Energies 2013, 6, 4682-4695; doi:10.3390/en6094682 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Commentary Lessons Learned from the 787 Dreamliner Issue on Lithium-Ion Battery Reliability Nicholas Williard, Wei He, Christopher Hendricks and Michael Pecht * Center for Advanced Life Cycle Engineering, University of Maryland, Room 1101, Eng. Lab. Bldg 89, College Park, MD 20742, USA; E-Mails:
[email protected] (N.W.);
[email protected] (W.H.);
[email protected] (C.H.) * Author to whom correspondence should be addressed; E-Mail:
[email protected]; Tel.: +1-301-405-5323; Fax: +1-301-314-9269. Received: 13 June 2013; in revised form: 29 August 2013 / Accepted: 2 September 2013 / Published: 9 September 2013 Abstract: On 16 January 2013, all Boeing 787 Dreamliners were indefinitely grounded due to lithium-ion battery failures that had occurred in two planes. Subsequent investigations into the battery failures released through the National Transportation Safety Board (NTSB) factual report, the March 15th Boeing press conference in Japan, and the NTSB hearings in Washington D.C., never identified the root causes of the failures—a major concern for ensuring safety and meeting reliability expectations. This paper discusses the challenges to lithium-ion battery qualification, reliability assessment, and safety in light of the Boeing 787 battery failures. New assessment methods and control techniques that can improve battery reliability and safety in avionic systems are then presented. Keywords: lithium-ion; battery; reliability; safety; aviation; Dreamliner; risk 1. Introduction The Boeing 787 Dreamliner is a long-range, wide-body, twin-engine jet airliner which began commercial flights in late 2011.