Stato E Prospettive Della Fisica Con Fasci Nucleari Ultrarelativistici
Total Page:16
File Type:pdf, Size:1020Kb
Stato e prospettive della fisica con fasci nucleari ultrarelativistici. • Di che si tratta? • Perché è interessante? • Alcuni risultati recenti, con commenti sul • Futuro (I): l’esplorazione del diagramma di fase della materia nucleare – SPS (SHINE), RHIC energy scan, FAIR (CBM) • Futuro (II): lo studio del Plasma di Quark e Gluoni (con un bias verso ALICE…) – RHIC upgrade e LHC Paolo Giubellino • LHC: i primi “3 minuti” INFN Torino • LHC: i primi 104, 105, 106 eventi Congresso SIF Bari Ottobre 2009 … un campo di ricerca in espansione! • SPIRES query for all publications with QGP, SQGP, QUARK-GLUON PLASMA, QCD PLASMA, STRONGLY COUPLED PLASMA, STRONGLY-COUPLED PLASMA in their title: "Quark Gluon Plasma" Publications Versus Time 150 100 SPIRESEntries 50 0 1970 1975 1980 1985 1990 1995 2000 2005 2010 Year • Oggi oltre 200 i fisici italiani coinvolti A bit of history: / 2007 Accelerators 2008 2009 of Heavy Ions 2010 • Experimental programs with High Energy nuclear beams have been carried out for more >1986 than 20 years • After the pioneering work at the Bevalac in the late seventies, 4 facilities at really high energy: AGS, SPS, RHIC and LHC • Two communities joined: • particle physicists • nuclear physicists •Latest news: first Pb injection in the LHC performed succesfully this weekend! H. Specht, 1992 Very difficult experiments... central Au-Au event @ ~130 GeV/nucleon CM energy STAR La fisica Nucleare è molto cambiata… Eiffel tower ALICE • I progetti sono ~ 7300 tons magnet imprese ~ 8000 tons mondiali di estrema complessità ed enormi dimensioni, che si sviluppano su decenni. Even the “simplest” element requiresAluminum te know from -Armenia how and contribution from all over the world Steel cone from Finland Example: the ALICE Muon Absorber – complex mechanical piece ~ 100 tons ~ 18 m Concrete from France, Engineering & Supervision by CERN Design• byoptimized Russia (Sarov/ISTC) material content Graphite & Steel from India W, Pb, Fe, graphite, Boron, plastic, concrete,.. • carefully chosen Leadgeometry from England – minimize cost via design by factor 2! • and by worldwide Italian polyethylene Support from Italy bargain hunting Tungsten from China Who is ALICE ~ 1000 Members Spain/Cuba Romania Japan Brazil from both NP and HEP South Africa Korea USA Italy China communities India Croatia Armenia ~30 Countries Ukraine Mexico ~100 Institutes JINR Russia ~ 150 MCHF capital cost France (+ „free‟ magnet) Netherlands Hungary History UK Greece Germany 1989-1996: Design Sweden Poland Finland Norway CERN 1992-2002: R&D Slovak Rep. Denmark 2000-2010: Construction Czech Rep. 2002-2007: Installation 2008 -> : Commissioning 3 TP addenda along the way: 1996 : muon spectrometer 1999 : TRD 2006 : EMCAL Un decennio di R&D… In detector Hardware and VLSI Electronics In DAQ & Computing => successfully completed => in progress now across the decade of the 1990's: – scalable architectures with – Inner Tracking System (ITS) consumer electornics • Silicon Pixels (RD19) commercial components • Silicon Drift (INFN/SDI) (COTS) • Silicon Strips (double sided) • low mass, high density interconnects – high perf. storage media • low mass support/cooling – GRID computing – TRD • bi-dimensional (time-space) read-out, on-chip • trigger (TRAP chip) – TPC • gas mixtures (RD32) • advanced digital electronics • low mass field cage – EM calorimeter • new scint. crystals (RD18) – PID • Multigap RPC's (LAA) • solid photocathode RICH (RD26) DOUBLE STACK OF 0.5 mm GLASS Example:Time Of Flight cathode pick up pad Edge of active area Breakthrough after > 5 Resistive layer (cathode) years of R&D 5 gaps Resistive layer (anode) for p, K, p PID anode pick up pad p, K for p <2 GeV/c Resistive layer (anode) 5 gaps p for p <4 GeV/c Resistive layer (cathode) - 0.9 < h < 0.9 cathode pick up pad 150 kchann. full f 2 Multigap Resistive Plate Chambers over ~150 m 1200 1000 STRIP 10 H.V. +- 6 kV 800 s = 53 ps minus 30 ps jitter of timing 600 Typical scintillator = 44 ps 400 time spectrum 200 full size TOF modules under test 0 -1000 -500 0 500 1000 A. Zichichi‟s group Time with respect to timing scintillators [ps] ALICE in 2001 ITS Installation 15.3.07 … in costruzione … TPC SPD SSD/SDD Traversing the TPC Insertion of final TOF super module Installation of final muon chamber ALICE in 2008 Formal end of ALICE installation July 2008 E tutto questo a che scopo? Early Ideas • Hagedorn 1965: mass spectrum of hadronic states => Critical temprature Tc=B • QCD 1973: asymptotic freedom Quantum Chromo Dynamics (QCD) is the theory that describes the interactions between – D.J.Gross and F.Wilczek, H.D. Politzer quarks and gluons [Nobel Prize 2004] • 1975: asymptotic QCD and deconfined quarks and gluons – N. Cabibbo and G. Parisi, J. Collins and M. Perry Interpretation of the Hagedorn temperature as a phase transition rather than a limitingT: “We suggest … a different phase of the vacuum in which quarks are not confined” First schematic phase diagram (Cabibbo and Parisi, 1975) Ma se la forza cresce con la distanza, a piccole distanze è piccola (libertà asintotica) Idea: ottenere il deconfinamento usando collisioni di Nuclei => compresssione e riscaldamento Il sistema si espande e si raffredda, e si ricostituiscono gli adroni ordinari…. Come nell'evoluzione dell'Universo primordiale! Exploring the QCD phase diagram T.D. Lee (1975) “it would be interesting to explore new phenomena by distributing a high amount of energy or high nuclear density over a relatively large volume “ How? Colliding nuclei at very high energy Complex picture, with many features quark-gluon plasma (QGP) Tc Early universe c-symmetric hadron gas c- Symmetry Broken Temperature Colour super nucleon gas nuclei conductor neutron stars net baryon density r0 Phase diagram for H2O Critical endpoint Lavori di Beppe Nardulli Study how collective phenomena and macroscopic properties of strongly interacting matter emerge from fundamental interactions Il Big Bang … Fino a 11 milionesimi di secondo dopo la sua nascita, tutta la materia dell’Universo è colorata: quark e gluoni si muovono liberamente. Quando l’Universo si è raffreddato fino a circa 1012 K, diventa incolore: quark e gluoni sono emprigionati per sempre negli adroni, di cui non ci restano oggi che i protoni e i neutroni. Nelle collisioni nucleari ad altissima energia, si percorre prima il cammino inverso, per poi ripercorrere quello dell'Universo... Il terreno di studio Il Little Bang 1. I nuclei accelerati si Laboratoire scontrano frontalmente 2. L’energia della collisione si materializza sotto forma di quark e gluoni 3. I quark e i gluoni interagiscono sotto l’effetto dell’interazione forte: la materia tende all'equilibrio 4. Il sistema si diluisce e si raffredda 5. Quark e gluoni si t~10-24-23s t~10 s condensano formando T~5×101212 K v/c = 0,99999993 T~10 K degli adroni Contrazione di Lorentz : 7 fm 0,003 fm QCD • How does one get predictions from QCD? – Non perturbative methods • Lattice simulations (great continuous progress) • Effective lagrangians – Chiral lagrangians – Heavy quark effective theories – AdS/CFT correspondence – ..... • QCD sum rules • Potential models (quarkonium) – Perturbative methods • Based on asymptotic freedom, still remains the main quantitative connection to experiment.... Unfortunately so far (pre-LHC) little applicability to HI collisions Lattice QCD predicts a rapid transition, with correlated deconfinement and chiral restauration Energy density increases sharply by the latent heat of deconfinement Tc = 173 ± 12 MeV ec = 700 ± 200 MeV/fm3 for the (2 + 1) flavor case: the phase transition to the QGP and its parameters are quantitative predictions of QCD. Summary of recent results on Tc from lattice QCD Different approaches show consistent results. From F. Karsch 2008 Temperatura ~ 170 MeV • Quanto è caldo? 100,000 volte la temperatura al centro del Sole! QGP signatures (?) • There are no golden observables proving the existence of the QGP… the word “signature” is even no longer used • We had few predictions at the start of the HI experimental programme: Essentially – quarkonium suppression Matsui, Satz (1986) – strangeness enhancement Rafelski, Müller (1982) • Use all the experimental tools to probe the evolution of the collision (formation time, thermalization time, collective effects, hard probes,…) • There is now a strong circumstantial evidence of a coloured partonic medium, which is produced early and expands as an almost ideal liquid What do we measure? Language • We all have in common basic nuclear properties – A, Z … • But some are specific to heavy ion physics – v2 Fourier coefficient of azimuthal anisotropies “flow” – RAA 1 if yield = perturbative value from initial parton-parton flux – T Temperature (MeV) – mB Baryon chemical potential (MeV) ~ net baryon density 3 – h Viscosity ( MeV ) indirectly inferred from RAA and v2 – s Entropy density ~ “particle” density dET 1 dET – e Energy density (Bjorken 1983): ε 2 ATdz πR τ dy Collision Geometry In these complicated events, we have (a posteriori ) control over the event geometry: Centrality impact parameter (b) spectators selection on collision geometry z “peripheral” => b ~ bmax “central” => b ~ 0 For a given b, Glauber model participants: gives Npart nucleons in y and Nbin coll nuclear overlap x spectators 1 2 3 4 Measured with Zero Degree Calorimeters Detecting the spectator nucleons ZP ~ 100m away from theinteraction point Or via transverse energy / part. multiplicity ZN Reaction Plane reaction plane resolution multiplicity in ALICE central detector Space-time Evolution of