Centro De Investigacion Y De Estudios Avanzados Del Instituto Politecnico Nacional

Total Page:16

File Type:pdf, Size:1020Kb

Centro De Investigacion Y De Estudios Avanzados Del Instituto Politecnico Nacional CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS DEL INSTITUTO POLITECNICO NACIONAL UNIDAD ZACATENCO DEPARTAMENTO DE GENÉTICA Y BIOLOGÍA MOLECULAR “Genómica comparativa y funcional de fagos que infectan Pseudomonas aeruginosa” Tesis que presenta M. en C. ADRIÁN CAZARES LÓPEZ para obtener el Grado de Doctor en Ciencias en la Especialidad de Genética y Biología Molecular DIRECTOR DE LA TESIS: DR. GABRIEL GUARNEROS PEÑA CIUDAD DE MÉXICO DICIEMBRE, 2016 Adrián Cazares López Tesis de Doctorado ASESORES Dr. Rosa Ma. Bermúdez Cruz Departamento de Genética y Biología Molecular, Cinvestav-IPN Dr. Luis Kameyama Kawabe Departamento de Genética y Biología Molecular, Cinvestav-IPN Dr. Javier Hernández Sánchez Departamento de Genética y Biología Molecular, Cinvestav-IPN Dra. Norma Oviedo de Anda Unidad de Investigación en Infectología e Inmunología, Centro Médico Nacional La Raza, IMSS Dr. Gabriel Moreno Hagelsieb Departamento de Biología, Wilfrid Laurier University Ontario, Canadá Adrián Cazares López Tesis de Doctorado Este trabajo se realizó bajo la dirección del Dr. Gabriel Guarneros Peña en el laboratorio 8 del Departamento de Genética y Biología Molecular del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. El autor de este trabajo agradece que durante la realización del mismo fue becario del Consejo Nacional de Ciencia y Tecnología (no. de registro: 233018). Adrián Cazares López Tesis de Doctorado Agradecimientos A mi familia: A mis padres. A mi madre por enseñarme con el ejemplo que el trabajo, la perseverancia y el sacrificio representan la única fórmula a seguir para convertirse en un mejor ser humano. A mi padre QEPD por mostrarme que aun el recuerdo puede soportar la unión de una familia y los sueños de un individuo. No existen palabras suficientes para agradecer no solo el darme la vida sino mostrarme el camino para vivirla sin reservas. A mi hermano, por ser cómplice de vida, metas y sueños desde el principio. Por mostrarme el espíritu de competitividad y dedicación en su máxima expresión. Por hacerme sentir orgulloso de trabajar contigo y ser testigo de tus logros. Gracias por brindarme la mejor amistad que un individuo podría pedir. A mi novia, por convertirte en una compañera incondicional de trabajo, de viajes, de ilusiones, de vida. Por el apoyo y compresión brindado durante la realización de este trabajo. Por el presente y el futuro. Por ser parte de mi familia. A mis amigos: A la Dra. Fabiola, por el apoyo absoluto y la ayuda brindada durante todo mi doctorado, particularmente en mis visitas a CCG. A Thomas, por la ayuda invaluable, por convertirse en mi mejor amigo durante mi estancia en Canadá. Al Dr. Cesar y Ramiro por ser extraordinarios compañeros y amigos y hacer de mi estancia en WLU una aventura aún más enriquecedora. Al Dr. Fabiano por ser un excelente compañero de laboratorio y amigo y por su ayuda durante mi estancia en San Diego. A Daniel y Geni por hacerme sentir bienvenido en SDSU y hacer mi estancia más placentera. Al Dr. Rodolfo García por todas las charlas constructivas, por permitirme trabajar con su equipo y la amistad brindada hacia mi persona. A Enith, por ser una compañera de trabajo y colaboradora ejemplar. A la Dra. Eva Martínez, por toda la ayuda, enseñanzas y apoyo ofrecidos durante mi estancia en Adrián Cazares López Tesis de Doctorado CINVESTAV. Al M. en C. Marco Magos, por su valiosa ayuda y amistad durante estos últimos años. Al señor Aurelio y la señora Flor, por todos los consejos y su interés hacia mi persona. A Gabriela Mora, por su auxilio constante durante todo el doctorado. A mis asesores: A los Doctores Luis Kameyama, Norma Oviedo, Rosa M. Bermúdez, Gabriel Moreno y Javier Hernández por los comentarios y sugerencias que contribuyeron a construir el presente trabajo y por la disposición y tiempo dedicados al asesoramiento de esta tesis. A los doctores Luis Kameyama, Norma Oviedo y Rosa M. Bermúdez, en particular, por el interés mostrado durante todo el doctorado hacia mi desarrollo académico. Gracias por todos los consejos personales. Al Dr. Gabriel Guarneros por dirigir esta tesis. Por fungir como un director de tesis crítico y objetivo hacia mi trabajo, lo cual contribuyó a mejorar la calidad del mismo y a mi formación en la investigación. Al Dr. Gabriel Moreno por recibirme en su laboratorio en Canadá y su disposición para compartir ideas y conocimientos durante mi estancia. A los Doctores Pablo Vinuesa y Robert Edwards por fungir como asesores de este trabajo a pesar de no serlo oficialmente. Gracias por recibirme en sus laboratorios y proporcionarme conocimientos invaluables de su área de investigación además de su interés en mi desarrollo dentro de la investigación. A la Dra. Guadalupe Ortega Pierres, un agradecimiento especial por el interés y apoyo mostrado hacia mi desarrollo profesional. Adrián Cazares López Tesis de Doctorado Índice Índice I Índice de Figuras II Índice de Tablas III Resumen IV Abstract V Lista de abreviaturas VI 1. Introducción 1 1.1. Generalidades de bacteriófagos 1 1.2. Genómica de bacteriófagos 6 2. Antecedentes 11 3. Justificación 16 4. Objetivos 17 4.1 Objetivo general 17 4.2 Objetivos particulares 17 5. Esquema General de Trabajo 18 6. Materiales y métodos 19 7. CAPÍTULO 1: Caracterización y clasificación genómica de 30 bacteriófagos de P. aeruginosa aislados en México Resultados 30 Discusión 49 Conclusiones 53 8. CAPÍTULO 2: Análisis del grupo D3112virus 55 Resultados 55 Discusión 69 Conclusiones 73 9. CAPÍTULO 3: Caracterización genómica del grupo F116virus 75 Resultados 75 Discusión 105 Conclusiones 110 10. CAPÍTULO 4: Análisis comparativo y funcional del grupo B3-like 111 Resultados 111 Discusión 120 Conclusiones 125 11. CAPÍTULO 5: Identificación In silico de profagos en genomas de P. 126 aeruginosa Resultados 126 Discusión 136 Conclusiones 141 12. Perspectivas 143 13. Material Suplementario 145 14. Referencias 156 15. Anexos 160 Adrián Cazares López Tesis de Doctorado Índice de Figuras Capítulo 1 Figura 1.1. Distribución de tamaños genómicos de fagos de 43 Pseudomonas Figura 1.2. Contenido de GC en genomas de fagos de 44 Pseudomonas Figura 1.3. Comparación entre secuencias genómicas de Ps54 y 47 regiones profágicas putativas de la cepa DHS01 Capítulo 2 Figura 2.1. Loci de inserción de profagos del grupo D3112virus 59 Figura 2.2. Árbol Neighbor-joining de los genomas D3112virus 61 comparados en este studio Figura 2.3. Mapa del pangenoma del grupo D3112virus 62 Figura 2.4. Frecuencia de ORFs accesorios en los genomas 63 D3112virus analizados Figura 2.5. Caracterización por PCR de regiones genómicas 68 variables de fagos tipo D3112virus Capítulo 3 Figura 3.1. Mapas genómicos de fagos del grupo F116virus 76 Figura 3.2. Mapa del pangenoma del grupo F116virus 82 Figura 3.3. Frecuencia de homólogos para ORFs del pangenoma 83 de fagos tipo F116virus Figura 3.4. Regiones genómicas bacterianas homólogas a 89 genomas F116virus Figura 3.5. Comparación nucleotídica de genomas F116virus con 90 regiones profágicas Figura 3.6. Sitios de inserción probables para los fagos H66 y 91 LKA5 Figura 3.7. Dominios conservados identificados en las secuencias 92 proteicas de las integrasas de los fagos H66 y LKA5 Figura 3.8. Sitios att candidatos de fagos tipo F116virus LKA5- 96 like Figura 3.9. Sitios att candidatos de fagos tipo F116virus H66-like 97 Figura 3.10. Estandarizacion de PCR para identificar inserción 102 de fagos tipo F116virus Figura 3.11. Análisis de Integración del fago H66 mediante PCR 103 Figura 3.12. Análisis de Integración del fago LKA5 mediante 104 PCR Capítulo 4 Figura 4.1. Comparación genómica de bacteriófagos del grupo 117 B3-like Adrián Cazares López Tesis de Doctorado Figura 4.2. Mapa del pangenoma del grupo B3-like 118 Figura 4.3. SGS-PAGE de las proteínas estructurales del virión 120 del fago Fc02 Capítulo 5 Figura 5.1. Características de las secuencias genómicas de P. 127 aeruginosa depositadas en la base de datos de ensamble de NCBI Figura 5.2. Número de elementos fágicos identificados por los 129 programas PHAST y PhiSpy Figura 5.3. Número de proteínas bacterianas que contienen 129 Dominios Conservados presentes en proteínas fágicas Figura 5.4. Mapeo de los elementos fágicos identificados en el 130 genoma de la cepa NCGM 1984 con tres diferentes estrategias de búsqueda Figura 5.5. Mapeo de las proteínas bacterianas de la cepa NCGM 132 1984 que contienen CD’s relacionados y no relacionados a fagos según su descripción Figura 5.6. Elemento fágico identificado por PHAST en la cepa 133 39016 Figura 5.7. Mapeo de los elementos fágicos identificados en el 135 genoma de la cepa LESB58 con tres diferentes estrategias de búsqueda y aquellos reportados por Winstanley et al 2009 Material Suplementario Figura S1. Mapas y comparación genómica de fagos tipo 150 D3112virus Figura S2. Mapas y comparación genómica de profagos tipo 151 D3112virus Figura S3. Comparación genómica de bacteriófagos del grupo 152 F116virus Figura S4. SGS-PAGE de las proteínas estructurales de los 153 viriones de H66 y LKA5 Figura S5. Localización de los oligos para la determinación de 154 integración de fagos del tipo F116virus. Figura S6. Regiones profágicas identificadas en el genoma de la 155 cepa LESB58 Adrián Cazares López Tesis de Doctorado Índice de Tablas Capítulo 1 Tabla 1.1. Estatus de secuenciación de la colección de fagos del 31 laboratorio Tabla 1.2. Clasificación taxonómica de fagos de Pseudomonas 36 Capítulo 2 Tabla 2.1. Oligos para la caracterización de fagos del grupo 64 D3112virus Tabla 2.2. Amplicones esperados en la caracterización por PCR 65 de fagos del grupo D3112virus Capítulo 3 Tabla 3.1. Oligos para la identificación de inserción de fagos del 100 grupoF116virus en la cepa PAO1 Capítulo 5 Tabla 5.1.
Recommended publications
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Pseudomonas Aeruginosa Pa5oct Jumbo Phage Impacts Planktonic and Biofilm 2 Population and Reduces Its Host Virulence
    bioRxiv preprint doi: https://doi.org/10.1101/405027; this version posted June 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Pseudomonas aeruginosa PA5oct jumbo phage impacts planktonic and biofilm 2 population and reduces its host virulence 3 4 Tomasz Olszak1, Katarzyna Danis-Wlodarczyk 1,2,#, Michal Arabski3, Grzegorz Gula1, 5 Barbara Maciejewska1, Slawomir Wasik4, Cédric Lood2,5, Gerard Higgins 6,7, Brian J. 6 Harvey7, Rob Lavigne2, Zuzanna Drulis-Kawa1* 7 8 1Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, 9 University of Wroclaw, Wroclaw, Poland 10 2Laboratory of Gene Technology, KU Leuven, Leuven, Belgium 11 3Department of Biochemistry and Genetics, Institute of Biology, The Jan Kochanowski 12 University in Kielce, Kielce, Poland 13 4Department of Molecular Physics, Institute of Physics, The Jan Kochanowski University in 14 Kielce, Kielce, Poland 15 5 Laboratory of Computational Systems Biology, KU Leuven, Leuven, Belgium 16 6National Children Research Centre, Dublin, Ireland 17 7Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and 18 Research Centre, Beaumont Hospital, Dublin, Ireland 19 20 # current affiliation: Department of Microbiology, Ohio State University, Columbus, OH, 21 United States 22 23 *Corresponding author 24 Zuzanna Drulis-Kawa 25 e-mail: [email protected] (ZDK) 26 27 Running title: PA5oct phage influence on Pseudomonas population 28 29 Keywords: giant bacteriophage, Pseudomonas aeruginosa, biofilm, Airway Surface Liquid 30 Infection model, phage-resistant mutants 1 bioRxiv preprint doi: https://doi.org/10.1101/405027; this version posted June 25, 2019.
    [Show full text]
  • The Phage-Encoded N-Acetyltransferase Rac Mediates Inactivation of Pseudomonas Aeruginosa Transcription by Cleavage of the RNA Polymerase Alpha Subunit
    viruses Article The Phage-Encoded N-Acetyltransferase Rac Mediates Inactivation of Pseudomonas aeruginosa Transcription by Cleavage of the RNA Polymerase Alpha Subunit 1, 1, 1 2 Pieter-Jan Ceyssens y , Jeroen De Smet z , Jeroen Wagemans , Natalia Akulenko , Evgeny Klimuk 2 , Subray Hedge 3, Marleen Voet 1, Hanne Hendrix 1, Jan Paeshuyse 1 , Bart Landuyt 4, Hua Xu 3, John Blanchard 3, Konstantin Severinov 2 and Rob Lavigne 1,* 1 Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; [email protected] (P.-J.C.); [email protected] (J.D.S.); [email protected] (J.W.); [email protected] (M.V.); [email protected] (H.H.); [email protected] (J.P.) 2 Institute of Molecular Genetics, Russian Academy of Sciences, 119334 Moscow, Russia; [email protected] (N.A.); [email protected] (E.K.); [email protected] (K.S.) 3 Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA; [email protected] (S.H.); [email protected] (H.X.); [email protected] (J.B.) 4 Department of Biology, KU Leuven, 3000 Leuven, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-16-379-524 Current affiliation: Antibiotics & Resistance Unit, Sciensano, 1050 Brussels, Belgium. y Current affiliation: Department of Microbial and Molecular Systems, KU Leuven, 2240 Geel, Belgium. z Received: 6 July 2020; Accepted: 1 September 2020; Published: 2 September 2020 Abstract: In this study, we describe the biological function of the phage-encoded protein RNA polymerase alpha subunit cleavage protein (Rac), a predicted Gcn5-related acetyltransferase encoded by phiKMV-like viruses.
    [Show full text]
  • 2016.013A-Db.A.V1.Fri1virus.Pdf
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2016.013a-dB officers) Short title: To create one (1) new genus, Fri1virus, including seven (7) new species in the subfamily Autographivirinae, family Podoviridae. (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 10 are required) 6 7 8 9 10 Author(s): Dann Turner—University of the West of England (United Kingdom) Andrew M. Kropinski—University of Guelph (Canada) Evelien M. Adriaenssens—University of Pretoria (South Africa) Jochen Klumpp—ETH Zurich (Switzerland) Jens H. Kuhn—NIH/NIAID/IRF-Frederick, Maryland (USA) Petr Leiman—École polytechnique fédérale de Lausanne (Switzerland) Mikhail M. Shneider—Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry (Russia) Corresponding author with e-mail address: Andrew M. Kropinski [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp . If ICTV Bacterial and Archaeal Viruses in doubt, contact the appropriate subcommittee chair (fungal, invertebrate, plant, prokaryote or Subcommittee vertebrate viruses) ICTV Study Group comments (if any) and response of the proposer: Date first submitted to ICTV: June 2016 Date of this revision (if different to above): ICTV-EC comments and response of the proposer: Page 1 of 7 MODULE 2: NEW SPECIES creating and naming one or more new species.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID- 19 Pandemic: A
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID- 19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. March 2021 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Raphael Freitas de Souza, Faculty of Dentistry, McGill University Paul Allison, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University March 31, 2021 1 Contents Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. .................................................................................................................................. 1 Foreword to the second update ............................................................................................. 4 Introduction ............................................................................................................................. 5 Project goal............................................................................................................................. 5 Specific objectives .................................................................................................................. 6 Methods used to identify and include relevant literature ......................................................
    [Show full text]
  • Exploring the Remarkable Diversity of Escherichia Coli Phages in The
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.911818; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Exploring the remarkable diversity of Escherichia coli 2 Phages in the Danish Wastewater Environment, Including 3 91 Novel Phage Species 4 Nikoline S. Olsen 1, Witold Kot 1,2* Laura M. F. Junco2 and Lars H. Hansen 1,2,* 5 1 Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde, Denmark; 6 [email protected] 7 2 Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 8 Frederiksberg C, Denmark; [email protected], [email protected] 9 * Correspondence: [email protected] Phone: +45 28 75 20 53, [email protected] Phone: +45 35 33 38 77 10 11 Funding: This research was funded by Villum Experiment Grant 17595, Aarhus University Research Foundation 12 AUFF Grant E-2015-FLS-7-28 to Witold Kot and Human Frontier Science Program RGP0024/2018. 13 Competing interests: The authors declare no competing interests. bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.911818; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Pseudomonas Aeruginosa Pa5oct Jumbo Phage Reduces Planktonic and Biofilm 2 Population and Impacts Its Host Virulence Through a Pseudolysogeny Event
    bioRxiv preprint doi: https://doi.org/10.1101/405027; this version posted August 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Pseudomonas aeruginosa PA5oct jumbo phage reduces planktonic and biofilm 2 population and impacts its host virulence through a pseudolysogeny event 3 4 Tomasz Olszak1, Katarzyna Danis-Wlodarczyk 1,2,#, Michal Arabski3, Grzegorz Gula1, 5 Slawomir Wasik4, Gerard Higgins 5,6, Brian J. Harvey6, Rob Lavigne2, Zuzanna Drulis- 6 Kawa1* 7 8 9 1Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, 10 University of Wroclaw, Wroclaw, Poland 11 2Laboratory of Gene Technology, KU Leuven, Leuven, Belgium 12 3Department of Biochemistry and Genetics, Institute of Biology, The Jan Kochanowski 13 University in Kielce, Kielce, Poland 14 4Department of Molecular Physics, Institute of Physics, The Jan Kochanowski University in 15 Kielce, Kielce, Poland 16 5National Children Research Centre, Dublin, Ireland 17 6Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and 18 Research Centre, Beaumont Hospital, Dublin, Ireland 19 20 # current affiliation: Department of Microbiology, Ohio State University, Columbus, OH, 21 United States 22 23 24 *Corresponding author. 25 E-mail: [email protected] (ZDK) 1 bioRxiv preprint doi: https://doi.org/10.1101/405027; this version posted August 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 26 Abstract 27 In this work we assess critical parameters to assess the in vitro capacity of the novel “jumbo” 28 phage PA5oct for phage therapy by studying its impact on the planktonic and biofilm population 29 of P.
    [Show full text]
  • Host Range and Molecular Characterization of a Lytic Pradovirus-Like Ralstonia Phage Rsop1idn Isolated from Indonesia
    Digital Repository Universitas Jember Host range and molecular characterization of a lytic Pradovirus-like Ralstonia phage RsoP1IDN isolated from Indonesia Hardian Susilo Addy, Moh Miftah Farid, Abdelmonim Ali Ahmad & Qi Huang Archives of Virology Official Journal of the Virology Division of the International Union of Microbiological Societies ISSN 0304-8608 Arch Virol DOI 10.1007/s00705-018-4033-1 1 23 Digital Repository Universitas Jember Your article is protected by copyright and all rights are held exclusively by This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Archives of Virology Digital Repository Universitas Jember https://doi.org/10.1007/s00705-018-4033-1 BRIEF REPORT Host range and molecular characterization of a lytic Pradovirus‑like Ralstonia phage RsoP1IDN isolated from Indonesia Hardian Susilo Addy1,2 · Moh Miftah Farid3 · Abdelmonim Ali Ahmad1,4 · Qi Huang1 Received: 15 March 2018 / Accepted: 18 July 2018 © This is a U.S.
    [Show full text]
  • Genomic Characterisation of Mushroom Pathogenic Pseudomonads and Their Interaction with Bacteriophages
    viruses Article Genomic Characterisation of Mushroom Pathogenic Pseudomonads and Their Interaction with Bacteriophages 1, 1,2, , 3 1,2 Nathaniel Storey y, Mojgan Rabiey * y , Benjamin W. Neuman , Robert W. Jackson and Geraldine Mulley 1 1 School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; [email protected] (N.S.); [email protected] (R.W.J.); [email protected] (G.M.) 2 School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham B15 2TT, UK 3 Biology Department, College of Arts, Sciences and Education, TAMUT, Texarkana, TX 75503, USA; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Received: 18 September 2020; Accepted: 5 November 2020; Published: 10 November 2020 Abstract: Bacterial diseases of the edible white button mushroom Agaricus bisporus caused by Pseudomonas species cause a reduction in crop yield, resulting in considerable economic loss. We examined bacterial pathogens of mushrooms and bacteriophages that target them to understand the disease and opportunities for control. The Pseudomonas tolaasii genome encoded a single type III protein secretion system (T3SS), but contained the largest number of non-ribosomal peptide synthase (NRPS) genes, multimodular enzymes that can play a role in pathogenicity, including a putative tolaasin-producing gene cluster, a toxin causing blotch disease symptom. However, Pseudomonas agarici encoded the lowest number of NRPS and three putative T3SS while non-pathogenic Pseudomonas sp. NS1 had intermediate numbers. Potential bacteriophage resistance mechanisms were identified in all three strains, but only P. agarici NCPPB 2472 was observed to have a single Type I-F CRISPR/Cas system predicted to be involved in phage resistance.
    [Show full text]
  • Genomic Characterization, Formulation and Efficacy in Planta
    Genomic Characterization, Formulation and Efficacy in Planta of a Siphoviridae and Podoviridae Protection Cocktail against the Bacterial Plant Pathogens Pectobacterium spp. Zaczek-Moczydlowska, M., Young, G. K., Trudgett, J., Fleming, C. C., Campbell, K., & O'Hanlon, R. (2020). Genomic Characterization, Formulation and Efficacy in Planta of a Siphoviridae and Podoviridae Protection Cocktail against the Bacterial Plant Pathogens Pectobacterium spp. Viruses, 12(2), [150]. https://doi.org/10.3390/v12020150 Published in: Viruses Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:02. Oct. 2021 Article Genomic Characterization, Formulation and Efficacy in Planta of a Siphoviridae and Podoviridae Protection Cocktail against the Bacterial Plant Pathogens Pectobacterium spp.
    [Show full text]
  • Comparative Analysis of 37 Acinetobacter Bacteriophages
    viruses Article Comparative Analysis of 37 Acinetobacter Bacteriophages Dann Turner 1,*, Hans-Wolfgang Ackermann 2,†, Andrew M. Kropinski 3, Rob Lavigne 4 ID , J. Mark Sutton 5 and Darren M. Reynolds 1 1 Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK; [email protected] 2 Faculty of Medicine, Department of Microbiology, Immunology and Infectiology, Université Laval, Quebec, QC G1X 46, Canada 3 Departments of Food Science, Molecular and Cellular Biology; and Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; [email protected] 4 Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, box 2462, 3001 Leuven, Belgium; [email protected] 5 National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-117-328-2563 † Deceased. Received: 4 December 2017; Accepted: 22 December 2017; Published: 24 December 2017 Abstract: Members of the genus Acinetobacter are ubiquitous in the environment and the multiple-drug resistant species A. baumannii is of significant clinical concern. This clinical relevance is currently driving research on bacterial viruses infecting A. baumannii, in an effort to implement phage therapy and phage-derived antimicrobials. Initially, a total of 42 Acinetobacter phage genome sequences were available in the international nucleotide sequence databases, corresponding to a total of 2.87 Mbp of sequence information and representing all three families of the order Caudovirales and a single member of the Leviviridae. A comparative bioinformatics analysis of 37 Acinetobacter phages revealed that they form six discrete clusters and two singletons based on genomic organisation and nucleotide sequence identity.
    [Show full text]
  • Pseudomonas Aeruginosa Pa5oct Jumbo Phage Impacts Planktonic and Biofilm Population and Reduces Its Host Virulence
    viruses Article Pseudomonas aeruginosa PA5oct Jumbo Phage Impacts Planktonic and Biofilm Population and Reduces Its Host Virulence 1 1,2, 3 1 Tomasz Olszak , Katarzyna Danis-Wlodarczyk y, Michal Arabski , Grzegorz Gula , Barbara Maciejewska 1, Slawomir Wasik 4,Cédric Lood 2,5 , Gerard Higgins 6,7, Brian J. Harvey 7, Rob Lavigne 2 and Zuzanna Drulis-Kawa 1,* 1 Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland; [email protected] (T.O.); [email protected] (K.D.-W.); [email protected] (G.G.); [email protected] (B.M.) 2 Laboratory of Gene Technology, KU Leuven, 3001 Heverlee, Belgium; [email protected] (C.L.); [email protected] (R.L.) 3 Department of Biochemistry and Genetics, Institute of Biology, The Jan Kochanowski University in Kielce, 25-406 Kielce, Poland; [email protected] 4 Department of Molecular Physics, Institute of Physics, The Jan Kochanowski University in Kielce, 25-406 Kielce, Poland; [email protected] 5 Laboratory of Computational Systems Biology, KU Leuven, 3000 Leuven, Belgium 6 National Children Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland; [email protected] 7 Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, 9 Dublin, Ireland; [email protected] * Correspondence: [email protected] Current address: Department of Microbiology, Ohio State University, Columbus, 43210 OH, USA. y Received: 25 September 2019; Accepted: 20 November 2019; Published: 23 November 2019 Abstract: The emergence of phage-resistant mutants is a key aspect of lytic phages-bacteria interaction and the main driver for the co-evolution between both organisms.
    [Show full text]