Genomics of Phage-Bacterium-Host Interaction of Mushroom Pathogenic Pseudomonads Nathaniel Storey

Total Page:16

File Type:pdf, Size:1020Kb

Genomics of Phage-Bacterium-Host Interaction of Mushroom Pathogenic Pseudomonads Nathaniel Storey ! ! School&of&Human&and&E nvironmental&Sciences! ! ! ! Genomics of phage-bacterium-host interaction of ! Disentanglimushroomng*the*mo lpathogenicecular*mec Pseudomonadshanisms*for* persistence*of*Escherichia)coli*O157:H7*in* the*plant*environbym ent* ! Nathanielby! Storey ! Glyn*Barrett* ! ! ! Submitted*inSubmitted*partial*fu linfi lpartiallment *ofulfilmentf*the*req uofi rtheem requirementent*for*the*d foregr theee* odegreef*Doct oofr *Doctor of of*PhilosophPhilosophy,y,*March*2 0January13* 2018. ! 1 Declaration I declare that this is an account of my own research and has not been submitted for a degree at any other university. The use of material from other sources has been properly and fully acknowledged, where appropriate. Nathaniel Storey 2 Acknowledgements “Tout ce qui est simple est faux, mais tout ce qui ne l'est pas est inutilisable.” ~ Paul Valéry (1871-1945) With special thanks to my father Mark Storey for his support and encouragement, without which this project would not have been possible. At the University of Reading I would especially like to thank Geraldine Mulley for her guidance and generosity in assisting me when it was most needed; with further thanks to Rob Jackson and Ben Neuman for both their support and company during my time at the University of Reading. Furthermore, I would like to thank my fiancée Lyssa Reeve for her never-ending patience and support; and my friends Natalie Tarling and Hashem Ghazi for their assistance and company throughout all the darkest hours and to celebrate the elusive moments of success. Finally, I would like to thank Saad Mutlk for all his help and humour in the laboratory. 3 Abstract The most commonly cultivated mushroom in Europe and North America is the Agaricus bisporus, also known as the button mushroom or Portobello mushroom. Bacterial diseases of Agaricus bisporus caused by Pseudomonas species are a cause of significant crop loss and downgrading of produce, resulting in considerable economic cost. Bacteriophage have long been an attractive option for biocontrol of bacterial contamination of food products, however the precise genetic interactions between phage, bacterium and host are often inadequately explored. This project aims to explore the genetic interactions between the mushroom pathogenic bacterium Pseudomonas tolaasii and Pseudomonas agarici with the newly identified bacteriophage Pseudomonas phage NV1 and Pseudomonas phage ϕNV3. Full genome sequencing has been performed on the P. tolaasii strain 2192T and P. agarici NCPPB 2472, and the genomes of both mined for potential biosynthetic clusters involved in virulence as well as genes involved in phage resistance. Within the genome of P. tolaasii 2192T, putative non- ribosomal peptide synthases have been identified which are hypothesised to be involved in the production of the tolaasin toxin involved in disease symptom appearance on mushroom surfaces. Within the genome of P. agarici NCPPB 2472, a biosynthetic cluster was identified that is hypothesised to produce the siderophore achromobactin, an important virulence factor. P. agarici NCPPB 2472 was identified as possessing a single Type I-F CRISPR/Cas system, predicted to be involved in the development of phage resistance, as well as complete operon predicted to be involved in the production of the exopolysaccharide alginate. 4 A third Pseudomonas species was identified on the surface of disease free mushrooms which was identified as a potentially new species of Pseudomonas, named Pseudomonas sp. NS1. The genome of P. sp. NS1 was likewise sequenced and mined for potential biosynthetic gene clusters which identified a cluster demonstrated to be involved in the production of White Line Inducing Principle. The Pseudomonas phages NV1 and ϕNV3 were isolated from environmental samples and identified to be narrow host range phage specific for P. tolaasii 2192T and P. agarici NCPPB 2472 respectively. Both phage NV1 and ϕNV3 were identified as new species of the Luz24likeviruses and phiKMVlikeviruses respectively. The genomes of both phages were isolated and sequenced, with phage ϕNV3 identified as containing a conserved Signal-Arrest- Release endolysin system, which was confirmed by in vitro protein expression. Likewise, the lysis cassette proteins of ϕNV3 were identified and investigated via protein complementation assay in vitro. The full growth characteristics and life cycle of phage ϕNV3 has been investigated and reported in this study and a broad-host range mutant of ϕNV3 identified which has allowed the T7-like tail protein of ϕNV3 to be identified as the host specificity determinant. Transcriptome analyses of non-infected P. agarici NCPPB 2472 and P. agarici NCPPB 2472 infected with phage ϕNV3 at a multiplicity of infection (MOI) of 1 at 40 min post infection, were performed in triplicate using RNA-seq. A reliable method has been established that will be useful in future studies, although comparative gene expression analysis revealed no significant differences in expression between the two treatments at the multiplicity of infection and time point chosen in this case a significant quantity of phage transcripts were detected, demonstrating active phage infection. 5 List of Abbreviations and Acronyms Abs Absorbance Amp Ampicillin ANIb Average Nucleotide Identity based on BLAST+ ANIm Average Nucleotide Identity based on MUMmer bp Base pair C Celsius Cas CRISPR associated CFU Colony Forming Units CRISPR Clustered Randomly Interspersed Short Palindromic Repeats crRNA CRISPR RNA DNA Deoxyribonucleic acid DNase Deoxyribonuclease ds Double Stranded EDTA Ethylenediaminetetraacetic Acid EPS Extracellular Polysaccharide ETEC Enterotoxigenic E. coli Gp Genome position GTP Guanosine-5'-triphosphate HHP High Hydrostatic Pressure Kan Kanamycin KB Kings B medium LB Lysogeny Broth LPS Lipopolysaccharide ml Millilitres MLSA Multilocus sequence analysis MOI Multiplicity of infection mRNA Messenger ribonucleic acid MUSCLE Multiple Sequence Comparison by Log-Expectation NRPS Non-Ribosomal Peptide Synthase OD Optical Density ORF Open Reading Frame Padj P-value adjusted for multiple testing using the Benjamin-Hochberg method PBS Phosphate Buffered Saline PCA Principal Component Analysis PCP Peptidyl Carrier Protein PCR Polymerase Chain Reaction PFU Plaque Forming Units PMBV Polymyxin B nonapeptide pv. Pathovar R-M Restriction-Modification RBP Receptor Binding Protein rDNA Ribosomal Deoxyribonucleic Acid rpm Revolutions Per Minute rRNA Ribosomal Ribonucleic Acid SAR Signal-Arrest-Release SD Standard Deviation SEM Standard Error of the Mean 6 sp. Species ss Single Stranded TBE Tris/Borate/EDTA TE Thioesterase TEM Transmission Electron Microscopy U.K United Kingdom UoR University of Reading UPEC Uropathogenic E. coli UV Ultraviolet vsd variance stabilising transformed 7 Contents Chapter 1: Introduction ........................................................................................................ 12 1.1 Cultivated mushrooms and their importance ................................................................. 13 1.2 Bacterial diseases of cultivated mushrooms .................................................................. 14 1.2.1 Pseudomonas tolaasii ............................................................................................. 15 1.2.2 Pseudomonas agarici .............................................................................................. 18 1.3 Secondary metabolites, non-ribosomal peptide synthesis and bacteriocins in Pseudomonas ....................................................................................................................... 20 1.3.1 Tolaasin ................................................................................................................... 21 1.3.2 Siderophores ........................................................................................................... 23 1.3.3 Bacteriocins and phage tail-like bacteriocins ......................................................... 24 1.4 Bacteriophage treatments of Pseudomonas infections .................................................. 26 1.5 Bacteriophage background............................................................................................. 27 1.5.1 The Podoviridae, subfamily Autographivirinae and genus Luz24likeviruses ........ 28 1.6 Endolysin systems .......................................................................................................... 34 1.6.1 Types of host cell lysis systems .............................................................................. 35 1.6.2 Lysis systems and host cell wall structure .............................................................. 37 1.6.3 Endolysins in the treatments of bacterial infections ............................................... 39 1.7 Host cell receptors and phage host specificity determinants ......................................... 41 1.7.1 Lipopolysaccharide (LPS) receptors ....................................................................... 42 1.7.2 Capsule phage ......................................................................................................... 43 1.7.3 Pili phage ................................................................................................................ 44 1.7.4 Flagella phage ........................................................................................................ 45 1.7.5 Phage receptor binding proteins.............................................................................. 46 1.8 Host resistance
Recommended publications
  • Genomic Analysis of the Recent Viral Isolate Vb Bthp-Goe4 Reveals Increased Diversity of Φ29-Like Phages
    viruses Article Genomic Analysis of the Recent Viral Isolate vB_BthP-Goe4 Reveals Increased Diversity of φ29-Like Phages Tobias Schilling 1, Michael Hoppert 2 and Robert Hertel 1,* 1 Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany; [email protected] 2 Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-551-39-91120 Received: 19 October 2018; Accepted: 8 November 2018; Published: 13 November 2018 Abstract: We present the recently isolated virus vB_BthP-Goe4 infecting Bacillus thuringiensis HD1. Morphological investigation via transmission electron microscopy revealed key characteristics of the genus Phi29virus, but with an elongated head resulting in larger virion particles of approximately 50 nm width and 120 nm height. Genome sequencing and analysis resulted in a linear phage chromosome of approximately 26 kb, harbouring 40 protein-encoding genes and a packaging RNA. Sequence comparison confirmed the relation to the Phi29virus genus and genomes of other related strains. A global average nucleotide identity analysis of all identified φ29-like viruses revealed the formation of several new groups previously not observed. The largest group includes Goe4 and may significantly expand the genus Phi29virus (Salasvirus) or the Picovirinae subfamily. Keywords: Bacillus; thuringiensis; vB_BthP-Goe4; Goe4; Picovirinae; Phi29virus; Salasvirus; Luci; bacteriophage; phage; pRNA 1. Introduction Bacteriophages or phages are viruses of bacteria and probably the most common biological entities on earth. Phage species outnumber their hosts by 10 times [1] and thus, represent the largest unexplored genetic reservoir.
    [Show full text]
  • Defining the Pseudomonas Genus: Where Do We Draw the Line with Azotobacter?
    Downloaded from orbit.dtu.dk on: Oct 01, 2021 Defining the Pseudomonas Genus: Where Do We Draw the Line with Azotobacter? Özen, Asli Ismihan; Ussery, David Published in: Microbial Ecology in Health & Disease Link to article, DOI: 10.1007/s00248-011-9914-8 Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Özen, A. I., & Ussery, D. (2012). Defining the Pseudomonas Genus: Where Do We Draw the Line with Azotobacter? Microbial Ecology in Health & Disease, 63(2), 239-248. https://doi.org/10.1007/s00248-011-9914-8 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Microb Ecol (2012) 63:239–248 DOI 10.1007/s00248-011-9914-8 MINIREVIEWS Defining the Pseudomonas Genus: Where Do We Draw the Line with Azotobacter? Asli I. Özen & David W. Ussery Received: 7 November 2010 /Accepted: 13 July 2011 /Published online: 3 August 2011 # The Author(s) 2011.
    [Show full text]
  • Download Article (PDF)
    Biologia 66/2: 288—293, 2011 Section Cellular and Molecular Biology DOI: 10.2478/s11756-011-0021-6 The first investigation of the diversity of bacteria associated with Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) Hacer Muratoglu, Zihni Demirbag &KazimSezen* Karadeniz Technical University, Faculty of Arts and Sciences, Department of Biology, 61080 Trabzon, Turkey; e-mail: [email protected] Abstract: Colorado potato beetle, Leptinotarsa decemlineata (Say), is a devastating pest of potatoes in North America and Europe. L. decemlineata has developed resistance to insecticides used for its control. In this study, in order to find a more effective potential biological control agent against L. decemlineata, we investigated its microbiota and tested their insecticidal effects. According to morphological, physiological and biochemical tests as well as 16S rDNA sequences, microbiota was identified as Leclercia adecarboxylata (Ld1), Acinetobacter sp. (Ld2), Acinetobacter sp. (Ld3), Pseudomonas putida (Ld4), Acinetobacter sp. (Ld5) and Acinetobacter haemolyticus (Ld6). The insecticidal activities of isolates at 1.8×109 bacteria/mL dose within five days were 100%, 100%, 35%, 100%, 47% and 100%, respectively, against the L. decemlineata larvae. The results indicate that Leclercia adecarboxylata (Ld1) and Pseudomonas putida (Ld4) isolates may be valuable potential biological control agents for biological control of L. decemlineata. Key words: Leptinotarsa decemlineata; 16S rDNA; microbiota; insecticidal activity; microbial control. Abbreviations: ANOVA, one-way analysis of variance; LSD, least significant difference; PBS, phosphate buffer solution. Introduction used because of marketing concerns and limited num- ber of transgenic varieties available. Also, recombinant Potato is an important crop with ∼4.3 million tons defence molecules in plants may affect parasitoids or of production on 192,000 hectares of growing area predators indirectly (Bouchard et al.
    [Show full text]
  • Diverse Environmental Pseudomonas Encode Unique Secondary Metabolites That Inhibit Human Pathogens
    DIVERSE ENVIRONMENTAL PSEUDOMONAS ENCODE UNIQUE SECONDARY METABOLITES THAT INHIBIT HUMAN PATHOGENS Elizabeth Davis A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2017 Committee: Hans Wildschutte, Advisor Ray Larsen Jill Zeilstra-Ryalls © 2017 Elizabeth Davis All Rights Reserved iii ABSTRACT Hans Wildschutte, Advisor Antibiotic resistance has become a crisis of global proportions. People all over the world are dying from multidrug resistant infections, and it is predicted that bacterial infections will once again become the leading cause of death. One human opportunistic pathogen of great concern is Pseudomonas aeruginosa. P. aeruginosa is the most abundant pathogen in cystic fibrosis (CF) patients’ lungs over time and is resistant to most currently used antibiotics. Chronic infection of the CF lung is the main cause of morbidity and mortality in CF patients. With the rise of multidrug resistant bacteria and lack of novel antibiotics, treatment for CF patients will become more problematic. Escalating the problem is a lack of research from pharmaceutical companies due to low profitability, resulting in a large void in the discovery and development of antibiotics. Thus, research labs within academia have played an important role in the discovery of novel compounds. Environmental bacteria are known to naturally produce secondary metabolites, some of which outcompete surrounding bacteria for resources. We hypothesized that environmental Pseudomonas from diverse soil and water habitats produce secondary metabolites capable of inhibiting the growth of CF derived P. aeruginosa. To address this hypothesis, we used a population based study in tandem with transposon mutagenesis and bioinformatics to identify eight biosynthetic gene clusters (BGCs) from four different environmental Pseudomonas strains, S4G9, LE6C9, LE5C2 and S3E10.
    [Show full text]
  • From Genotype to Phenotype: Inferring Relationships Between Microbial Traits and Genomic Components
    From genotype to phenotype: inferring relationships between microbial traits and genomic components Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Aaron Weimann aus Oberhausen D¨usseldorf,29.08.16 aus dem Institut f¨urInformatik der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathemathisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Alice C. McHardy Koreferent: Prof. Dr. Martin J. Lercher Tag der m¨undlichen Pr¨ufung: 24.02.17 Selbststandigkeitserkl¨ arung¨ Hiermit erkl¨areich, dass ich die vorliegende Dissertation eigenst¨andigund ohne fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese Dissertation wurde bisher in dieser oder ¨ahnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche un- ternommen. D¨usseldorf,den . ... ... ... (Aaron Weimann) Statement of authorship I hereby certify that this dissertation is the result of my own work. No other person's work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure. Summary Bacteria live in almost any imaginable environment, from the most extreme envi- ronments (e.g. in hydrothermal vents) to the bovine and human gastrointestinal tract. By adapting to such diverse environments, they have developed a large arsenal of enzymes involved in a wide variety of biochemical reactions. While some such enzymes support our digestion or can be used for the optimization of biotechnological processes, others may be harmful { e.g. mediating the roles of bacteria in human diseases.
    [Show full text]
  • Gene Regulation by a Novel Two-Component System Conserved Among Gammaproteobacteria Kristin M
    Northern Michigan University NMU Commons All NMU Master's Theses Student Works 8-2015 Gene Regulation by a Novel Two-Component System Conserved Among Gammaproteobacteria Kristin M. Jacob Northern Michigan University, [email protected] Follow this and additional works at: https://commons.nmu.edu/theses Part of the Microbiology Commons Recommended Citation Jacob, Kristin M., "Gene Regulation by a Novel Two-Component System Conserved Among Gammaproteobacteria" (2015). All NMU Master's Theses. 66. https://commons.nmu.edu/theses/66 This Open Access is brought to you for free and open access by the Student Works at NMU Commons. It has been accepted for inclusion in All NMU Master's Theses by an authorized administrator of NMU Commons. For more information, please contact [email protected],[email protected]. GENE REGULATION BY A NOVEL TWO-COMPONENT SYSTEM CONSERVED AMONG γ-PROTEOBACTERIA By Kristin M. Jacob THESIS Submitted to Northern Michigan University In partial fulfillment of the requirements For the degree of MASTERS OF BIOLOGY Office of Graduate Education and Research August 2015 SIGNATURE APPROVAL FORM Title of Thesis: Gene Regulation by a Novel Two-Component System Conserved Among γ-Proteobacteria. This thesis by Kristin Jacob is recommended for approval by the student’s Thesis Committee and Department Head in the Department of Biology and by the Assistant Provost of Graduate Education and Research. ____________________________________________________________ Committee Chair: Dr. Josh Sharp Date ____________________________________________________________ First Reader: Dr. Erich Ottem Date ____________________________________________________________ Second Reader: Dr. Donna Becker Date ____________________________________________________________ Department Head: Dr. John Rebers Date ____________________________________________________________ Dr. Brian D. Cherry Date Assistant Provost of Graduate Education and Research ABSTRACT GENE REGULATION BY A NOVEL TWO-COMPONENT SYSTEM CONSERVED AMONG γ-PROTEOBACTERIA By Kristin M.
    [Show full text]
  • TESIS DOCTORAL Estudio Metagenómico De La Comunidad De
    TESIS DOCTORAL Estudio metagenómico de la comunidad de virus y de su interacción con la microbiota en la cavidad bucal humana Marcos Parras Moltó Madrid, 2019 Estudio metagenómico de la comunidad de virus y de su interacción con la microbiota en la cavidad bucal humana Memoria presentada por Marcos Parras Moltó para optar al título de Doctor por la Universidad Autónoma de Madrid Esta Tesis se ha realizado en el Centro de Biología Molecular Severo Ochoa bajo la supervisión del Tutor y Director Alberto López Bueno, en el Programa de Doctorado en Biociencias Moleculares (RD 99/2011) Universidad Autónoma de Madrid Facultad de Ciencias Departamento de Biología Molecular Centro de Biología Molecular Severo Ochoa (CBMSO) Madrid, 2019 El Dr. Alberto López Bueno, Profesor Contratado Doctor en el Departamento de Biología Molecular de la Universidad Autónoma de Madrid (UAM) e investigador en el Centro de Biología Molecular Severo Ochoa (CBMSO): CERTIFICA: Haber dirigido y supervisado la Tesis Doctoral titulada "Estudio metagenómico de la comunidad de virus y de su interacción con la microbiota en la cavidad bucal humana” realizada por D. Marcos Parras Moltó, en el Programa de Doctorado en Biociencias Moleculares de la Universidad Autónoma de Madrid, por lo que autoriza la presentación de la misma. Madrid, a 23 de Abril de 2019, Alberto López Bueno La presente tesis doctoral ha sido posible gracias a la concesión de una “Ayuda para Contratos Predoctorales para la Formación de Doctores” convocatoria de 2013 (BES-2013-064773) asociada al proyecto SAF2012-38421 del Ministerio de Economía y Competitividad. Durante esta tesis se realizó una estancia de dos meses en el laboratorio del Catedrático Francisco Rodríguez Valera, director de grupo de investigación: Evolutionary Genomics Group de la Universidad Miguel Hernández de Elche (San Juan de Alicante), gracias a una “Ayuda a la Movilidad Predoctoral para la Realización de Estancias Breves en Centros de I+D” convocatoria de 2015 (EEBB-I-16-11876) concedida por el Ministerio de Economía y Competitividad.
    [Show full text]
  • New Tools for Viral Metagenome Comparison and Assembled Virome Analysis Simon Roux1,2, Jeremy Tournayre1,2, Antoine Mahul3, Didier Debroas1,2 and François Enault1,2*
    Roux et al. BMC Bioinformatics 2014, 15:76 http://www.biomedcentral.com/1471-2105/15/76 SOFTWARE Open Access Metavir 2: new tools for viral metagenome comparison and assembled virome analysis Simon Roux1,2, Jeremy Tournayre1,2, Antoine Mahul3, Didier Debroas1,2 and François Enault1,2* Abstract Background: Metagenomics, based on culture-independent sequencing, is a well-fitted approach to provide insights into the composition, structure and dynamics of environmental viral communities. Following recent advances in sequencing technologies, new challenges arise for existing bioinformatic tools dedicated to viral metagenome (i.e. virome) analysis as (i) the number of viromes is rapidly growing and (ii) large genomic fragments can now be obtained by assembling the huge amount of sequence data generated for each metagenome. Results: To face these challenges, a new version of Metavir was developed. First, all Metavir tools have been adapted to support comparative analysis of viromes in order to improve the analysis of multiple datasets. In addition to the sequence comparison previously provided, viromes can now be compared through their k-mer frequencies, their taxonomic compositions, recruitment plots and phylogenetic trees containing sequences from different datasets. Second, a new section has been specifically designed to handle assembled viromes made of thousands of large genomic fragments (i.e. contigs). This section includes an annotation pipeline for uploaded viral contigs (gene prediction, similarity search against reference viral genomes and protein domains) and an extensive comparison between contigs and reference genomes. Contigs and their annotations can be explored on the website through specifically developed dynamic genomic maps and interactive networks. Conclusions: The new features of Metavir 2 allow users to explore and analyze viromes composed of raw reads or assembled fragments through a set of adapted tools and a user-friendly interface.
    [Show full text]
  • Cyclic Lipodepsipeptides Produced by Pseudomonas Spp. Naturally Present in Raw Milk Induce Inhibitory Effects on Microbiological
    Cyclic Lipodepsipeptides Produced by Pseudomonas spp. Naturally Present in Raw Milk Induce Inhibitory Effects on Microbiological Inhibitor Assays for Antibiotic Residue Screening Wim Reybroeck1*, Matthias De Vleeschouwer2,3, Sophie Marchand1¤, Davy Sinnaeve2, Kim Heylen4, Jan De Block1, Annemieke Madder3, Jose´ C. Martins2, Marc Heyndrickx1,5 1 Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Melle, Belgium, 2 Ghent University (UGent), Department of Organic Chemistry, NMR and Structure Analysis Unit, Gent, Belgium, 3 Ghent University (UGent), Department of Organic Chemistry, Organic and Biomimetic Chemistry Research Unit, Gent, Belgium, 4 Ghent University (UGent), Department of Biochemistry and Microbiology, Laboratory of Microbiology, Gent, Belgium, 5 Ghent University (UGent), Department of Pathology, Bacteriology and Poultry Diseases, Merelbeke, Belgium Abstract Two Pseudomonas strains, identified as closely related to Pseudomonas tolaasii, were isolated from milk of a farm with frequent false-positive Delvotest results for screening putative antibiotic residues in raw milk executed as part of the regulatory quality programme. Growth at 5 to 7uC of these isolates in milk resulted in high lipolysis and the production of bacterial inhibitors. The two main bacterial inhibitors have a molecular weight of 1168.7 and 1140.7 Da respectively, are heat-tolerant and inhibit Geobacillus stearothermophilus var. calidolactis, the test strain of most of the commercially available microbiological inhibitor tests for screening of antibiotic residues in milk. Furthermore, these bacterial inhibitors show antimicrobial activity against Staphylococcus aureus, Bacillus cereus and B. subtilis and also interfere negatively with yoghurt production. Following their isolation and purification with RP-HPLC, the inhibitors were identified by NMR analysis as cyclic lipodepsipeptides of the viscosin group.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7476,532 B2 Schneider Et Al
    USOO7476532B2 (12) United States Patent (10) Patent No.: US 7476,532 B2 Schneider et al. (45) Date of Patent: Jan. 13, 2009 (54) MANNITOL INDUCED PROMOTER Makrides, S.C., "Strategies for achieving high-level expression of SYSTEMIS IN BACTERAL, HOST CELLS genes in Escherichia coli,” Microbiol. Rev. 60(3):512-538 (Sep. 1996). (75) Inventors: J. Carrie Schneider, San Diego, CA Sánchez-Romero, J., and De Lorenzo, V., "Genetic engineering of nonpathogenic Pseudomonas strains as biocatalysts for industrial (US); Bettina Rosner, San Diego, CA and environmental process.” in Manual of Industrial Microbiology (US) and Biotechnology, Demain, A, and Davies, J., eds. (ASM Press, Washington, D.C., 1999), pp. 460-474. (73) Assignee: Dow Global Technologies Inc., Schneider J.C., et al., “Auxotrophic markers pyrF and proC can Midland, MI (US) replace antibiotic markers on protein production plasmids in high cell-density Pseudomonas fluorescens fermentation.” Biotechnol. (*) Notice: Subject to any disclaimer, the term of this Prog., 21(2):343-8 (Mar.-Apr. 2005). patent is extended or adjusted under 35 Schweizer, H.P.. "Vectors to express foreign genes and techniques to U.S.C. 154(b) by 0 days. monitor gene expression in Pseudomonads. Curr: Opin. Biotechnol., 12(5):439-445 (Oct. 2001). (21) Appl. No.: 11/447,553 Slater, R., and Williams, R. “The expression of foreign DNA in bacteria.” in Molecular Biology and Biotechnology, Walker, J., and (22) Filed: Jun. 6, 2006 Rapley, R., eds. (The Royal Society of Chemistry, Cambridge, UK, 2000), pp. 125-154. (65) Prior Publication Data Stevens, R.C., “Design of high-throughput methods of protein pro duction for structural biology.” Structure, 8(9):R177-R185 (Sep.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Comparative Genomics Reveals New Evolutionary and Ecological Patterns of Selenium Utilization in Bacteria
    The ISME Journal (2016) 10, 2048–2059 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 OPEN www.nature.com/ismej ORIGINAL ARTICLE Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria Ting Peng, Jie Lin, Yin-Zhen Xu and Yan Zhang Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China Selenium (Se) is an important micronutrient for many organisms, which is required for the biosynthesis of selenocysteine, selenouridine and Se-containing cofactor. Several key genes involved in different Se utilization traits have been characterized; however, systematic studies on the evolution and ecological niches of Se utilization are very limited. Here, we analyzed more than 5200 sequenced organisms to examine the occurrence patterns of all Se traits in bacteria. A global species map of all Se utilization pathways has been generated, which demonstrates the most detailed understanding of Se utilization in bacteria so far. In addition, the selenophosphate synthetase gene, which is used to define the overall Se utilization, was also detected in some organisms that do not have any of the known Se traits, implying the presence of a novel Se form in this domain. Phylogenetic analyses of components of different Se utilization traits revealed new horizontal gene transfer events for each of them. Moreover, by characterizing the selenoproteomes of all organisms, we found a new selenoprotein-rich phylum and additional selenoprotein-rich species. Finally, the relationship between ecological environments and Se utilization was investigated and further verified by metagenomic analysis of environmental samples, which indicates new macroevolutionary trends of each Se utilization trait in bacteria.
    [Show full text]