Forest Dormouse (Dryomys Nitedula, Rodentia, Gliridae) – a Highly Contagious Rodent in Relation to Zoonotic Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Forest Dormouse (Dryomys Nitedula, Rodentia, Gliridae) – a Highly Contagious Rodent in Relation to Zoonotic Diseases FORESTRY IDEAS, 2020, vol. 26, No 1 (59): 262–269 FOREST DORMOUSE (DRYOMYS NITEDULA, RODENTIA, GLIRIDAE) – A HIGHLY CONTAGIOUS RODENT IN RELATION TO ZOONOTIC DISEASES Alexey Andreychev1* and Ekaterina Boyarova2 1Department of Zoology, National Research Mordovia State University, Saransk 430005, Russia. *E-mail: [email protected] 2Center for Hygiene and Epidemiology in the Republic of Mordovia, Saransk 430030, 1a Dal’naya Str., Russia. Received: 22 March 2020 Accepted: 23 May 2020 Abstract Republic of Mordovia in Russia is a historical focus for hemorrhagic fever with renal syndrome and tularemia. This study aimed at assessing the current status of these foci by studying their rodent reservoirs. Among the small rodents in Mordovia, the red bank vole, the common vole and the house mouse play an important role as carriers of zoonotic diseases. However, it is neces- sary to take into account the role of such а small species as forest dormouse (Dryomys nitedula), which has a high percentage of infection. Of all examined dormice, 66.7 % were found to have antigens of hemorrhagic fever with renal syndrome viral pathogen, and 33.3 % - to have antigens of tularemia pathogen. Only one specimen (16.7 %) was found to have no antigens of zoonotic diseases. Our study concluded that the forest dormouse in the Republic of Mordovia was incrim- inated as a pathogen reservoir causing infectious diseases in human. Key words: hemorrhagic fever, Mordovia, rodents, tularemia. Introduction gion of Middle Volga (Ulyanovsk region) (Nafeev et al. 2009). Small mammals are Hemorrhagic fever with renal syndrome the most incriminated reservoirs for viral (HFRS) is the most common natural ro- pathogen agents causing human HFRS dent borne disease of viral etiology in the in the natural environments (Tsvirko and Republic of Mordovia. The intensive rate Kozlov 2012). of morbidity per 100,000 population of the In addition to HFRS, small rodents in Mordovia Republic during the period from this region are reservoirs in the circulation 2001 to 2006, varied from 10.5 to 18.0, and the transmission of widespread hu- and the average long-term rate for this man infectious diseases like tularemia and period was 14.4±1.1, which exceeded the leptospirosis. In the natural foci of HFRS, same value in the Russian Federation by epizootics occur periodically. Thus, small 2.8 times. Broad-leaved forests and agri- rodents perform one of the main roles in cultural lands are predominant in all areas the spread of the zoonotic diseases. of HFRS infection (Churbanova 2008). A The red bank vole (Myodes glareolus) similar situation is shown for another re- has been considered the main reservoir Forest Dormouse (Dryomys Nitedula, Rodentia, Gliridae) – a Highly Contagious ... 263 among rodents in the zoonotic circulation The report on the presence of tu- in Mordovia and throughout Volga region laremia in forest dormouse in Mordovia (Trankvilevsky et al. 2015, Andreychev is of interest, since previously in the do- et al. 2019). The yellow-necked mouse mestic and international literature it was (Apodemus flavicollis), the striped field not detected in this species, for example mouse (Apodemus agrarius), and the red in Bulgaria (Pavlov et al. 1978). The re- bank vole (M. glareolus) play an important sults of standard tube agglutination test in role in zoonotic circulation of HFRS in the Western Iran showed seropositive cases Balkan Peninsula (Stanko et al. 2004, Ro- among 4.8 % of the rodents, including D. gozi et al. 2013, Papa et al. 2016). nitedula (Mostafavi et al. 2017). Positive Ergeshbayev (2018), in the Kyrgyz Re- results on tularemia in the Republic of public mentioned the high degree of ec- Moldova were recorded in the following toparasite infestation of forest dormouse species: M. glareolus, Apodemus uralen- Dryomys nitedula (Pallas, 1778) (18 spe- sis, A. sylvaticus, A. flavicollis, M. muscu- cies), as well as its contact with numerous lus, M. spicilegus, and Crocidura suaveo- representatives of the rodent order. The lens (Chicu et al. 2010). researcher noted that it carried only one The forest dormice has not been re- species-specific parasite and 17 species ported infected with tularemia and HFRS, peculiar to marmots, voles, mice, gray for example in Turkey (Laakkonen et al. hamster, Turkestan rat and other rodents. 2006), and Ukraine (Demchyshyna et al. Among them, five flea’s speciesCallopsyl - 2020). la caspia, Amphipsylla phaiomydis, A. an- The dynamics of identifying the causa- ceps, A. asiatica and Leptopsylla nemoro- tive agent of tularemia in Mordovia should sa were identified. Cultures of the plague be noted in 2015, 2017 and 2018, which pathogen from these flea’s species were are characterized by peak values (Andrey- isolated for this territory. This causes an chev, Boyarova and Kuznetsov 2016). important epizootological significance of Mostly, the tularemia microbe antigen was this rodent species. The importance of most often detected in areas along the forest dormice as carrier of parasites was middle rivers (Sura, Alatyr), rather than in also reported in Russia. In Central Russia, areas that do not have such water arter- ectoparasites were found in 90–95 % of ies. In pellets of prey birds, the causative forest dormice, and endoparasites were agent of tularemia was detected in the found in 50–70 % of small animals (Ros- districts more often than in the biomate- solimo et al. 2001). rial from rodents. This circumstance can Some small mammals are breeding be explained from the position that the in the grounds among other species. In remains of the hunted preys can contain particular, such reports about the yel- several prey species at once. This is ev- low-necked mouse are known. Dobra- idenced by the results of studies of oste- va-Belgrade virus strain (DOBV), causing ological material (Andreychev et al. 2014, in humans HFRS has been reported to be Andreychev, Lapshin and Kuznetsov originated by A. flavicollis, A. sylvaticus 2016, Andreychev and Lapshin 2017). and M. musculus (Weidmann et al. 2005). Therefore, the probability of detecting A previous study in Greece showed that tularemia microbe antigen here is higher approximately 10 % of A. flavicollis carried (Andreychev et al. 2019). DOBV (Papa et al. 2000). The purpose of this article is to study 264 A. Andreychev and E. Boyarova the role of the forest dormouse as carri- the region. This is due to the peculiarities er or reservoir of rodent-borne diseases. of its distribution. Forest dormouse occurs In addition to the red bank vole, there is from Western Europe across Asia Minor, a high probability in the circulation of zo- Caucasus, reaching to Central Russia onotic diseases in the forest dormouse. and Central Asia. In this extensive area, the species is rare in many parts of its na- tive range, especially in Western Europe Material and Methods and Russia (Batsaikhan et al. 2008, Mark- ov et al. 2017). Small mammals capturing and testing for All animal carcasses were used as a different possible pathogen agents, are result of basic research on population ge- the material for this study in the territory of netics (Grigoryeva et al. 2015) and hom- the Republic of Mordovia (53º38’–55º11’N ing (Andreychev and Kiyaykina 2020). and 42º11’–46º45’ E) (Fig. 1) for epizo- During the research period of 2009-2019, otological research purposes. Coniferous a total of 1995 individuals of the following forest, broad-leaved forests, shrub steppe rodent species were trapped: red bank and meadow steppe compose the ro- vole (M. glareolus) – 30.9 %, common dents’ habitat structure in the territory of vole (M. arvalis) – 23.8 %, Ural field mouse Mordovia. The main forests are composed (A. uralensis) – 18.7 %, yellow-necked by pine Pinus sylvestris (L.), spruce Picea mouse (A. flavicollis) – 11.5 %, striped abies (L.) Karst., European larch Larix de- field mouse (A. agrarius) – 10.4 %, house cidua (Mill.), oak Quercus robur (L.), com- mouse (M. musculus) – 4.4 %, and for- mon ash Fraxinus excelsior (L.), Norway est dormouse (D. nitedula) – 0.3 %. The maple Acer platanoides (L.), European captured rodents were transported to the white elm Ulmus laevis (Pall.), silver birch laboratory of the Center for Hygiene and Betula pendula (Roth.), white birch Betu- Epidemiology in the Republic of Mordovia. la pubescens (Ehrh.), common alder Al- Enzyme-linked immune sorbent assay nus glutinosa (L.), small-leaved lime Tilia (ELISA), using the ‘Huntagnost’ test sys- cordata (Mill.), black poplar Populus nigra tem for the presence of the pathogen, was (L.). the main method used to detect the HFRS The research was conducted in June antibodies in homogenized rodent’s lungs. and July 2018 and 2019. The live traps Studies on tularemia were performed us- were set in the typical habitats of the for- ing serological and bacteriological meth- est dormouse for several days and then ods. For leptospirosis and yersiniosis, transferred to the next site. We used four studies were conducted by serological trap lines. The number of traps in each method (Methodical Instructions 2012). line was 25. Snap traps were set for no more than 1 or 2 days. Salami and apple were used as baits. Traps were set main- Results and Discussion ly in mixed and broad-leaved forests. The latter biotope is a favourite habitat (Grig- Of the six examined dormice, four individ- oryeva et al. 2015, Andreychev and Ki- uals (66.7 %) were found to have antigens yaykina 2020). The material of the forest of the pathogen causing HFRS, and two dormouse (dead animals) was obtained in individuals (33.3 %) were found to have small quantities, since this rare species in antigens of tularemia pathogen. Only one Forest Dormouse (Dryomys Nitedula, Rodentia, Gliridae) – a Highly Contagious ... 265 Fig. 1. Map of the Republic of Mordovia – oval – where animals were trapped. individual of the forest dormouse was Comparing the results obtained in Mor- found to have no antigens of zoonotic dis- dovia by the spectrum of mouse rodent eases.
Recommended publications
  • Decayed Trees As Resting Places for Japanese Dormouse, Glirulus Japanicus During the Active Period
    Decayed trees as resting places for Japanese dormouse, Glirulus japanicus during the active period HARUKA AIBA, MANAMI IWABUCHI, CHISE MINATO, ATUSHI KASHIMURA, TETSUO MORITA AND SHUSAKU MINATO Keep Dormouse Museum, 3545 Kiyosato, Takane-cho, Hokuto-city, Yamanashi, 407-0301, Japan Decayed trees were surveyed for their role as a resting place for non-hibernating dormice at two sites, at southwest of Mt. Akadake in Yamanashi Prefecture (35°56’N, 138°25’E). A telemeter located three dormice, which frequently used decayed trees in the daytime, with two at more than 50% of the times. The survey also showed decayed trees made up only about one fourth of all trees present in various conditions in habitat forests. These two data indicated that decayed trees are an important resting place for non-hibernating dormice in the daytime and provide favorable environmental conditions for inhabitation. Using national nut hunt surveys to find protect and raise the profile of hazel dormice throughout their historic range NIDA AL FULAIJ People’s Trust for Endangered Species (list of authors to come) The first Great Nut Hunt (GNH), launched in 1993 had 6500 participants, identifying 334 new sites and thus confirming the presence of dormice in 29 counties in England and Wales. In 2001, 1200 people found 136 sites with positive signs of hazel dormice. The third GNH started in 2009. Over 4000 people registered and to date almost 460 woodland or hedgerow surveys have been carried out, in conjunction with a systematic survey of 286 woodlands on the Isle of Wight. Of the 460 surveys carried out by the general public, 74 found evidence of dormice.
    [Show full text]
  • Diet and Microhabitat Use of the Woodland Dormouse Graphiurus Murinus at the Great Fish River Reserve, Eastern Cape, South Africa
    Diet and microhabitat use of the woodland dormouse Graphiurus murinus at the Great Fish River Reserve, Eastern Cape, South Africa by Siviwe Lamani A dissertation submitted in fulfilment of the requirements for the degree of MASTER OF SCIENCE (ZOOLOGY) in the Faculty of Science and Agriculture at the University of Fort Hare 2014 Supervisor: Ms Zimkitha Madikiza Co-supervisor: Prof. Emmanuel Do Linh San DECLARATION I Siviwe Lamani , student number 200604535 hereby declare that this dissertation titled “Diet and microhabitat use of the woodland dormouse Graphiurus murinus at the Great Fish River Reserve , Eastern Cape, South Africa” submitted for the award of the Master of Science degree in Zoology at the University of Fort Hare, is my own work that has never been submitted for any other degree at this university or any other university. Signature: I Siviwe Lamani , student number 200604535 hereby declare that I am fully aware of the University of Fort Hare policy on plagiarism and I have taken every precaution on complying with the regulations. Signature: I Siviwe Lamani , student number 200604535 hereby declare that I am fully aware of the University of Fort Hare policy on research ethics and have taken every precaution to comply with the regulations. The data presented in this dissertation were obtained in the framework of another project that was approved by the University Ethics committee on 31 May 2013 and is covered by the ethical clearance certificate # SAN05 1SGB02. Signature: ii SUPERVISOR’S FOREWORD The format of this Master’s dissertation (abstract, general introduction and two independent papers) has been chosen with two purposes in mind: first, to train the MSc candidate to the writing of scientific papers, and second, to secure and allow for a quicker dissemination of the scientific knowledge.
    [Show full text]
  • The Status and Distribution of Mediterranean Mammals
    THE STATUS AND DISTRIBUTION OF MEDITERRANEAN MAMMALS Compiled by Helen J. Temple and Annabelle Cuttelod AN E AN R R E IT MED The IUCN Red List of Threatened Species™ – Regional Assessment THE STATUS AND DISTRIBUTION OF MEDITERRANEAN MAMMALS Compiled by Helen J. Temple and Annabelle Cuttelod The IUCN Red List of Threatened Species™ – Regional Assessment The designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of IUCN or other participating organizations, concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland and Cambridge, UK Copyright: © 2009 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Red List logo: © 2008 Citation: Temple, H.J. and Cuttelod, A. (Compilers). 2009. The Status and Distribution of Mediterranean Mammals. Gland, Switzerland and Cambridge, UK : IUCN. vii+32pp. ISBN: 978-2-8317-1163-8 Cover design: Cambridge Publishers Cover photo: Iberian lynx Lynx pardinus © Antonio Rivas/P. Ex-situ Lince Ibérico All photographs used in this publication remain the property of the original copyright holder (see individual captions for details).
    [Show full text]
  • Checklist of Rodents and Insectivores of the Mordovia, Russia
    ZooKeys 1004: 129–139 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.1004.57359 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Checklist of rodents and insectivores of the Mordovia, Russia Alexey V. Andreychev1, Vyacheslav A. Kuznetsov1 1 Department of Zoology, National Research Mordovia State University, Bolshevistskaya Street, 68. 430005, Saransk, Russia Corresponding author: Alexey V. Andreychev ([email protected]) Academic editor: R. López-Antoñanzas | Received 7 August 2020 | Accepted 18 November 2020 | Published 16 December 2020 http://zoobank.org/C127F895-B27D-482E-AD2E-D8E4BDB9F332 Citation: Andreychev AV, Kuznetsov VA (2020) Checklist of rodents and insectivores of the Mordovia, Russia. ZooKeys 1004: 129–139. https://doi.org/10.3897/zookeys.1004.57359 Abstract A list of 40 species is presented of the rodents and insectivores collected during a 15-year period from the Republic of Mordovia. The dataset contains more than 24,000 records of rodent and insectivore species from 23 districts, including Saransk. A major part of the data set was obtained during expedition research and at the biological station. The work is based on the materials of our surveys of rodents and insectivo- rous mammals conducted in Mordovia using both trap lines and pitfall arrays using traditional methods. Keywords Insectivores, Mordovia, rodents, spatial distribution Introduction There is a need to review the species composition of rodents and insectivores in all regions of Russia, and the work by Tovpinets et al. (2020) on the Crimean Peninsula serves as an example of such research. Studies of rodent and insectivore diversity and distribution have a long history, but there are no lists for many regions of Russia of Copyright A.V.
    [Show full text]
  • Guidelines for Wildlife and Traffic in the Carpathians
    Wildlife and Traffic in the Carpathians Guidelines how to minimize the impact of transport infrastructure development on nature in the Carpathian countries Wildlife and Traffic in the Carpathians Guidelines how to minimize the impact of transport infrastructure development on nature in the Carpathian countries Part of Output 3.2 Planning Toolkit TRANSGREEN Project “Integrated Transport and Green Infrastructure Planning in the Danube-Carpathian Region for the Benefit of People and Nature” Danube Transnational Programme, DTP1-187-3.1 April 2019 Project co-funded by the European Regional Development Fund (ERDF) www.interreg-danube.eu/transgreen Authors Václav Hlaváč (Nature Conservation Agency of the Czech Republic, Member of the Carpathian Convention Work- ing Group for Sustainable Transport, co-author of “COST 341 Habitat Fragmentation due to Trans- portation Infrastructure, Wildlife and Traffic, A European Handbook for Identifying Conflicts and Designing Solutions” and “On the permeability of roads for wildlife: a handbook, 2002”) Petr Anděl (Consultant, EVERNIA s.r.o. Liberec, Czech Republic, co-author of “On the permeability of roads for wildlife: a handbook, 2002”) Jitka Matoušová (Nature Conservation Agency of the Czech Republic) Ivo Dostál (Transport Research Centre, Czech Republic) Martin Strnad (Nature Conservation Agency of the Czech Republic, specialist in ecological connectivity) Contributors Andriy-Taras Bashta (Biologist, Institute of Ecology of the Carpathians, National Academy of Science in Ukraine) Katarína Gáliková (National
    [Show full text]
  • Seasonal, Sexual, and Age-Related Variations in the Live-Trapping Success of Woodland Dormice Graphiurus Murinus Zimkitha J
    Zoological Studies 49(6): 797-805 (2010) Seasonal, Sexual, and Age-Related Variations in the Live-Trapping Success of Woodland Dormice Graphiurus murinus Zimkitha J. K. Madikiza1,*, Sandro Bertolino2, Roderick M. Baxter1,3, and Emmanuel Do Linh San1 1Department of Zoology and Entomology, School of Biological and Environmental Sciences, Univ. of Fort Hare, Private Bag X1314, Alice 5700, South Africa 2DIVAPRA, Entomology and Zoology, Via L. da Vinci 44, 10095 Grugliasco, Torino, Italy 3Department of Ecology and Resource Management, School of Environmental Sciences, Univ. of Venda, Private Bag X5050, Thohoyandou 0950, South Africa (Accepted June 1, 2010) Zimkitha J. K. Madikiza, Sandro Bertolino, Roderick M. Baxter, and Emmanuel Do Linh San (2010) Seasonal, sexual, and age-related variations in the live-trapping success of woodland dormice Graphiurus murinus. Zoological Studies 49(6): 797-805. Live trapping often constitutes the simplest field technique to obtain biological information on small, nocturnal mammals. However, to be reliable, live-trapping studies require efficient traps that allow the capturing of all functional categories of the targeted population. Herein, we present the results of a live-trapping study of the woodland dormouse Graphiurus murinus (Gliridae), a species for which limited scientific data are available. Our aim was to evaluate the efficiency of small- mammal traps (Sherman and PVC), and investigate potential seasonal-, sexual-, age-, and microhabitat- related differences in trapping success. We conducted 12 trapping sessions and deployed 2051 trapping units between Feb. 2006 and Mar. 2007, in a riverine forest of the Great Fish River Reserve, South Africa. Only arboreal trapping with Sherman traps proved to be successful.
    [Show full text]
  • Seasonal Changes in Tawny Owl (Strix Aluco) Diet in an Oak Forest in Eastern Ukraine
    Turkish Journal of Zoology Turk J Zool (2017) 41: 130-137 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1509-43 Seasonal changes in Tawny Owl (Strix aluco) diet in an oak forest in Eastern Ukraine 1, 2 Yehor YATSIUK *, Yuliya FILATOVA 1 National Park “Gomilshanski Lisy”, Kharkiv region, Ukraine 2 Department of Zoology and Animal Ecology, Faculty of Biology, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine Received: 22.09.2015 Accepted/Published Online: 25.04.2016 Final Version: 25.01.2017 Abstract: We analyzed seasonal changes in Tawny Owl (Strix aluco) diet in a broadleaved forest in Eastern Ukraine over 6 years (2007– 2012). Annual seasons were divided as follows: December–mid-April, April–June, July–early October, and late October–November. In total, 1648 pellets were analyzed. The most important prey was the bank vole (Myodes glareolus) (41.9%), but the yellow-necked mouse (Apodemus flavicollis) (17.8%) dominated in some seasons. According to trapping results, the bank vole was the most abundant rodent species in the study region. The most diverse diet was in late spring and early summer. Small forest mammals constituted the dominant group in all seasons, but in spring and summer their share fell due to the inclusion of birds and the common spadefoot (Pelobates fuscus). Diet was similar in late autumn, before the establishment of snow cover, and in winter. The relative representation of species associated with open spaces increased in winter, especially in years with deep snow cover, which may indicate seasonal changes in the hunting habitats of the Tawny Owl.
    [Show full text]
  • ECOLOGIA BALKANICA 2020, Special Edition 3 Pp
    ECOLOGIA BALKANICA 2020, Special Edition 3 pp . 117-128 New and Conservationally Significant Small Mammals in the Diet of Two Wintering Groups of Long-eared Owls (Asio otus L.) from the Region of Silistra (NE Bulgaria) Nikolay D. Kodzhabashev1, Stela M. Dipchikova2, Teodora M. Teofilova3* 1 - Forestry University, Faculty of Forestry, Department of Hunting and Game Management, 10 Kliment Ohridski Blvd., 1756 Sofia, BULGARIA 2 - Institute of Biodiversity and Ecosystem Research (IBER) of the Bulgarian Academy of Sciences (BAS), 2, Y. Gagarin Str., 1113 Sofia, BULGARIA 3 - Institute of Biodiversity and Ecosystem Research (IBER) of the Bulgarian Academy of Sciences (BAS), 1 Tsar Osvoboditel Blvd., 1000 Sofia, BULGARIA *Corresponding author: [email protected] Abstract. The object of the study is the diet of two wintering groups of long-eared owls (Asio otus L.) from the town of Silistra. During the winter of 2013/2014, 511 pellets and other skeletal residues are collected. A total of 1538 specimens are established, of which 1500 skeletal parts of small mammals. A total of 23 species are identified: 5 species of Eulipotyphla, 3 species of Chiroptera and 15 species of Rodentia. Five species are recorded for the first time as prey of the long-eared owl in Bulgaria: Sorex minutus L., Neomys anomalus Cabr., Barbastella barbastellus Schr., Nyctalus noctula Schr. and Apodemus uralensis Pall. Six of the species are protected, two are included in the Red Data Book of Bulgaria and three are very rare. All identified small mammals, except synanthropic mice and rats, can be considered new to the research area. For the first time after almost 50 years, information about A.
    [Show full text]
  • The Turkmen Lake Altyn Asyr and Water Resources in Turkmenistan the Handbook of Environmental Chemistry
    The Handbook of Environmental Chemistry 28 Series Editors: Damià Barceló · Andrey G. Kostianoy Igor S. Zonn Andrey G. Kostianoy Editors The Turkmen Lake Altyn Asyr and Water Resources in Turkmenistan The Handbook of Environmental Chemistry Founded by Otto Hutzinger Editors-in-Chief: Damia` Barcelo´ l Andrey G. Kostianoy Volume 28 Advisory Board: Jacob de Boer, Philippe Garrigues, Ji-Dong Gu, Kevin C. Jones, Thomas P. Knepper, Alice Newton, Donald L. Sparks The Handbook of Environmental Chemistry Recently Published and Forthcoming Volumes The Turkmen Lake Altyn Asyr and Emerging and Priority Pollutants in Water Resources in Turkmenistan Rivers: Bringing Science into River Volume Editors: I.S. Zonn Management Plans and A.G. Kostianoy Volume Editors: H. Guasch, A. Ginebreda, Vol. 28, 2014 and A. Geiszinger Vol. 19, 2012 Oil Pollution in the Baltic Sea Global Risk-Based Management of Volume Editors: A.G. Kostianoy Chemical Additives I: Production, and O.Yu. Lavrova Usage and Environmental Occurrence Vol. 27, 2014 Volume Editors: B. Bilitewski, R.M. Darbra, and D. Barcelo´ Urban Air Quality in Europe Vol. 18, 2012 Volume Editor: M. Viana Vol. 26, 2013 Polyfluorinated Chemicals and Transformation Products Climate Change and Water Resources Volume Editors: T.P. Knepper Volume Editors: T. Younos and C.A. Grady and F.T. Lange Vol. 25, 2013 Vol. 17, 2012 Emerging Organic Contaminants in Brominated Flame Retardants Sludges: Analysis, Fate and Biological Volume Editors: E. Eljarrat and D. Barcelo´ Treatment Vol. 16, 2011 Volume Editors: T. Vicent, G. Caminal, E. Eljarrat, and D. Barcelo´ Effect-Directed Analysis of Complex Vol. 24, 2013 Environmental Contamination Volume Editor: W.
    [Show full text]
  • First Record of the Garden Dormouse (Eliomys Quercinus) in Slovenia
    Acta Zoologica Academiae Scientiarum Hungaricae 49 (Suppl. 1), pp. 77–84, 2003 FIRST RECORD OF THE GARDEN DORMOUSE (ELIOMYS QUERCINUS) IN SLOVENIA KRYŠTUFEK, B. Slovenian Museum of Natural History, P.O. Box 290, SI–1001 Ljubljana and Science and Research Centre of the Republic of Slovenia Koper Garibaldijeva 18, SI-6000 Koper, Slovenia, E-mail: [email protected] A Garden dormouse collected in September 2000 at Dane near Stari trg pri Ložu (580 m above sea level), south-central Slovenia, is the first record of this species for this country. By its black subterminal ring on the ventral side of the tail, this specimen resembles the Dalmatian subspecies Eliomys quercinus dalmaticus. The Dalmatian race is known from Mediterranean habitats along the north-eastern Adriatic coast, but previous records from further inland are not supported by voucher specimens and are thus doubtful. The specimen from Dane is the first indisputable record for the continental region. Three other dormouse species occur in the same region: Glis glis, Dryomys nitedula, and Muscardinus avellanarius. Key words: Eliomys quercinus dalmaticus, first record, Slovenia, distribution INTRODUCTION The Garden dormouse Eliomys quercinus (LINNAEUS, 1766) is one of two species of the south-western Palaearctic genus Eliomys (KRYŠTUFEK &KRAFT 1997). It is widespread in western Europe while the rest of its range is composed of widely scattered fragments across central, eastern, and south-eastern Europe and in northern Africa (ROSSOLIMO et al. 2001). In recent decades the Garden dormouse has disappeared from some places where it formerly occurred in eastern-central Europe, notably in Slovakia, Czech Republic, Germany, and continental Croatia (MITCHELL-JONES et al.
    [Show full text]
  • Hystrx It. J. Mamm. (Ns) Supp. (2007) V European Congress of Mammalogy
    Hystrx It. J. Mamm . (n.s.) Supp. (2007) V European Congress of Mammalogy RODENTS AND LAGOMORPHS 51 Hystrx It. J. Mamm . (n.s.) Supp. (2007) V European Congress of Mammalogy 52 Hystrx It. J. Mamm . (n.s.) Supp. (2007) V European Congress of Mammalogy A COMPARATIVE GEOMETRIC MORPHOMETRIC ANALYSIS OF NON-GEOGRAPHIC VARIATION IN TWO SPECIES OF MURID RODENTS, AETHOMYS INEPTUS FROM SOUTH AFRICA AND ARVICANTHIS NILOTICUS FROM SUDAN EITIMAD H. ABDEL-RAHMAN 1, CHRISTIAN T. CHIMIMBA, PETER J. TAYLOR, GIANCARLO CONTRAFATTO, JENNIFER M. LAMB 1 Sudan Natural History Museum, Faculty of Science, University of Khartoum P. O. Box 321 Khartoum, Sudan Non-geographic morphometric variation particularly at the level of sexual dimorphism and age variation has been extensively documented in many organisms including rodents, and is useful for establishing whether to analyse sexes separately or together and for selecting adult specimens to consider for subsequent data recording and analysis. However, such studies have largely been based on linear measurement-based traditional morphometric analyses that mainly focus on the partitioning of overall size- rather than shape-related morphological variation. Nevertheless, recent advances in unit-free, landmark/outline-based geometric morphometric analyses offer a new tool to assess shape-related morphological variation. In the present study, we used geometric morphometric analysis to comparatively evaluate non-geographic variation in two geographically disparate murid rodent species, Aethmoys ineptus from South Africa and Arvicanthis niloticus from Sudan , the results of which are also compared with previously published results based on traditional morphometric data. Our results show that while the results of the traditional morphometric analyses of both species were congruent, they were not sensitive enough to detect some signals of non-geographic morphological variation.
    [Show full text]
  • Bertolino, Sandro. Distribution and Status of the Declining Garden Dormouse Eliomys Quercinus
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Institutional Research Information System University of Turin This is the author's final version of the contribution published as: Bertolino, Sandro. Distribution and status of the declining garden dormouse Eliomys quercinus. MAMMAL REVIEW. 47 (2) pp: 133-147. DOI: 10.1111/mam.12087 The publisher's version is available at: http://onlinelibrary.wiley.com/wol1/doi/10.1111/mam.12087/fullpdf When citing, please refer to the published version. Link to this full text: http://hdl.handle.net/ This full text was downloaded from iris - AperTO: https://iris.unito.it/ iris - AperTO University of Turin’s Institutional Research Information System and Open Access Institutional Repository Mammal Review, 47: 133–147, 2017 REVIEW Distribution and status of the declining garden dormouse Eliomys quercinus Sandro BERTOLINO Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy and Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy. Email: [email protected] ABSTRACT 1. The garden dormouse Eliomys quercinus, a native European rodent species, suffered a significant contraction in its geographic range in the last few decades. The species has disappeared from large parts of central and eastern Europe and is considered extinct in some countries. 2. I reviewed the information available on the occurrence and distribution of the species in 26 countries where it was previously reported. Present and past introductions outside its native range were also summarised. 3. The garden dormouse is considered extinct in Lithuania, Finland and Slovakia, probably extinct in Belarus, and present with single populations in the Netherlands, Poland and Slovenia; in Slovakia, however, monitoring is necessary to verify recent records.
    [Show full text]