1 and contribute to T-ALL pathogenesis are largely unknown. Here, we identified AT-rich interactive domain 5B (ARID5B) as a col- laborating oncogenic factor involved in the transcriptional program in T-ALL. ARID5B expression is down-regulated at the double-negative 2–4 stages in normal thymocytes, while it is induced by the TAL1 complex in human T-ALL cells. The enhancer located 135 kb upstream of the ARID5B gene locus is activated under a superenhancer in T-ALL cells but not in normal T cells. Notably, ARID5B-bound regions are associated predominantly with active tran- scription. ARID5B and TAL1 frequently co-occupy target genes and coordinately control their expression.
    [Show full text]