International Workshop on Instrumentation for Planetary Missions (2012) 1136.pdf BEYOND RNA AND DNA: IN-SITU SEQUENCING OF INFORMATIONAL POLYMERS. C. E. Carr1-3,*, G. Ruvkun2-3 and M. T. Zuber1. 1Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge MA. 2Department of Molecular Biology, Massachusetts General Hospital, Boston, MA. 3Department of Genetics, Har- vard Medical School, Boston, MA. *Correspondence to
[email protected]. Dust, Introduction: Nucleic acid sequencing provides a Comets, Earth GNA/TNA?? RNA DNA powerful approach to search for life beyond Earth, as Meteors Meteoritic Exchange well as to monitor levels of forward contamination [1, Mars Common ancestor / 2nd genesis / no life 2]. A strong case can be made to look for RNA or Sun Enceladeus 2nd genesis / no life DNA-based life on Mars [3, 4]: any life there could Europa 2nd genesis / no life Complex organics Others 2nd genesis / no life have a common ancestor with life on Earth due to ex- produced around all stars Delivered to Life evolved one or tensive meteoritic transfer between our two planets [5- multiple potentially more times 9] and the potential for transfer of viable microbes. habitable zones Here we argue that in-situ sequencing has a role in Figure 1. Delivery of similar organic material to mul- life detection even beyond the context of meteoritic tiple habitable zones: if life arose beyond Earth, what transfer, such as searching for life in potentially habit- informational polymers would it use? able environments on Enceladus [10, 11], or Europa [12]. This is because 1) sequencing of non standard nucleic acids is now possible, and 2) it may also be possible to sequence even more generic informational As a result, similar organic material may be delivered polymers (IPs).