Gene Regulation During Stress Response Transcription In

Total Page:16

File Type:pdf, Size:1020Kb

Gene Regulation During Stress Response Transcription In DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER FAKULTÄT FÜR CHEMIE UND PHARMAZIE DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN GENE REGULATION DURING STRESS RESPONSE TRANSCRIPTION IN SACCHAROMYCES CEREVISIAE: DYNAMIC TRANSCRIPTOME ANALYSIS OF OSMOTIC STRESS RESPONSE AND MEDIATOR PHOSPHORYLATION Christian Miller aus Füssen, Deutschland 2013 EIDESSTATTILCHE VERSICHERUNG ERKLÄRUNG Diese Dissertation wurde im Sinne von §7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Patrick Cramer betreut. EIDESSTATTLICHE VERSICHERUNG Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. München, am 29.01.2013 Christian Miller Dissertation eingereicht am: 29.01.2013 1. Gutachter: Prof. Dr. Patrick Cramer 2. Gutachter: PD Dr. Dietmar Martin Mündliche Prüfung am: 27.02.2013 ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS I was growing up in front of the Bavarian alps, and I learned that it takes a few but essential things to reach the summit. First, you have to be part of a team that is strong and motivated enough to accept the challenge. Second, it’s up to you to put in the efford of going upwards. Third, there is no perfect time for attacking the summit, but there are perfect opportunities. In 2007, I became part of the Cramer-team. First of all I would like to thank my supervisor Prof. Dr. Patrick Cramer, the leader of the rope-team, for giving me the opportunity to join his group of young and extraordinary motivated scientists. Patrick, you gave me the freedom to improve my skills and to bring forward new ideas for my challenging projects. You provided uncomplicated help whenever it was required – no matter if it was about scientific work or during my two-year training program in major incident management. Special thank goes to Jesper Olsen and Heidi Feldmann for being members of my PhD advisory board. You gave valuable feedback and supported my scientific work with helpful advices. I would like to thank Francesc Posas and Eulalia de Nadal for answering many questions about the HOG pathway. My trip to the Parc de Recerca Biomédica de Barcelona was one of the highlights. I am also thankful to Matthias Mann for his collaboration and for his feedback to my work on Mediator phosphorylation. Special thank goes to Ivan Matic, who performed all mass spectrometry analysis of my Mediator project and for all the lively discussions. Kerstin, thank you for being such a great collegue. Thank you for support and your extraordernary help throughout the experimental work on dynamic transcriptome analysis and the Mediator phosphorylation. I am also very thankful to Dietmar, for your earnest interest in my experimental ideas and for giving me valuable feedback. I would like to thank Achim (Tresch) and Björn (Schwalb) for taking their time for many discussions, feedbacks and the collaborative work that result in the development of DTA. Since I was part of a strong and motivated rope-team, I would like to thank my teammates. Elmar, for working side by side throughout my lab time, for talking about attitudes, economics, politics, philosophy, all the stuff beyond science and for the many special moments inside and outside the lab as we had so much fun. Rieke, for sharing the deep passion for sports, for all the very welcome discussions during our coffee breaks and for illustrating the contrasts of urban- and country life, which nowhere else could be larger than between Essen and Kirchthal. Tobias for all the help with the Äkta systems, the discussions of cloning problems and nice moments at the barbecue and wine-tasting. Laurent, for your contagious enthusiasm on science issues and your open minded way of problem-solving. Martin for all the helpful discussions about transcription and the Mediator and for performing the in vitro transcription assay. Stefan (Benkert) and Claudia (Buchen) for managing the daily lab routine and for being a source of continuity. Stefan (Dengl) and Stefan (Jennebach) for talking about all the little but serious issues of lab-life. Jasmin for sharing the long days in the lab and for the work on the Pol II in vitro elongation assay. Andreas for all the discussions about high-throughput data and the nice moments during the Harvard young scientist´s forum (…hoping to meet you at Paulaner`s). Claudia (Blattner) for the very welcome interruptions of the daily routine and the varied topics during our coffee-breaks. - I - ACKNOWLEDGEMENTS Lieber Opa Franz, Danke für Deine fortwährende Unterstützung, für das anhaltende Interesse an meiner Arbeit und für Deine Ratschläge, die meine Sicht auf viele Dinge verändert hat. Leider konntest Du den Abschluss dieser Arbeit nicht mehr miterleben. Liebe Oma Elisabeth, Lieber Werner, Danke für Eure große Hilfsbereitschaft und dass Ihr mir so manches ermöglicht habt. Liebe Birgit, lieber Fredi, liebe Margit, Anna und Sophie, ihr habt mir immer großen Rückhalt gegeben und wart zu jeder Zeit für mich da. Danke dafür. Liebe Eva, vielen Dank für Deine so große Unterstützung und Deinen starken Rückhalt während der nun zurückliegenden schwierigen Zeit. Danke für Dein Verständnis. Danke für die vielen schönen Momente, Erlebnisse, Erinnerungen. Ich freue mich so auf unsere Zukunft – Du und ich!. Liebe Mama, lieber Papa, Danke für Eure außerordentlich große Unterstützung. Eure vorbehaltlose Hilfe, Euer Rückhalt und Euer tiefes Vertrauen haben dies alles erst ermöglicht. - II - PUBLICATIONS PUBLICATIONS Parts of this work have been published: Christian Miller*, Björn Schwalb*, Kerstin Maier*, Daniel Schulz, Sebastian Dümcke, Benedikt 2011 Zacher, Andreas Mayer, Jasmin Sydow, Lisa Marcinowski, Lars Dölken, Dietmar E. Martin, Achim Tresch and Patrick Cramer *contributed equally Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast.1,2 Molecular Systems Biology, 7:458, doi:10.1038/msb.2010.112 Author contributions: CM and KM conducted DTA experiments, BS, SD, BZ, and AT developed the statistical workflow and carried out computational analysis, DS and AM conducted ChIP experiments, JS conducted enzymatic assays, LM, LD, and DEM conducted initial experiments, LD and PC initiated the study, DEM supervised experimental work, and AT and PC supervised research and wrote the manuscript. Christian Miller*, Ivan Matic*, Kerstin C. Maier*, Susanne Roether, Björn Schwalb, Katja 2012 Sträßer, Achim Tresch, Matthias Mann, and Patrick Cramer *contributed equally Mediator phosphorylation prevents stress response transcription during non stress conditions. Journal of biological chemistry, 2012, 287(53), 44017-26 Author contributions: CM designed and conducted the SILAC & DTA experiments and final data analysis. CM and PC wrote the manuscript. IM conducted the phospho-proteomics data processing and analysis. KM performed the DTA experiments and cloned the D7P and D30P strains. SR and KS created the strain for phospho-proteomics. BS and AT carried out the computational analysis of DTA/cDTA data. MM and PC supervised the projects. 1 The Molecular Systems Biology journal has published a top ten chart of the articles that have been downloaded most often over the previous 30 days. This article reached the top rank of the top ten charts within 13 days and reached the 6th rank of the of the top 10 most read research articles published in Molecular Systems Biology in 2011. 2 Overview to this work has been published in Cell: Szewczak, L. & Plosky, B. (2011) Leading Edge Select, Cell, 144, 831-832; - III - SUMMARY SUMMARY TOPIC I: DYNAMIC TRANSCRIPTOME ANALYSIS MEASURES RATES OF MRNA SYNTHESIS AND DECAY IN YEAST To obtain rates of mRNA synthesis and decay in yeast, we established dynamic transcriptome analysis (DTA). DTA combines non-perturbing metabolic RNA labeling with dynamic kinetic modeling. DTA reveals that most mRNA synthesis rates are around several transcripts per cell and cell cycle, and most mRNA half-lives range around a median of 11 min. DTA can monitor the cellular response to osmotic stress with higher sensitivity and temporal resolution than standard transcriptomics. In contrast to monotonically increasing total mRNA levels, DTA reveals three phases of the stress response. During the initial shock phase, mRNA synthesis and decay rates decrease globally, resulting in mRNA storage. During the subsequent induction phase, both rates increase for a subset of genes, resulting in production and rapid removal of stress-responsive mRNAs. During the recovery phase, decay rates are largely restored, whereas synthesis rates remain altered, apparently enabling growth at high salt concentration. Stress- induced changes in mRNA synthesis rates are predicted from gene occupancy with RNA polymerase II. Thus, DTA realistically monitors the dynamics in mRNA metabolism that underlie gene regulatory systems. TOPIC II: MEDIATOR PHOSPHORYLATION PREVENTS STRESS RESPONSE TRANSCRIPTION DURING NON STRESS CONDITIONS The multiprotein complex Mediator is a coactivator of RNA polymerase (Pol) II transcription that is required for the regulated expression of protein-coding genes. Mediator serves as an endpoint of signaling pathways and regulates Pol II transcription, but the mechanisms it uses are not well understood. Here we used mass spectrometry and dynamic transcriptome analysis to investigate a functional role of Mediator phosphorylation in gene expression. Affinity purification and mass spectrometry revealed that Mediator from the yeast S. cerevisiae is phosphorylated at multiple sites a 17 out of its 25 subunits. Mediator phosphorylation levels change upon an external stimulus set by exposure of
Recommended publications
  • Characterization of Genomic Copy Number Variation in Mus Musculus Associated with the Germline of Inbred and Wild Mouse Populations, Normal Development, and Cancer
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-18-2019 2:00 PM Characterization of genomic copy number variation in Mus musculus associated with the germline of inbred and wild mouse populations, normal development, and cancer Maja Milojevic The University of Western Ontario Supervisor Hill, Kathleen A. The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Maja Milojevic 2019 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Genetics and Genomics Commons Recommended Citation Milojevic, Maja, "Characterization of genomic copy number variation in Mus musculus associated with the germline of inbred and wild mouse populations, normal development, and cancer" (2019). Electronic Thesis and Dissertation Repository. 6146. https://ir.lib.uwo.ca/etd/6146 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Mus musculus is a human commensal species and an important model of human development and disease with a need for approaches to determine the contribution of copy number variants (CNVs) to genetic variation in laboratory and wild mice, and arising with normal mouse development and disease. Here, the Mouse Diversity Genotyping array (MDGA)-approach to CNV detection is developed to characterize CNV differences between laboratory and wild mice, between multiple normal tissues of the same mouse, and between primary mammary gland tumours and metastatic lung tissue.
    [Show full text]
  • Anti-MED30 (Aa 1-100) Polyclonal Antibody (CABT- BL5153) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-MED30 (aa 1-100) polyclonal antibody (CABT- BL5153) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Rabbit polyclonal antibody to Human MED30. Antigen Description The multiprotein TRAP/Mediator complex facilitates gene expression through a wide variety of transcriptional activators. MED30 is a component of this complex that appears to be metazoan specific (Baek et al., 2002 Immunogen Synthetic peptide conjugated to KLH derived from within residues 1 - 100 of Human MED30 / TRAP25. Isotype IgG Source/Host Rabbit Species Reactivity Human Purification Immunogen affinity purified Conjugate Unconjugated Cellular Localization Nuclear Format Liquid Size 100 μg Buffer 1% BSA, PBS, pH 7.4 Preservative 0.02% Sodium Azide Storage Store at 4°C short term (1-2 weeks). Aliquot and store at -20°C or -80°C. Avoid repeated freeze/thaw cycles. BACKGROUND Introduction The multiprotein TRAP/Mediator complex facilitates gene expression through a wide variety of transcriptional activators. MED30 is a component of this complex that appears to be metazoan specific (Baek et al., 2002 [PubMed 11909976]).[supplied by OMIM, Nov 2010] 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved GENE INFORMATION Entrez Gene ID 90390 Protein Refseq NP_542382 UniProt ID Q96HR3 Chromosome Location 8q24.11 Pathway Developmental Biology, organism-specific biosystem; Gene Expression, organism-specific
    [Show full text]
  • Identification of Protein Complexes Associated with Myocardial Infarction Using a Bioinformatics Approach
    MOLECULAR MEDICINE REPORTS 18: 3569-3576, 2018 Identification of protein complexes associated with myocardial infarction using a bioinformatics approach NIANHUI JIAO1, YONGJIE QI1, CHANGLI LV2, HONGJUN LI3 and FENGYONG YANG1 1Intensive Care Unit; 2Emergency Department, Laiwu People's Hospital, Laiwu, Shandong 271199; 3Emergency Department, The Central Hospital of Tai'an, Tai'an, Shandong 271000, P.R. China Received November 3, 2016; Accepted January 3, 2018 DOI: 10.3892/mmr.2018.9414 Abstract. Myocardial infarction (MI) is a leading cause of clinical outcomes regarding high-risk MI. For example, muta- mortality and disability worldwide. Determination of the tions in the myocardial infarction-associated transcript have molecular mechanisms underlying the disease is crucial for been reported to cause susceptibility to MI (5). In addition, it identifying possible therapeutic targets and designing effective was demonstrated that mutations in the oxidized low-density treatments. On the basis that MI may be caused by dysfunc- lipoprotein receptor 1 gene may significantly increase the tional protein complexes rather than single genes, the present risk of MI (6). Although some MI-related genes have been study aimed to use a bioinformatics approach to identifying detected, many were identified independently and functional complexes that may serve important roles in the develop- associations among the genes have rarely been explored. ment of MI. By investigating the proteins involved in these Therefore, it is necessary to investigate MI from a systematic identified complexes, numerous proteins have been reported perspective, as the complex disease was reported to occur due that are related to MI, whereas other proteins interacted to the dysregulation of functional gene sets (7).
    [Show full text]
  • Functional Diversification of the Nleg Effector Family in Enterohemorrhagic Escherichia Coli
    Functional diversification of the NleG effector family in enterohemorrhagic Escherichia coli Dylan Valleaua, Dustin J. Littleb, Dominika Borekc,d, Tatiana Skarinaa, Andrew T. Quailea, Rosa Di Leoa, Scott Houlistone,f, Alexander Lemake,f, Cheryl H. Arrowsmithe,f, Brian K. Coombesb, and Alexei Savchenkoa,g,1 aDepartment of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; bDepartment of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; cDepartment of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390; dDepartment of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390; ePrincess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 2M9, Canada; fDepartment of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; and gDepartment of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada Edited by Ralph R. Isberg, Howard Hughes Medical Institute and Tufts University School of Medicine, Boston, MA, and approved August 15, 2018 (receivedfor review November 6, 2017) The pathogenic strategy of Escherichia coli and many other gram- chains. Depending on the length and nature of the polyubiquitin negative pathogens relies on the translocation of a specific set of chain, it posttranslationally regulates the target protein’s locali- proteins, called effectors, into the eukaryotic host cell during in- zation, activation, or degradation. Ubiquitination is a multistep fection. These effectors act in concert to modulate host cell pro- process which begins with the ubiquitin-activating enzyme (E1) cesses in favor of the invading pathogen. Injected by the type III using ATP to “charge” ubiquitin, covalently binding the ubiquitin secretion system (T3SS), the effector arsenal of enterohemorrhagic C terminus by a thioester linkage.
    [Show full text]
  • Diaezdbioinfo.Pdf
    TESIS DOCTORAL DISEÑO Y DESARROLLO DE UNA PLATAFORMA BIOINFORMÁTICA PARA LA INTEGRACIÓN, GESTIÓN Y VISUALIZACIÓN DE REDES DE INTERACCIÓN DE PROTEÍNAS E INTERACTOMAS DIEGO ALONSO LÓPEZ DIRECTORES DR. JAVIER DE LAS RIVAS SANZ DR. RODRIGO SANTAMARÍA VICENTE SALAMANCA, MARZO DE 2017 El Dr. Javier De Las Rivas Sanz, con D.N.I. 15949000H, Investigador Científico del Consejo Superior de Investigaciones Científicas (CSIC), director del grupo de Bioinformática y Genómica Funcional en el Instituto de Biología Molecular y Celular del Cáncer (CiC‐IBMCC), y profesor del Programa de Doctorado y del Máster de Biología y Clínica del Cáncer de dicho Instituto y la Universidad de Salamanca (USAL). Y el Dr. Rodrigo Santamaría Vicente, con D.N.I. 70879303L, Profesor Titular del Departamento de Informática y Automática de la Universidad de Salamanca (USAL), miembro del grupo de investigación VisUsal (Visualización de información y analítica visual) de dicha universidad y del grupo de investigación en Dinámica del Genoma y Epigenética del Instituto de Biología Funcional y Genómica (CSIC‐USAL). CERTIFICAN que han dirigido esta Tesis Doctoral titulada "DISEÑO Y DESARROLLO DE UNA PLATAFORMA BIOINFORMÁTICA PARA LA INTEGRACIÓN, GESTIÓN Y VISUALIZACIÓN DE REDES DE INTERACCIÓN DE PROTEÍNAS E INTERACTOMAS” realizada por D. Diego Alonso López, alumno del programa de doctorado de Ingeniería Informática de la Universidad de Salamanca. Y AUTORIZAN la presentación de la misma, considerando que reúne las condiciones de originalidad y contenidos requeridos para optar al grado de Doctor por la Universidad de Salamanca. En Salamanca, a 17 de marzo de 2017 Dr. Javier De Las Rivas Sanz Dr. Rodrigo Santamaría Vicente AGRADECIMIENTOS A mis directores de tesis, Javier De Las Rivas y Rodrigo Santamaría, gracias por darme la oportunidad de realizar este trabajo y facilitarme el camino con vuestros consejos y ayuda.
    [Show full text]
  • The Mammalian Mediator Complex
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 579 (2005) 904–908 FEBS 29061 Minireview The mammalian Mediator complex Joan Weliky Conawaya,b,c,*, Laurence Florensa, Shigeo Satoa, Chieri Tomomori-Satoa, Tari J. Parmelya, Tingting Yaoa, Selene K. Swansona, Charles A.S. Banksa, Michael P. Washburna, Ronald C. Conawaya,b a Stowers Institute for Medical Research, Kansas City, MO 64110, USA b Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS 66160, USA c Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA Received 25 October 2004; accepted 2 November 2004 Available online 24 November 2004 Edited by Gunnar von Heijne and Anders Liljas expressed in eukaryotes from yeast to man, is composed of Abstract The multiprotein Mediator (Med) complex is an evo- lutionarily conserved transcriptional regulator that plays impor- more than twenty subunits and has been named Mediator tant roles in activation and repression of RNA polymerase II (Med) for its role in mediating transcriptional signals from transcription. Prior studies identified a set of more than twenty DNA binding transcription factors bound at upstream pro- distinct polypeptides that compose the Saccharomyces cerevisiae moter elements and enhancers to RNA polymerase II and Mediator. Here we discuss efforts to characterize the subunit the general initiation factors bound at the core promoter sur- composition and associated activities of the mammalian Med rounding the transcriptional start site. complex. Ó 2004 Federation of European Biochemical Societies. Published by Elsevier B.V.
    [Show full text]
  • Structure of the Mammalian Mediator
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326918; this version posted October 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Structure of the Mammalian Mediator Haiyan Zhao1.#, Natalie Young1,#, Jens Kalchschmidt2,#, Jenna Lieberman2, Laila El Khattabi3, Rafael Casellas2,4 and Francisco J. Asturias1,* 1Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora CO 80045, USA 2Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD 20892, USA 3Institut Cochin Laboratoire de Cytogénétique Constitutionnelle Pré et Post Natale, 75014 Paris France 4Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA #,*These authors contributed equally to this work *Correspondence should be addressed to F.J.A. ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326918; this version posted October 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The Mediator complex plays an essential and multi-faceted role in regulation of RNA polymerase II transcription in all eukaryotes. Structural analysis of yeast Mediator has provided an understanding of the conserved core of the complex and its interaction with RNA polymerase II but failed to reveal the structure of the Tail module that contains most subunits targeted by activators and repressors. Here we present a molecular model of mammalian (Mus musculus) Mediator, derived from a 4.0 Å resolution cryo-EM map of the complex.
    [Show full text]
  • Structure of Mammalian Mediator Complex Reveals Tail Module Architecture and Interaction with a Conserved Core
    ARTICLE https://doi.org/10.1038/s41467-021-21601-w OPEN Structure of mammalian Mediator complex reveals Tail module architecture and interaction with a conserved core Haiyan Zhao 1,5, Natalie Young1,5, Jens Kalchschmidt2,5, Jenna Lieberman2, Laila El Khattabi3, ✉ Rafael Casellas2,4 & Francisco J. Asturias1 1234567890():,; The Mediator complex plays an essential and multi-faceted role in regulation of RNA poly- merase II transcription in all eukaryotes. Structural analysis of yeast Mediator has provided an understanding of the conserved core of the complex and its interaction with RNA polymerase II but failed to reveal the structure of the Tail module that contains most subunits targeted by activators and repressors. Here we present a molecular model of mammalian (Mus musculus) Mediator, derived from a 4.0 Å resolution cryo-EM map of the complex. The mammalian Mediator structure reveals that the previously unresolved Tail module, which includes a number of metazoan specific subunits, interacts extensively with core Mediator and has the potential to influence its conformation and interactions. 1 Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora, CO, USA. 2 Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD, USA. 3 Institut Cochin Laboratoire de Cytogénétique Constitutionnelle Pré et Post Natale, Paris, France. 4 Center for Cancer ✉ Research, NCI, NIH, Bethesda, MD, USA. 5These authors contributed equally: Haiyan Zhao, Natalie Young, Jens Kalchschmidt. email: Francisco. [email protected]
    [Show full text]
  • Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors
    University of Cincinnati Date: 12/20/2010 I, Arturo R Maldonado , hereby submit this original work as part of the requirements for the degree of Doctor of Philosophy in Developmental Biology. It is entitled: Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors Student's name: Arturo R Maldonado This work and its defense approved by: Committee chair: Jeffrey Whitsett Committee member: Timothy Crombleholme, MD Committee member: Dan Wiginton, PhD Committee member: Rhonda Cardin, PhD Committee member: Tim Cripe 1297 Last Printed:1/11/2011 Document Of Defense Form Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors A dissertation submitted to the Graduate School of the University of Cincinnati College of Medicine in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (PH.D.) in the Division of Molecular & Developmental Biology 2010 By Arturo Rafael Maldonado B.A., University of Miami, Coral Gables, Florida June 1993 M.D., New Jersey Medical School, Newark, New Jersey June 1999 Committee Chair: Jeffrey A. Whitsett, M.D. Advisor: Timothy M. Crombleholme, M.D. Timothy P. Cripe, M.D. Ph.D. Dan Wiginton, Ph.D. Rhonda D. Cardin, Ph.D. ABSTRACT Since 1999, cancer has surpassed heart disease as the number one cause of death in the US for people under the age of 85. Malignant Peripheral Nerve Sheath Tumor (MPNST), a common malignancy in patients with Neurofibromatosis, and colorectal cancer are midkine- producing tumors with high mortality rates. In vitro and preclinical xenograft models of MPNST were utilized in this dissertation to study the role of midkine (MDK), a tumor-specific gene over- expressed in these tumors and to test the efficacy of a MDK-transcriptionally targeted oncolytic HSV-1 (oHSV).
    [Show full text]
  • Agricultural University of Athens
    ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΩΝ ΖΩΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΖΩΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΚΑΙ ΕΙΔΙΚΗΣ ΖΩΟΤΕΧΝΙΑΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ ΑΘΗΝΑ 2020 ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Genome-wide association analysis and gene network analysis for (re)production traits in commercial broilers ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ Τριμελής Επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Επταμελής εξεταστική επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Πηνελόπη Μπεμπέλη (Καθ. ΓΠΑ) Δημήτριος Βλαχάκης (Επ. Καθ. ΓΠΑ) Ευάγγελος Ζωίδης (Επ.Καθ. ΓΠΑ) Γεώργιος Θεοδώρου (Επ.Καθ. ΓΠΑ) 2 Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Περίληψη Σκοπός της παρούσας διδακτορικής διατριβής ήταν ο εντοπισμός γενετικών δεικτών και υποψηφίων γονιδίων που εμπλέκονται στο γενετικό έλεγχο δύο τυπικών πολυγονιδιακών ιδιοτήτων σε κρεοπαραγωγικά ορνίθια. Μία ιδιότητα σχετίζεται με την ανάπτυξη (σωματικό βάρος στις 35 ημέρες, ΣΒ) και η άλλη με την αναπαραγωγική
    [Show full text]
  • Genomic Copy Number Variation in Mus Musculus Locke Et Al
    Genomic copy number variation in Mus musculus Locke et al. Locke et al. BMC Genomics (2015) 16:497 DOI 10.1186/s12864-015-1713-z Locke et al. BMC Genomics (2015) 16:497 DOI 10.1186/s12864-015-1713-z RESEARCH ARTICLE Open Access Genomic copy number variation in Mus musculus M Elizabeth O Locke1, Maja Milojevic2, Susan T Eitutis2,NishaPatel2,AndreaEWishart2, Mark Daley1,2 and Kathleen A Hill1,2* Abstract Background: Copy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously. Results: We found 9634 putative autosomal CNVs across the samples affecting 6.87 % of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).
    [Show full text]
  • The Nematode Homologue of Mediator Complex Subunit 28, F28F8.5, Is a Critical Regulator of C
    The nematode homologue of Mediator complex subunit 28, F28F8.5, is a critical regulator of C. elegans development Marke´ta Kostrouchova´1,2, David Kostrouch1, Ahmed A. Chughtai1, Filip Kasˇsˇa´k1, Jan P. Novotny´1, Veronika Kostrouchova´1, Alesˇ Benda3, Michael W. Krause4, Vladimı´r Saudek5, Marta Kostrouchova´1 and Zdeneˇk Kostrouch1 1 Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic 2 Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic 3 Imaging Methods Core Facility, BIOCEV, Faculty of Science, Charles University, Prague, Czech Republic 4 Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 5 Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK ABSTRACT The evolutionarily conserved Mediator complex is a critical player in regulating transcription. Comprised of approximately two dozen proteins, the Mediator integrates diverse regulatory signals through direct protein-protein interactions that, in turn, modulate the influence of Mediator on RNA Polymerase II activity. One Mediator subunit, MED28, is known to interact with cytoplasmic structural proteins, providing a potential direct link between cytoplasmic dynamics and the control of gene transcription. Although identified in many animals and plants, MED28 is not present in yeast; no bona fide MED28 has been described previously in Caenorhabditis elegans. Here, we identify bioinformatically F28F8.5, an uncharacterized predicted protein, as the nematode homologue of MED28. As in Submitted 13 October 2016 other Metazoa, F28F8.5 has dual nuclear and cytoplasmic localization and plays Accepted 8May2017 critical roles in the regulation of development.
    [Show full text]