Sterilization Sterilization Refers the Complete Removal Or Elimination of Microorganisms from an Environment

Total Page:16

File Type:pdf, Size:1020Kb

Sterilization Sterilization Refers the Complete Removal Or Elimination of Microorganisms from an Environment AGM151 2006-07 Sterilization Sterilization refers the complete removal or elimination of microorganisms from an environment. Physical and chemical agents are available to remove the microorganisms from the environment. The heat, irradiation and filtration are the three physical agents and various chemicals are as chemical agents available for sterilization. Terms related to control of microorganisms Cide or cidal means to kill the microorganism (Ex. Bactericidal refers the killing of bacteria) Static or stasis means inactivation or inhibition, but not killing. They prevent multiplication of the organism. (Ex. Fungistatic refers the inhibition of growth of fungi.) Sepsis refers break down of a living tissue by organisms and is accompanied by inflammation and pus formation. Antispetic is an agent applied externally on living tissues to kill or inhibit the growth of the organisms. Disinfectant is an agent applied externally on inanimate objects (not living tissues) to destroy harmful pathogens in their vegetative stage. (Antiseptics are milder than disinfectants because to avoid the side effects) Sanitation refers removal of organisms from a location by cleaning but not by sterilization. 1. Heat Principle : At high temperature, all the macro molecules lose their structure and ability to function called as denaturation. Similarly, the heat coagulates the protein and oxidize the elements lead for lethality. The heat susceptibility of the organism should know before the heat treatment to be applied. For this, the thermal death time and thermal death points are essential. Thermal death time refers the time to kill a suspension of organisms at a specific temperature. Thermal death point refers the lowest temperature to kill a suspension in a given time. Decimal reduction time (D time) – Time to kill 90% or 1 log unit of a population at a given temperature Based on the above parameters, the time and temperature to kill the microorganism from an environment is derived. Pasteurization Refers removal of undesired microorganisms without affecting the beneficial microorganisms, odour and taste. The pasteurization of milk is done to eliminate the pathogenic microorganisms which cause diseases like tuberculosis, brucellosis, Q fever, typhoid etc. In broad, the pasteurization is done to kill Salmonella and E. coli like organisms. Sterilization AGM151 2006-07 Flash pasteurization: holding the substance at 71°C for 15 seconds and rapid cooling referred as flash pasteurization Bulk pasteurization: holding the substance at 63-65°C for 30 min and slow cooling referred as bulk pasteurization Tyndallization Refers intermittent or fractional sterilization. The subsequent cooling and heating by steam for 3 days will remove the germs and their spores refers the tyndallization. Ex Soil which contains diversified microbes with spores. The tyndallization will remove all the vegetative cells and also the spores. The normal sterilization by autoclave will eliminate the vegetative cells only and not spores. Tyndallization > sterilization (by autoclave) > pasteurization is the order of degree of strength in terms of removal of microorganisms. 4 or 5 different ways of sterilization are available to kill the microorganisms using heat. 1. Direct flaming – showing the objects or equipments directly to the flame leads the sterilization. This is also called as incineration. The inoculation needles, spread rods, forceps can be sterilized using this technique. 2. Boiling – The liquids boiling also possible. In this method, only the vegetative forms are killed in few minutes whereas the spores are not. 3. Dry heat – Causes oxidation of cells. By using electrical coils, heat is generated and used for sterilization. Normally high temperature and long time are required for complete sterilization using this method. 160-180°C for 2- 3 hours are required for complete sterilization. Instrument: Hot air oven. A double walled (inner and outer walls) instrument protected with asbestos sheets to avoid heat loss. Thermostat is present to control the temperature and timer is also present to turn off automatically after particular time. The glasswares like conical flasks, beakers, petri dishes, pipettes can be sterilized using this technique. 4. Moist heat – Causes denaturation and coagulation of protein. To kill vegetative structure of bacteria, yeast and molds - 80°C for 5-10 min; To kill mold spores - 80°C for 30 min; bacterial spores - 121°C, 15 lbs/sq.inch pressure for 15 min. are the optimum moist heat. (The moist heat has more penetration power than dry heat and leads faster reduction in number of living organism and under pressure, the penetration of heat will be more in the autoclave) Instrument: The autoclave is used for sterilization using moist heat under pressure. Autoclave is made up of double walled steel plates with air tight lids. Electrical coil submerged in water is provided to generate the stream. To measure the pressure, a pressure gauge and for safety, a safety valve is also attached in the lid. If the steam pressure inside the closed vessel is increased to 15 lb/sq. inch, the temperature will raise Sterilization AGM151 2006-07 to 121.6°C. Keeping this condition for 15 – 20 min. will kill all the vegetative and spore structures of microbes. (Note : For soil like heavy solid material, the penetration of moist heat is not sufficient to kill all the spores and vegetative structures. So intermittent sterilization (tyndallization) is necessary) 2. Radiation Microwaves, ultra violet rays, gamma rays and electrons have the power to kill the microorganisms. Among them, UV light (non-ionizing radiation) and gamma rays (ionizing radiation) are commonly used for sterilization. UV radiation: The wave length considered to be between 220 – 300 nm is used to control the microorganisms. It has sufficient energy to form dimers (bridges) between two adjacent pyrimidines in the DNA and there by affect the DNA replication leads to death. This light is highly useful to disinfect surfaces, air, and water, which do not absorb the light. Instrument used: laminar air flow chamber – A clean bench used to handle the microbes in a microbe free environment. It has two methods of sterilization. Radiation by UV and filtration by HEPA filters (High efficiency particulate filters), a microbe free air will be present in side. Ionizing radiation : Ionizing radiation is electromagnetic radiation of sufficient energy to produce ions like electron, hydroxyl ions, protons, etc. which can alter the biopolymers such as DNA and protein causing break of polymers. γ-rays produced from 60Co and 137Cs are useful for sterilization of the plastic wares, gloves, heat labile plastic containers, poly bags, tissue grafts, plastic syringes etc. In few cases, food were also sterilized by γ-rays. 3. Filtration Heat is the most common and effective way of sterilization but some heat sensitive liquids and chemicals cannot be sterilized by heat. An alternate technique for the sterilization is by filters. A filter is too small for a passage of microorganisms but large enough to passage of liquids. There are three types of filters 1. Pyrex glass or sintered glass filters: Filter glass made with powdered glass disc with pore size of 0.5 to 2 µm are used as filters. These discs were fit into funnels and used for filtration. These were used by suction pumps for faster flow rate. 2. Seitz filters: The filter mat is made up of asbestos – cellulose mixture. 3. Membrane filters: They are composed of polymers with high tensile strength such as cellulose acetate, cellulose nitrate or polysulfonate, manufactured in such a way that they contain a large number of tiny holes. By adjusting the polymerization conditions during manufacture, the size of holes in the membrane can be precisely controlled. They trap the microbes on the surface and allow the microbe free solution to pass. Sterilization AGM151 2006-07 4. Chemical agents : Different chemicals like halogens, heavy metals, phenols, alcohols and ethanol are used for sterilization. The following are different classes of chemicals involved in sterilization. a) Phenol and Phenolics - 5% aqueous solutions kill vegetative forms of microorganisms. Some of their derivatives are lysol, dettol, cresol etc. They alter the selective permeability of the cytoplasmic membrane of organisms and cause death. b) Alcohols - They are bactericidal and fungicidal but not sporicidal. They denature proteins and are solvents of lipids. 60 – 90 % is the range for this activity. Water is required for the lethal effect. c) Halogens - Cause oxidation and direct halogenation of proteins thus inhibiting the activity of proteins e.g. hypochlorite, iodophores etc. d) Surfactants - Surface active agents, good wetting and solubilizing agents e.g. Soap, detergent etc. They have both hydrophilic and hydrophobic groups (ambivalent) to dissolve compounds. e) Alkylating agents - They substitute alkyl groups for hydrogen of reactive groups in nucleic acids and proteins, causing disruption of metabolic pathways e.g. Formaldehyde, glutaraldehyde, ethylene oxide (gaseous agent) f) Heavy metals - React with sulfhydryl group (SH) of enzyme and make them inactive. Mercury, copper and silver are commonly used heavy metals. g) Antibiotics - Antibiotics are low molecular weight molecules produced as secondary metabolites by microorganisms, which kill or inhibit the other microorganisms. The following table shows some examples of common antibiotics and their mode of action. S. Antibiotics Source Effective Mode of action
Recommended publications
  • Heat Resistant Thermophilic Endospores in Cold Estuarine Sediments
    Heat resistant thermophilic endospores in cold estuarine sediments Emma Bell Thesis submitted for the degree of Doctor of Philosophy School of Civil Engineering and Geosciences Faculty of Science, Agriculture and Engineering February 2016 Abstract Microbial biogeography explores the spatial and temporal distribution of microorganisms at multiple scales and is influenced by environmental selection and passive dispersal. Understanding the relative contribution of these factors can be challenging as their effects can be difficult to differentiate. Dormant thermophilic endospores in cold sediments offer a natural model for studies focusing on passive dispersal. Understanding distributions of these endospores is not confounded by the influence of environmental selection; rather their occurrence is due exclusively to passive transport. Sediment heating experiments were designed to investigate the dispersal histories of various thermophilic spore-forming Firmicutes in the River Tyne, a tidal estuary in North East England linking inland tributaries with the North Sea. Microcosm incubations at 50-80°C were monitored for sulfate reduction and enriched bacterial populations were characterised using denaturing gradient gel electrophoresis, functional gene clone libraries and high-throughput sequencing. The distribution of thermophilic endospores among different locations along the estuary was spatially variable, indicating that dispersal vectors originating in both warm terrestrial and marine habitats contribute to microbial diversity in estuarine and marine environments. In addition to their persistence in cold sediments, some endospores displayed a remarkable heat-resistance surviving multiple rounds of autoclaving. These extremely heat-resistant endospores are genetically similar to those detected in deep subsurface environments, including geothermal groundwater investigated from a nearby terrestrial borehole drilled to >1800 m depth with bottom temperatures in excess of 70°C.
    [Show full text]
  • Food Processing and Preservation - Sbt1607
    SCHOOL OF BIO AND CHEMICAL ENGINEERING DEPARTMENT OF BIOTECHNOLOGY B.TECH – BIOTECHNOLOGY UNIT – I - FOOD PROCESSING AND PRESERVATION - SBT1607 HISTORY OF FOOD PROCESSING AND FOOD PRESERVATION FOOD PROCESSING Food processing dates back to the prehistoric age when crude processing including various types of cooking, such as over fire, smoking, steaming, fermenting, sun drying and preserving with salt were in practice. Foods preserved this way were a common part of warriors’ and sailors’ diets. These crude processing techniques remained essentially the same until the advent of the Industrial Revolution. Nicolas Appert developed a vacuum bottling process to supply food to troops in the French army, which eventually led to canning in tins by Peter Durand in 1810. Modern food processing technologies, in the 19th century were also largely developed to serve military needs. In the early 20th century, the space race, change in food habits and the quality conciousness of the consumers in the developed world furthered the development of food processing with advancements such as spray drying, juice concentrates, freeze drying and the introduction of artificial sweetners, colourants, and preservatives. In the late 20th century products including dried instant soups, reconstituted fruit juices, and self cooking meals such as ready-to-eat food rations etc., were developed. Benefits of Processing . Converts raw food and other farm produce into edible, usable and palatable form. Helps to store perishable and semi-perishable agricultural commodities, avoid glut in the market, check post harvest losses and make the produce available during off-season. Generates employment. Development of ready-to-consume products, hence saves time for cooking.
    [Show full text]
  • Medical Bacteriology
    LECTURE NOTES Degree and Diploma Programs For Environmental Health Students Medical Bacteriology Abilo Tadesse, Meseret Alem University of Gondar In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education September 2006 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2006 by Abilo Tadesse, Meseret Alem All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. PREFACE Text book on Medical Bacteriology for Medical Laboratory Technology students are not available as need, so this lecture note will alleviate the acute shortage of text books and reference materials on medical bacteriology.
    [Show full text]
  • Unit 3 Lecture 6
    Unit 3 Lecture 6 Unit 3 Lecture 6 Introduction to Antimicrobials An Antimicrobial is any method which interferes with the optimum growth of a microbe. Microbial death is defined as the inability of the organism to reproduce. Sterility is the complete destruction or removal of all microorganisms and viruses. Sterile is an absolute term. There is no “almost sterile.” Sterility requires all life forms to be eliminated from the various kingdoms of microorganisms including the vegetative state (those in active metabolism and reproduction) and those that are quite resistant to sterilization (e.g. endospores and cysts). Sterilization can be achieved by physical or chemical means. Microbial death is the permanent loss of reproductive ability of the microbe. Disinfection is the complete destruction or removal of all vegetative pathogens and their toxins. It does not affect endospores. Therefore non- pathogenic life forms may survive. It does however require all vegetative forms of pathogens be eliminated. Disinfection can be achieved by physical or chemical means. A disinfectant is used on only on inanimate objects. Aseptic techniques Surgical asepsis is any barrier to exclude the admission of any viable organism. Medical asepsis is any barrier to exclude the admission of naturally communicable organisms. An Antiseptic is a chemical used to provide asepsis that is safe to use on body surfaces. An object or skin is sanitized when the mechanical destruction or removal of sufficient microbes has been performed to have a microbial population at a “safe level.” Degermation is the reduction of the number of microbes on the skin by scrubbing. Word parts used with antimicrobials that assist in their definition.
    [Show full text]
  • Self Assessment & Review: Microbiology & Immunology, 4Th
    Self Assessment & Review MMUNOLOGY Self Assessment & Review MMUNOLOGY 4th Edition Rachna Chaurasia MD Radiodiagnosis MLB Medical College, Jhansi, India Anshul Jain MD Anaesthesia MLB Medical College, Jhansi, India the arora medical book publishers pvt. ltd. A Group of Jaypee Brothers Medical Publishers (P) Ltd. Published by Jitendar P Vij Jaypee Brothers Medical Publishers (P) Ltd Corporate Office 4838/24 Ansari Road, Daryaganj, New Delhi - 110002, India, Phone: +91-11-43574357 Registered Office B-3 EMCA House, 23/23B Ansari Road, Daryaganj, New Delhi - 110 002, India Phones: +91-11-23272143, +91-11-23272703, +91-11-23282021, +91-11-23245672 Rel: +91-11-32558559, Fax: +91-11-23276490, +91-11-23245683 e-mail: [email protected], Website: www.jaypeebrothers.com Branches ❑ 2/B, Akruti Society, Jodhpur Gam Road Satellite Ahmedabad 380 015, Phones: +91-79-26926233, Rel: +91-79-32988717 Fax: +91-79-26927094, e-mail: [email protected] ❑ 202 Batavia Chambers, 8 Kumara Krupa Road, Kumara Park East Bengaluru 560 001, Phones: +91-80-22285971, +91-80-22382956 91-80-22372664, Rel: +91-80-32714073, Fax: +91-80-22281761 e-mail: [email protected] ❑ 282 IIIrd Floor, Khaleel Shirazi Estate, Fountain Plaza, Pantheon Road Chennai 600 008, Phones: +91-44-28193265, +91-44-28194897 Rel: +91-44-32972089, Fax: +91-44-28193231, e-mail: [email protected] ❑ 4-2-1067/1-3, 1st Floor, Balaji Building, Ramkote Cross Road, Hyderabad 500 095, Phones: +91-40-66610020, +91-40-24758498 Rel:+91-40-32940929Fax:+91-40-24758499, e-mail: [email protected]
    [Show full text]
  • 201: Microbiology UNIT –I
    201: Microbiology UNIT –I 1. Beginning of Microbiology, milestones in the development of microbiology, spontaneous generation, Microbial Ecosystem, Microbial world, Branches of Microbiology, Application of microbiology. 2. Methods in Microbiology: Sterilization, Culture Media, Pure culture technique, enrichment culture technique, Microbial staining methods, Maintenance and preservation of Microorganisms, Culture collection centers. 3. Microbial growth: Growth curve, measurement of growth, growth yields, synchronous growth, continuous culture, growth as affected by environmental factors such as temperature, acidity, alkalinity, water availability and oxygen. 4. Microbial evolution, systematics and taxonomy: Evolution of earth’s earliest life forms, primitive organisms, their metabolic strategies and their molecular coding, New approaches to bacterial taxonomy, nomenclature, Bergey’s manual, Ribotyping. NOTES Discovery of Microscope: The fascinating microbial world would have remained unknown had the microscope not been invented. It was Roger Bacon (1267) who developed a lens for the first time. Jansen and Jansen (1590), about 300 years later first produced a crude type of microscope by placing two lenses together without any provision for focusing’ Galileo Galilei (1610) prepared a microscope with a focusing device called ‘occiale’. Till then, the name ‘microscope’ had not been in use and it was first proposed by Faber (or Fabri) in 1625. However, the advent of such optical lens systems did not reveal the existence of microorganisms. It was not until the mid-17th century when further development of the optical lens systems to definite microscope permitted the visualization of microorganisms that the great diversity of the microbial world began to be recognized. Robert Hooke (1635-1703) made and used a compound microscope in the 1660s and described his fascinating explorations of the newly discovered universe of microscopic creatures in his classic “Micrographia” (1665).
    [Show full text]
  • Effect of Tyndallisation Process on Microbial Quality and Shelf Life of Gulabjamun
    The Pharma Innovation Journal 2020; 9(12): 30-32 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 Effect of tyndallisation process on microbial quality TPI 2020; 9(12): 30-32 © 2020 TPI and shelf life of Gulabjamun www.thepharmajournal.com Received: 18-10-2020 Accepted: 23-11-2020 S Banupriya, G Kumaresan and C Kathirvelan S Banupriya Department of Livestock Abstract Products Technology, Dairy A study has been carried out to enhance the shelf life of Gulabjamun by tyndallization. Gulabjamun were Science, Veterinary College and prepared under aseptic conditions in the laboratory as per standard procedure. All the samples of Research Institute, Tamil Nadu gulabjamun were packed in 16 glass containers. Eight samples were tyndallized and others were kept as Veterinary and Animal Sciences control. Standard Plate Count, Coliform Count and Yeast and Mould Count analysis were carried out in University, Namakkal, Tamil tyndallized and control gulabjamun. Sensory evaluation on a nine point Hedonic Scale was done for Nadu. India treated and untreated products stored at ambient condition (30 ˚C) at 0 day, 7th, 21st, 28th and till they were acceptable based on organoleptic test and consumer acceptance. It was observed that the shelf life G Kumaresan of gulabjamun was extended by 28 days and beyond at room temperature. The different microbial count Department of Livestock Products Technology, Dairy also within the permissible limit in tyndallized product than control. It has been concluded that of Science, Veterinary College and tyndallization process in gulabjamun is suggested to enhance the shelf life of the product up to 28 days in Research Institute, Tamil Nadu room temperature.
    [Show full text]
  • International Journal of Food Microbiology Design of Microbial Consortia for the Fermentation of Pea-Protein-Enriched Emulsions
    International Journal of Food Microbiology 293 (2019) 124–136 Contents lists available at ScienceDirect International Journal of Food Microbiology journal homepage: www.elsevier.com/locate/ijfoodmicro Design of microbial consortia for the fermentation of pea-protein-enriched emulsions T Salma Ben-Harb, Anne Saint-Eve, Maud Panouillé, Isabelle Souchon, Pascal Bonnarme, ⁎ Eric Dugat-Bony, Françoise Irlinger UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, 78850 Thiverval-Grignon, France ARTICLE INFO ABSTRACT Keywords: In order to encourage Western populations to increase their consumption of vegetables, we suggest turning Legume legumes into novel, healthy foods by applying an old, previously widespread method of food preservation: Aroma profile fermentation. In the present study, a total of 55 strains from different microbial species (isolated from cheese or Bacteria plants) were investigated for their ability to: (i) grow on a emulsion containing 100% pea proteins and no Fungi carbohydrates or on a 50:50 pea:milk protein emulsion containing lactose, (ii) increase aroma quality and reduce Microbial assembly sensory off-flavors; and (iii) compete against endogenous micro organisms. The presence of carbohydrates in the mixed pea:milk emulsion markedly influenced the fermentation by strongly reducing the pH through lactic fermentation, whereas the absence of carbohydrates in the pea emulsion promoted alkaline or neutral fer- mentation. Lactic acid bacteria assigned to Lactobacillus plantarum, Lactobacillus rhamnosus, Lactococcus lactis
    [Show full text]
  • Sterilization, Disinfection and Biosafety
    Sterilization, Disinfection and Biosafety Department of Microbiology College of Medicine University of Baghdad Learning Objectives . Define Sterilization and disinfection . Identify the different types or methods of sterilization . Recognize the biosafety in operation theaters and hopspitals . Recognize the standard microbiological practices . Define procedures used by laboratories to protect workers and others from infection . List the types of infectious waste. Sterilization • Sterilization – The killing or removal of all form of microbial life including spores. – Sterilization of instruments, drugs and supplies is important for the prevention of infection. • Disinfection – Is reducing the number of bacteria to a level low enough that disease is unlikely to occur – It a is less lethal process than sterilization. Types of sterilization Types of sterilization Chemical Physical methods methods Filtration Radiation Heat Mild Potent Non- Dry heat Moist ionizing heat ionizing Read heat At a temperature (direct Autoclaving At a temperature below 100c flaming) above 100c Infra-red Hot of 100c radiation air oven Boiling at Tyndallization 100c Physical methods • Heat 1. Dry heat a) Red heat: heating of platinum loop, points of forceps, needles and mouth of culture tubes. Physical methods b) Hot air oven: Temperature of 160 °C for 1 hour is employed. Hot air oven is the best method for sterilizing dry glassware, forceps, scalpels...other steel & dental &surgical instruments, powders, fat, greases. Physical methods c) Infra-red radiation: the source employed is an electrically heat element, a temperature of 180° C can be attained. Used for glassware. Physical methods • d) Incineration: This is an excellent method of destroying materials such as contaminated cloth, animal carcasses and pathological materials.
    [Show full text]
  • Gamma Irradiation and Autoclave Sterilization Peat and Compost As the Carrier for Rhizobial Inoculant Production
    Journal of Agricultural Science; Vol. 4, No. 12; 2012 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Gamma Irradiation and Autoclave Sterilization Peat and Compost as the Carrier for Rhizobial Inoculant Production Panlada Tittabutr1, Kamonluck Teamthisong2, Bancha Buranabanyat1, Neung Teaumroong1 & Nantakorn Boonkerd1 1 School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand 2 The Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima, Thailand Correspondence: Nantakorn Boonkerd, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand. Tel: 66-4422-4501. E-mail: [email protected] Received: August 1, 2012 Accepted: August 28, 2012 Online Published: November 15, 2012 doi:10.5539/jas.v4n12p59 URL: http://dx.doi.org/10.5539/jas.v4n12p59 Abstract Rhizobium is a biofertilizer for leguminous crops. To formulate this form of fertilizer, the suitable sterilization processes of carrier are important. Therefore, the aim of this research was to elucidate the process of gamma irradiation and autoclaving on peat and compost based carriers for rhizobial inoculant production. Carriers with 10% moisture content packing in polyethylene bag could be efficiently sterilized by irradiation at 10-20 kGy, or by autoclaving with tyndallization approach (autoclaving two times in a row at 121ºC for 60 min, with waiting period of 18 hours after each time of autoclaving). The number of Bradyrhizobium sp. PRC008 was in the range of 108-109 cfu/g in both irradiated and autoclaved peat after 6 months storage. However, the numbers of bradyrhizobial cell were reduced in compost sterilized by both methods after one month storage.
    [Show full text]
  • WO 2016/097248 Al 23 June 2016 (23.06.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/097248 Al 23 June 2016 (23.06.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61Q 5/06 (2006.01) A61K 36/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 8/97 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP20 15/080403 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 18 December 2015 (18. 12.2015) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 1462873 19 December 2014 (19. 12.2014) FR kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: L'OREAL [FR/FR]; 14, rue Royale, 75008 TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, Paris (FR).
    [Show full text]
  • Ensuring Dairy Raw Biological Safety by Tyndallization
    ©2021 International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies ISSN 2228-9860 eISSN 1906-9642 CODEN: ITJEA8 International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies http://TuEngr.com Ensuring Raw Dairy Biological Safety by Tyndallization Vladimir Kaishev1 1 Department of Technology of Production and Processing of Agricultural Products, Stavropol State Agrarian University, Stavropol, RUSSIA. *Corresponding Author (Tel: +7-999 55 00 00, Email: [email protected]) Paper ID: 12A5B Abstract Volume 12 Issue 5 The article provides a theoretical substantiation of the technological Received 23 December 2020 platform for ensuring the biological safety of raw milk by the method Received in revised form 12 of controlled thermal cleaning before technological processing. Investigated February 2021 alternative options for bacterial purification of raw milk by heating, with Accepted 24 February 2021 exposure to a soft regime, improved its microbiological, physicochemical, Available online 02 March and technological properties. The technology of low-temperature heat 2021 treatment of whey has been substantiated, making it possible to achieve Keywords: microbiological purification, stabilization, and preservation of the quality of Milk; Whey; Microbial contamination; Heat raw materials, with the possibility of its preservation further use in obtaining treatment; Thermized functional food products and feed means of a new generation. milk; Technological Disciplinary: Biotechnology,
    [Show full text]