Conserved Structure-Function Relationships in the Mediator Complex

Total Page:16

File Type:pdf, Size:1020Kb

Conserved Structure-Function Relationships in the Mediator Complex From the Department of Laboratory Medicine Karolinska Institutet, Stockholm, Sweden CONSERVED STRUCTURE-FUNCTION RELATIONSHIPS IN THE MEDIATOR COMPLEX Tomas Linder Stockholm 2007 Published and printed by 2007 GårdsvägenPublished and 4, printed 169 70 by Solna Stockholm, Sweden ©Tomas Linder, 2007 ISBN 978-91-7357-096-1 Tillägnas min morfar ABSTRACT The Mediator complex is an essential multiprotein coregulator of RNA polymerase II (pol II)- dependent transcription in fungi and metazoans. Mediator interacts directly with both pol II and sequence-specific transcriptional regulators and thus acting as a bridge between the two. We have performed a comparative biochemical and functional characterisation the Mediator in the two ascomycete yeasts S. cerevisiae and S. pombe to address to what degree subunit architecture and specific regulatory functions have been conserved between these two species. In Paper I we identified the Med31 protein as a stable subunit of Mediator in S. cerevisiae and S. pombe. We defined a highly conserved central motif in the Med31 protein that appeared to be required but not sufficient for the association of Med31 with the rest of the Mediator complex. In Paper II we investigated the structural basis for the global shutdown of pol II- dependent transcription in the S. cerevisiae MED17 temperature sensitive allele srb4-138. We found that the srb4-138 allele disrupts the interaction between the head and middle domains both in vitro and in vivo. This suggested that the global shutdown of transcription in srb4-138 cells at the non-permissive temperature is caused by destabilisation of the core Mediator complex. In Paper III we characterised the architecture of the S. pombe Cdk8 module by biochemical means and addressed its relationship to the non-essential Med1 subunit. We found that the Med1 subunit is closely linked both structurally and functionally with the Cdk8 module. Electron microscopy of wildtype and �med1 Mediator resolved the position of the Med1 subunit as proximal to the Cdk8 module within the pol II-binding cleft of the core Mediator complex. Expression profiling of �med1 cells showed significant overlap with the changes seen in cells lacking either Med12 or Med13. In Paper IV we carried out a comprehensive functional characterisation of the S. pombe Mediator complex and identified two distinct morphological pathways that require different parts of the Mediator for their proper regulation. Head domain-linked mutants tended to grow as hyphae due to their inability to express genes required for proper cell separation after mitosis. Mutants of the Cdk8 module aggregated into large clumps due to impaired repression of genes that code for cell surface agglutinins. Comparison with similar studies done in S. cerevisiae revealed that both regulatory roles for these subcomplexes are conserved. LIST OF PUBLICATIONS I. Tomas Linder & Claes M. Gustafsson (2004) The Soh1/MED31 protein is an ancient component of Schizosaccharomyces pombe and Saccharomyces cerevisiae Mediator. J Biol Chem, 2004, 279, 49455-9. II. Tomas Linder, Xuefeng Zhu, Vera Baraznenok & Claes M. Gustafsson. (2006) The classical srb4-138 mutant allele causes dissociation of yeast Mediator. Biochem Biophys Res Commun, 349, 948-53. III. Vera Baraznenok, Hans Elmlund, Olga Khorosjutina, Martin Lindahl, Camilla O. Samuelsen, Nina N. Rasmussen, Philip Koeck, Tomas Linder, Steen Holmberg, Hans Herbert & Claes M. Gustafsson (2007) Functional and structural interactions between Med1 and the Cdk8 module in fission yeast Mediator. J Biol Chem (submitted) IV. Tomas Linder, Nina N. Rasmussen, Camilla O. Samuelsen, Vera Baraznenok, Jenny Beve, Peter Henriksen, Claes M. Gustafsson & Steen Holmberg. (2007) Two evolutionary conserved functional modules of Schizosaccharomyces pombe Mediator regulate distinct cellular pathways. Manuscript. All published papers and the following figures are reproduced with permission from the copyright owners: Fig 3A – “Reprinted with permission from Asturias et al., Science, 1999. Copyright 1999 AAAS” Fig 3B – “Reprinted with permission from Dotson et al., Proc Natl Acad Sci U S A, 2000. Copyright 2000 National Academy of Sciences U.S.A.” Fig 6 – “Reprinted with permission from Elmlund et al., Proc Natl Acad Sci U S A, 2006. Copyright 2006 National Academy of Sciences U.S.A” TABLE OF CONTENTS Abstract...............................................................................................................................5 Introduction ........................................................................................................................1 1.1 The need for gene regulation...................................................................... 1 1.2 Initiation of transcription at coding genes in eukaryotic cells ..................... 4 1.3 Discovery of Mediator ............................................................................... 7 1.4 Architecture of yeast Mediator complexes ............................................... 14 1.4.1 The head domain.............................................................................. 15 1.4.2 The middle domain .......................................................................... 19 1.4.3 The tail domain ................................................................................ 21 1.4.4 The Cdk8 module............................................................................. 23 Functional states of Mediator .............................................................................. 27 1.6 Repressive functions of Mediator............................................................. 31 1.7 A revised model of pol II dependent initiation cycle ................................ 37 1.7.1 Order and mechanism of coregulator recruitment ............................. 40 1.7.2 Occupancy versus gene activity and post-recruitment mechanisms of activation ....................................................................................................... 42 1.8 The role of metazoan Mediator in embryonic development and cancer..... 45 1.9 Evolutionary conservation of Mediator .................................................... 47 1.10 Future perspectives .................................................................................. 50 Aims of this thesis............................................................................................................53 Results and discussion......................................................................................................54 PAPER I ............................................................................................................. 54 PAPER II ............................................................................................................ 55 PAPER III........................................................................................................... 57 PAPER IV........................................................................................................... 59 Summary............................................................................................................. 65 Acknowledgements..........................................................................................................68 References ........................................................................................................................70 LIST OF ABBREVIATIONS bp base pair Cdk cyclin-dependent kinase ChIP chromatin immunoprecipitation CTD C-terminal domain CycC Cyclin C DBD DNA binding domain EM electron microscopy or electron micrograph ESP eukaryotic signature protein EST expressed sequence tag GTF general transcription factor HAT histone acetyl-transferase HDAC histone deacetylase kDa kilo Dalton (103 Da) MDa mega Dalton (106 Da) mRNA messenger RNA PIC pre-initiation complex pol II RNA polymerase II RNAi RNA interference Rpb RNA polymerase B (RNA polymerase II) TAD transcriptional activation domain TAF TBP-associated factor TAP tandem affinity purification TBP TATA-binding protein TFIIB transcription factor II B TFIID transcription factor II D TFIIE transcription factor II E TFIIF transcription factor II F TFIIH transcription factor II H TFIIS transcription factor II S ts temperature sensitive allele UAS upstream activating sequence(s) INTRODUCTION 1.1 THE NEED FOR GENE REGULATION “The cell is a clever beast.” Prof. Steve Yeaman Each of the billions of cells in our bodies contains the identical set of some 30,000 genes that make up our genome (Venter et al., 2001). Despite this basic genetic circuitry our cells display a remarkable variation in appearance as well as in function – from the bone forming osteoblasts in our skeleton to the free ranging lymphocytes that patrol our bodies in the search of microscopic intruders. The astounding complexity of the human body originates from a single diploid cell, which has to undergo an extremely intricate program of multiplication and differentiation in order to produce a fully developed organism. We are only beginning to understand this process but we now know that it requires a highly regulated process of activating some genes and repressing others at specific times and in specific cells and tissues in the developing embryo. Thus the cells of our bodies are not distinguished by the basic genetic material of the genome but rather which components of the genome are active in each individual cell. In addition our cells must constantly adjust the activity of their genes from one moment to the next depending on
Recommended publications
  • UV Laser-Induced, Time-Resolved Transcriptome Responses of Saccharomyces Cerevisiae
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Microbiology Publications and Other Works Microbiology 2019 UV Laser-Induced, Time-Resolved Transcriptome Responses of Saccharomyces cerevisiae Melinda Hauser University of Tennessee, Knoxville Paul E. Abraham Oak Ridge National Laboratory, Oak Ridge Lorenz Barcelona University of Tennessee, Knoxville Jeffrey M. Becker University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_micrpubs Recommended Citation Hauser, Melinda; Abraham, Paul E.; Barcelona, Lorenz; and Becker, Jeffrey M., "UV Laser-Induced, Time- Resolved Transcriptome Responses of Saccharomyces cerevisiae" (2019). Microbiology Publications and Other Works. https://trace.tennessee.edu/utk_micrpubs/107 This Article is brought to you for free and open access by the Microbiology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Microbiology Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. INVESTIGATION UV Laser-Induced, Time-Resolved Transcriptome Responses of Saccharomyces cerevisiae Melinda Hauser,* Paul E. Abraham,† Lorenz Barcelona,*,1 and Jeffrey M. Becker*,2 *Department of Microbiology, University of Tennessee, Knoxville, TN 37996 and †Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 ORCID ID: 0000-0003-0467-5913 (J.M.B.) ABSTRACT We determined the effect on gene transcription of laser-mediated, long-wavelength KEYWORDS UV-irradiation of Saccharomyces cerevisiae by RNAseq analysis at times T15, T30, and T60 min after re- yeast covery in growth medium. Laser-irradiated cells were viable, and the transcriptional response was transient, gene expression with over 400 genes differentially expressed at T15 or T30, returning to basal level transcription by T60.
    [Show full text]
  • Characterization of Genomic Copy Number Variation in Mus Musculus Associated with the Germline of Inbred and Wild Mouse Populations, Normal Development, and Cancer
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-18-2019 2:00 PM Characterization of genomic copy number variation in Mus musculus associated with the germline of inbred and wild mouse populations, normal development, and cancer Maja Milojevic The University of Western Ontario Supervisor Hill, Kathleen A. The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Maja Milojevic 2019 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Genetics and Genomics Commons Recommended Citation Milojevic, Maja, "Characterization of genomic copy number variation in Mus musculus associated with the germline of inbred and wild mouse populations, normal development, and cancer" (2019). Electronic Thesis and Dissertation Repository. 6146. https://ir.lib.uwo.ca/etd/6146 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Mus musculus is a human commensal species and an important model of human development and disease with a need for approaches to determine the contribution of copy number variants (CNVs) to genetic variation in laboratory and wild mice, and arising with normal mouse development and disease. Here, the Mouse Diversity Genotyping array (MDGA)-approach to CNV detection is developed to characterize CNV differences between laboratory and wild mice, between multiple normal tissues of the same mouse, and between primary mammary gland tumours and metastatic lung tissue.
    [Show full text]
  • UC Riverside UC Riverside Previously Published Works
    UC Riverside UC Riverside Previously Published Works Title Analysis of the Candida albicans Phosphoproteome. Permalink https://escholarship.org/uc/item/0663w2hr Journal Eukaryotic cell, 14(5) ISSN 1535-9778 Authors Willger, SD Liu, Z Olarte, RA et al. Publication Date 2015-05-01 DOI 10.1128/ec.00011-15 License https://creativecommons.org/licenses/by-nc-sa/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Analysis of the Candida albicans Phosphoproteome S. D. Willger,a Z. Liu,b R. A. Olarte,c M. E. Adamo,d J. E. Stajich,c L. C. Myers,b A. N. Kettenbach,b,d D. A. Hogana Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USAa; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USAb; Department of Plant Pathology and Microbiology, University of California, Riverside, California, USAc; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USAd Candida albicans is an important human fungal pathogen in both immunocompetent and immunocompromised individuals. C. albicans regulation has been studied in many contexts, including morphological transitions, mating competence, biofilm forma- tion, stress resistance, and cell wall synthesis. Analysis of kinase- and phosphatase-deficient mutants has made it clear that pro- tein phosphorylation plays an important role in the regulation of these pathways. In this study, to further our understanding of phosphorylation in C. albicans regulation, we performed a deep analysis of the phosphoproteome in C. albicans. We identified 19,590 unique peptides that corresponded to 15,906 unique phosphosites on 2,896 proteins.
    [Show full text]
  • Anti-MED30 (Aa 1-100) Polyclonal Antibody (CABT- BL5153) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-MED30 (aa 1-100) polyclonal antibody (CABT- BL5153) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Rabbit polyclonal antibody to Human MED30. Antigen Description The multiprotein TRAP/Mediator complex facilitates gene expression through a wide variety of transcriptional activators. MED30 is a component of this complex that appears to be metazoan specific (Baek et al., 2002 Immunogen Synthetic peptide conjugated to KLH derived from within residues 1 - 100 of Human MED30 / TRAP25. Isotype IgG Source/Host Rabbit Species Reactivity Human Purification Immunogen affinity purified Conjugate Unconjugated Cellular Localization Nuclear Format Liquid Size 100 μg Buffer 1% BSA, PBS, pH 7.4 Preservative 0.02% Sodium Azide Storage Store at 4°C short term (1-2 weeks). Aliquot and store at -20°C or -80°C. Avoid repeated freeze/thaw cycles. BACKGROUND Introduction The multiprotein TRAP/Mediator complex facilitates gene expression through a wide variety of transcriptional activators. MED30 is a component of this complex that appears to be metazoan specific (Baek et al., 2002 [PubMed 11909976]).[supplied by OMIM, Nov 2010] 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved GENE INFORMATION Entrez Gene ID 90390 Protein Refseq NP_542382 UniProt ID Q96HR3 Chromosome Location 8q24.11 Pathway Developmental Biology, organism-specific biosystem; Gene Expression, organism-specific
    [Show full text]
  • Identification of Protein Complexes Associated with Myocardial Infarction Using a Bioinformatics Approach
    MOLECULAR MEDICINE REPORTS 18: 3569-3576, 2018 Identification of protein complexes associated with myocardial infarction using a bioinformatics approach NIANHUI JIAO1, YONGJIE QI1, CHANGLI LV2, HONGJUN LI3 and FENGYONG YANG1 1Intensive Care Unit; 2Emergency Department, Laiwu People's Hospital, Laiwu, Shandong 271199; 3Emergency Department, The Central Hospital of Tai'an, Tai'an, Shandong 271000, P.R. China Received November 3, 2016; Accepted January 3, 2018 DOI: 10.3892/mmr.2018.9414 Abstract. Myocardial infarction (MI) is a leading cause of clinical outcomes regarding high-risk MI. For example, muta- mortality and disability worldwide. Determination of the tions in the myocardial infarction-associated transcript have molecular mechanisms underlying the disease is crucial for been reported to cause susceptibility to MI (5). In addition, it identifying possible therapeutic targets and designing effective was demonstrated that mutations in the oxidized low-density treatments. On the basis that MI may be caused by dysfunc- lipoprotein receptor 1 gene may significantly increase the tional protein complexes rather than single genes, the present risk of MI (6). Although some MI-related genes have been study aimed to use a bioinformatics approach to identifying detected, many were identified independently and functional complexes that may serve important roles in the develop- associations among the genes have rarely been explored. ment of MI. By investigating the proteins involved in these Therefore, it is necessary to investigate MI from a systematic identified complexes, numerous proteins have been reported perspective, as the complex disease was reported to occur due that are related to MI, whereas other proteins interacted to the dysregulation of functional gene sets (7).
    [Show full text]
  • Functional Diversification of the Nleg Effector Family in Enterohemorrhagic Escherichia Coli
    Functional diversification of the NleG effector family in enterohemorrhagic Escherichia coli Dylan Valleaua, Dustin J. Littleb, Dominika Borekc,d, Tatiana Skarinaa, Andrew T. Quailea, Rosa Di Leoa, Scott Houlistone,f, Alexander Lemake,f, Cheryl H. Arrowsmithe,f, Brian K. Coombesb, and Alexei Savchenkoa,g,1 aDepartment of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; bDepartment of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; cDepartment of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390; dDepartment of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390; ePrincess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 2M9, Canada; fDepartment of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; and gDepartment of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada Edited by Ralph R. Isberg, Howard Hughes Medical Institute and Tufts University School of Medicine, Boston, MA, and approved August 15, 2018 (receivedfor review November 6, 2017) The pathogenic strategy of Escherichia coli and many other gram- chains. Depending on the length and nature of the polyubiquitin negative pathogens relies on the translocation of a specific set of chain, it posttranslationally regulates the target protein’s locali- proteins, called effectors, into the eukaryotic host cell during in- zation, activation, or degradation. Ubiquitination is a multistep fection. These effectors act in concert to modulate host cell pro- process which begins with the ubiquitin-activating enzyme (E1) cesses in favor of the invading pathogen. Injected by the type III using ATP to “charge” ubiquitin, covalently binding the ubiquitin secretion system (T3SS), the effector arsenal of enterohemorrhagic C terminus by a thioester linkage.
    [Show full text]
  • Genome-Wide DNA Methylation Map of Human Neutrophils Reveals Widespread Inter-Individual Epigenetic Variation
    www.nature.com/scientificreports OPEN Genome-wide DNA methylation map of human neutrophils reveals widespread inter-individual Received: 15 June 2015 Accepted: 29 October 2015 epigenetic variation Published: 27 November 2015 Aniruddha Chatterjee1,2, Peter A. Stockwell3, Euan J. Rodger1, Elizabeth J. Duncan2,4, Matthew F. Parry5, Robert J. Weeks1 & Ian M. Morison1,2 The extent of variation in DNA methylation patterns in healthy individuals is not yet well documented. Identification of inter-individual epigenetic variation is important for understanding phenotypic variation and disease susceptibility. Using neutrophils from a cohort of healthy individuals, we generated base-resolution DNA methylation maps to document inter-individual epigenetic variation. We identified 12851 autosomal inter-individual variably methylated fragments (iVMFs). Gene promoters were the least variable, whereas gene body and upstream regions showed higher variation in DNA methylation. The iVMFs were relatively enriched in repetitive elements compared to non-iVMFs, and were associated with genome regulation and chromatin function elements. Further, variably methylated genes were disproportionately associated with regulation of transcription, responsive function and signal transduction pathways. Transcriptome analysis indicates that iVMF methylation at differentially expressed exons has a positive correlation and local effect on the inclusion of that exon in the mRNA transcript. Methylation of DNA is a mechanism for regulating gene function in all vertebrates. It has a role in gene silencing, tissue differentiation, genomic imprinting, chromosome X inactivation, phenotypic plasticity, and disease susceptibility1,2. Aberrant DNA methylation has been implicated in the pathogenesis of sev- eral human diseases, especially cancer3–5. Variation in DNA methylation patterns in healthy individuals has been hypothesised to alter human phenotypes including susceptibility to common diseases6 and response to drug treatments7.
    [Show full text]
  • FBXL19 Recruits CDK-Mediator to Cpg Islands of Developmental Genes Priming Them for Activation During Lineage Commitment
    RESEARCH ARTICLE FBXL19 recruits CDK-Mediator to CpG islands of developmental genes priming them for activation during lineage commitment Emilia Dimitrova1, Takashi Kondo2†, Angelika Feldmann1†, Manabu Nakayama3, Yoko Koseki2, Rebecca Konietzny4‡, Benedikt M Kessler4, Haruhiko Koseki2,5, Robert J Klose1* 1Department of Biochemistry, University of Oxford, Oxford, United Kingdom; 2Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; 3Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan; 4Nuffield Department of Medicine, TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; 5CREST, Japan Science and Technology Agency, Kawaguchi, Japan Abstract CpG islands are gene regulatory elements associated with the majority of mammalian promoters, yet how they regulate gene expression remains poorly understood. Here, we identify *For correspondence: FBXL19 as a CpG island-binding protein in mouse embryonic stem (ES) cells and show that it [email protected] associates with the CDK-Mediator complex. We discover that FBXL19 recruits CDK-Mediator to †These authors contributed CpG island-associated promoters of non-transcribed developmental genes to prime these genes equally to this work for activation during cell lineage commitment. We further show that recognition of CpG islands by Present address: ‡Agilent FBXL19 is essential for mouse development. Together this reveals a new CpG island-centric Technologies, Waldbronn, mechanism for CDK-Mediator recruitment to developmental gene promoters in ES cells and a Germany requirement for CDK-Mediator in priming these developmental genes for activation during cell lineage commitment. Competing interests: The DOI: https://doi.org/10.7554/eLife.37084.001 authors declare that no competing interests exist.
    [Show full text]
  • Archaea and the Origin of Eukaryotes
    REVIEWS Archaea and the origin of eukaryotes Laura Eme, Anja Spang, Jonathan Lombard, Courtney W. Stairs and Thijs J. G. Ettema Abstract | Woese and Fox’s 1977 paper on the discovery of the Archaea triggered a revolution in the field of evolutionary biology by showing that life was divided into not only prokaryotes and eukaryotes. Rather, they revealed that prokaryotes comprise two distinct types of organisms, the Bacteria and the Archaea. In subsequent years, molecular phylogenetic analyses indicated that eukaryotes and the Archaea represent sister groups in the tree of life. During the genomic era, it became evident that eukaryotic cells possess a mixture of archaeal and bacterial features in addition to eukaryotic-specific features. Although it has been generally accepted for some time that mitochondria descend from endosymbiotic alphaproteobacteria, the precise evolutionary relationship between eukaryotes and archaea has continued to be a subject of debate. In this Review, we outline a brief history of the changing shape of the tree of life and examine how the recent discovery of a myriad of diverse archaeal lineages has changed our understanding of the evolutionary relationships between the three domains of life and the origin of eukaryotes. Furthermore, we revisit central questions regarding the process of eukaryogenesis and discuss what can currently be inferred about the evolutionary transition from the first to the last eukaryotic common ancestor. Sister groups Two descendants that split The pioneering work by Carl Woese and colleagues In this Review, we discuss how culture- independent from the same node; the revealed that all cellular life could be divided into three genomics has transformed our understanding of descendants are each other’s major evolutionary lines (also called domains): the archaeal diversity and how this has influenced our closest relative.
    [Show full text]
  • Role of the Mediator Complex in Ethanol Tolerance in Yeast
    ROLE OF THE MEDIATOR COMPLEX IN ETHANOL TOLERANCE IN YEAST An Undergraduate Research Scholars Thesis by JACKSON VALENCIA Submitted to the Undergraduate Research Scholars program at Texas A&M University in partial fulfillment of the requirements for the designation as an UNDERGRADUATE RESEARCH SCHOLAR Approved by Research Advisor: Dr. William Park May 2018 Major: Biochemistry TABLE OF CONTENTS Page ABSTRACT ............................................................................................................................ 1 ACKNOWLEDGMENTS ........................................................................................................ 2 NOMENCLATURE................................................................................................................. 3 CHAPTER I. INTRODUCTION .................................................................................................. 5 II. MATERIALS & METHODS.................................................................................. 7 Materials ........................................................................................................... 7 Methods ............................................................................................................ 8 III. RESULTS .............................................................................................................14 Ethanol tolerance in Med8138 ± TAP ................................................................14 Growth of constructs in which Med8138-176 was replaced by SBP......................15
    [Show full text]
  • The Prokaryotic Biology of Soil
    87 (1) · April 2015 pp. 1–28 InvIted revIew the Prokaryotic Biology of Soil Johannes Sikorski Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7 B, 38124 Braunschweig, Germany E-mail: [email protected] Received 1 March 2015 | Accepted 17 March 2015 Published online at www.soil-organisms.de 1 April 2015 | Printed version 15 April 2015 Abstract Prokaryotes (‘Bacteria’ and ‘Archaea’) are the most dominant and diverse form of life in soil and are indispensable for soil ecology and Earth system processes. This review addresses and interrelates the breadth of microbial biology in the global context of soil biology primarily for a readership less familiar with (soil) microbiology. First, the basic properties of prokaryotes and their major differences to macro-organisms are introduced. Further, technologies to study soil microbiology such as high-throughput next-generation sequencing and associated computational challenges are addressed. A brief insight into the principles of microbial systematics and taxonomy is provided. Second, the complexity and activity of microbial communities and the principles of their assembly are discussed, with a focus on the spatial distance of a few µm which is the scale at which prokaryotes perceive their environment. The interactions of prokaryotes with plant roots and soil fauna such as earthworms are addressed. Further, the role, resistance and resilience of prokaryotic soil communities in the light of anthropogenic disturbances such as global warming, elevated CO2 and massive nitrogen and phosphorous fertilization is discussed. Finally, current discussions triggered by the above-addressed complexity of microbes in soil on whether microbial ecology needs a theory that is different from that of macroecology are viewed.
    [Show full text]
  • Diaezdbioinfo.Pdf
    TESIS DOCTORAL DISEÑO Y DESARROLLO DE UNA PLATAFORMA BIOINFORMÁTICA PARA LA INTEGRACIÓN, GESTIÓN Y VISUALIZACIÓN DE REDES DE INTERACCIÓN DE PROTEÍNAS E INTERACTOMAS DIEGO ALONSO LÓPEZ DIRECTORES DR. JAVIER DE LAS RIVAS SANZ DR. RODRIGO SANTAMARÍA VICENTE SALAMANCA, MARZO DE 2017 El Dr. Javier De Las Rivas Sanz, con D.N.I. 15949000H, Investigador Científico del Consejo Superior de Investigaciones Científicas (CSIC), director del grupo de Bioinformática y Genómica Funcional en el Instituto de Biología Molecular y Celular del Cáncer (CiC‐IBMCC), y profesor del Programa de Doctorado y del Máster de Biología y Clínica del Cáncer de dicho Instituto y la Universidad de Salamanca (USAL). Y el Dr. Rodrigo Santamaría Vicente, con D.N.I. 70879303L, Profesor Titular del Departamento de Informática y Automática de la Universidad de Salamanca (USAL), miembro del grupo de investigación VisUsal (Visualización de información y analítica visual) de dicha universidad y del grupo de investigación en Dinámica del Genoma y Epigenética del Instituto de Biología Funcional y Genómica (CSIC‐USAL). CERTIFICAN que han dirigido esta Tesis Doctoral titulada "DISEÑO Y DESARROLLO DE UNA PLATAFORMA BIOINFORMÁTICA PARA LA INTEGRACIÓN, GESTIÓN Y VISUALIZACIÓN DE REDES DE INTERACCIÓN DE PROTEÍNAS E INTERACTOMAS” realizada por D. Diego Alonso López, alumno del programa de doctorado de Ingeniería Informática de la Universidad de Salamanca. Y AUTORIZAN la presentación de la misma, considerando que reúne las condiciones de originalidad y contenidos requeridos para optar al grado de Doctor por la Universidad de Salamanca. En Salamanca, a 17 de marzo de 2017 Dr. Javier De Las Rivas Sanz Dr. Rodrigo Santamaría Vicente AGRADECIMIENTOS A mis directores de tesis, Javier De Las Rivas y Rodrigo Santamaría, gracias por darme la oportunidad de realizar este trabajo y facilitarme el camino con vuestros consejos y ayuda.
    [Show full text]