Exploring the Remarkable Diversity of Escherichia Coli Phages in The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Properties of a Genetically Unique Mycobacteriophage Amanda K
Western Kentucky University TopSCHOLAR® Masters Theses & Specialist Projects Graduate School Spring 2019 Properties of a Genetically Unique Mycobacteriophage Amanda K. Staples Follow this and additional works at: https://digitalcommons.wku.edu/theses Part of the Environmental Microbiology and Microbial Ecology Commons, Microbial Physiology Commons, Other Microbiology Commons, and the Virology Commons This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by an authorized administrator of TopSCHOLAR®. For more information, please contact [email protected]. PROPERTIES OF A GENETICALLY UNIQUE MYCOBACTERIOPHAGE A Thesis Presented to The Faculty of the Department of Biology Western Kentucky University Bowling Green, Kentucky In Partial Fulfillment Of the Requirements for the Degree Master of Science By Amanda K. Staples May 2019 I dedicate this thesis to my sons, Donovan and Dresden Staples. Life is filled with good times and bad times. I wish you both all the strength and wisdom to face the challenges that come your way. Learn and grow from everything and everyone. Always listen to your heart and don’t be afraid to take the road less traveled. Never forget how much I love you both. ACKNOWLEDGMENTS I would like to take the opportunity to express my profound gratitude to all those who contributed to the support and guidance vital in completing this research. Though I am not able to thank all the caring people involved, their assistance has been invaluable. First and foremost, I must pay homage to my family, beginning with my mom. Without her, I would not be able to manage the majority of the chaos surrounding my life. -
Exploring the Enzymatic and Antibacterial Activities of Novel Mycobacteriophage Lysin B Enzymes
International Journal of Molecular Sciences Article Exploring the Enzymatic and Antibacterial Activities of Novel Mycobacteriophage Lysin B Enzymes Adel Abouhmad 1,2 , Ahmed H. Korany 3 , Carl Grey 1, Tarek Dishisha 4 and Rajni Hatti-Kaul 1,* 1 Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden; [email protected] (A.A.); [email protected] (C.G.) 2 Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt 3 Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt; [email protected] 4 Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt; [email protected] * Correspondence: [email protected]; Tel.: +46-462-224-840 Received: 30 March 2020; Accepted: 28 April 2020; Published: 30 April 2020 Abstract: Mycobacteriophages possess different sets of lytic enzymes for disruption of the complex cell envelope of the mycobacteria host cells and release of the viral progeny. Lysin B (LysB) enzymes are mycolylarabinogalactan esterases that cleave the ester bond between the arabinogalactan and mycolic acids in the mycolylarabinogalactan-peptidoglycan (mAGP) complex in the cell envelope of mycobacteria. In the present study, four LysB enzymes were produced recombinantly and characterized with respect to their enzymatic and antibacterial activities. Examination of the kinetic parameters for the hydrolysis of para-nitrophenyl ester substrates, shows LysB-His6 enzymes to be active against a range of substrates (C4–C16), with a catalytic preference towards p-nitrophenyl laurate (C12). -
Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person -
Pseudomonas Aeruginosa Pa5oct Jumbo Phage Impacts Planktonic and Biofilm 2 Population and Reduces Its Host Virulence
bioRxiv preprint doi: https://doi.org/10.1101/405027; this version posted June 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Pseudomonas aeruginosa PA5oct jumbo phage impacts planktonic and biofilm 2 population and reduces its host virulence 3 4 Tomasz Olszak1, Katarzyna Danis-Wlodarczyk 1,2,#, Michal Arabski3, Grzegorz Gula1, 5 Barbara Maciejewska1, Slawomir Wasik4, Cédric Lood2,5, Gerard Higgins 6,7, Brian J. 6 Harvey7, Rob Lavigne2, Zuzanna Drulis-Kawa1* 7 8 1Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, 9 University of Wroclaw, Wroclaw, Poland 10 2Laboratory of Gene Technology, KU Leuven, Leuven, Belgium 11 3Department of Biochemistry and Genetics, Institute of Biology, The Jan Kochanowski 12 University in Kielce, Kielce, Poland 13 4Department of Molecular Physics, Institute of Physics, The Jan Kochanowski University in 14 Kielce, Kielce, Poland 15 5 Laboratory of Computational Systems Biology, KU Leuven, Leuven, Belgium 16 6National Children Research Centre, Dublin, Ireland 17 7Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and 18 Research Centre, Beaumont Hospital, Dublin, Ireland 19 20 # current affiliation: Department of Microbiology, Ohio State University, Columbus, OH, 21 United States 22 23 *Corresponding author 24 Zuzanna Drulis-Kawa 25 e-mail: [email protected] (ZDK) 26 27 Running title: PA5oct phage influence on Pseudomonas population 28 29 Keywords: giant bacteriophage, Pseudomonas aeruginosa, biofilm, Airway Surface Liquid 30 Infection model, phage-resistant mutants 1 bioRxiv preprint doi: https://doi.org/10.1101/405027; this version posted June 25, 2019. -
The Phage-Encoded N-Acetyltransferase Rac Mediates Inactivation of Pseudomonas Aeruginosa Transcription by Cleavage of the RNA Polymerase Alpha Subunit
viruses Article The Phage-Encoded N-Acetyltransferase Rac Mediates Inactivation of Pseudomonas aeruginosa Transcription by Cleavage of the RNA Polymerase Alpha Subunit 1, 1, 1 2 Pieter-Jan Ceyssens y , Jeroen De Smet z , Jeroen Wagemans , Natalia Akulenko , Evgeny Klimuk 2 , Subray Hedge 3, Marleen Voet 1, Hanne Hendrix 1, Jan Paeshuyse 1 , Bart Landuyt 4, Hua Xu 3, John Blanchard 3, Konstantin Severinov 2 and Rob Lavigne 1,* 1 Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; [email protected] (P.-J.C.); [email protected] (J.D.S.); [email protected] (J.W.); [email protected] (M.V.); [email protected] (H.H.); [email protected] (J.P.) 2 Institute of Molecular Genetics, Russian Academy of Sciences, 119334 Moscow, Russia; [email protected] (N.A.); [email protected] (E.K.); [email protected] (K.S.) 3 Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA; [email protected] (S.H.); [email protected] (H.X.); [email protected] (J.B.) 4 Department of Biology, KU Leuven, 3000 Leuven, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-16-379-524 Current affiliation: Antibiotics & Resistance Unit, Sciensano, 1050 Brussels, Belgium. y Current affiliation: Department of Microbial and Molecular Systems, KU Leuven, 2240 Geel, Belgium. z Received: 6 July 2020; Accepted: 1 September 2020; Published: 2 September 2020 Abstract: In this study, we describe the biological function of the phage-encoded protein RNA polymerase alpha subunit cleavage protein (Rac), a predicted Gcn5-related acetyltransferase encoded by phiKMV-like viruses. -
Recombineering in Mycobacteria Using Mycobacteriophage Proteins
RECOMBINEERING IN MYCOBACTERIA USING MYCOBACTERIOPHAGE PROTEINS by Julia Catherine van Kessel B.S. Biology, Utica College of Syracuse University, 2003 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2008 UNIVERSITY OF PITTSBURGH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Julia Catherine van Kessel It was defended on July 24, 2008 and approved by Roger W. Hendrix, Ph.D., Biological Sciences, University of Pittsburgh William R. Jacobs, Jr., Ph.D., Albert Einstein College of Medicine Jeffrey G. Lawrence, Ph.D., Biological Sciences, University of Pittsburgh Valerie Oke, Ph.D., Biological Sciences, University of Pittsburgh Dissertation Advisor: Graham F. Hatfull, Ph.D., Biological Sciences, University of Pittsburgh ii Copyright © by Julia Catherine van Kessel 2008 iii RECOMBINEERING IN MYCOBACTERIA USING MYCOBACTERIOPHAGE PROTEINS Julia Catherine van Kessel, Ph.D. University of Pittsburgh, 2008 Genetic manipulations of Mycobacterium tuberculosis are complicated by its slow growth, inefficient DNA uptake, and relatively high levels of illegitimate recombination. Most methods for construction of gene replacement mutants are lengthy and complicated, and the lack of generalized transducing phages that infect M. tuberculosis prevents simple construction of isogenic mutant strains. Characterization and genomic analysis of mycobacteriophages has provided numerous molecular and genetic tools for the mycobacteria. Recently, genes encoding homologues of the Escherichia coli Rac prophage RecET proteins were revealed in the genome of mycobacteriophage Chec9c. RecE and RecT are functional analogues of the phage λ Red recombination proteins, Exo (exonuclease) and Beta (recombinase), respectively. These recombination enzymes act coordinately to promote high levels of recombination in vivo in E. -
2016.013A-Db.A.V1.Fri1virus.Pdf
This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2016.013a-dB officers) Short title: To create one (1) new genus, Fri1virus, including seven (7) new species in the subfamily Autographivirinae, family Podoviridae. (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 10 are required) 6 7 8 9 10 Author(s): Dann Turner—University of the West of England (United Kingdom) Andrew M. Kropinski—University of Guelph (Canada) Evelien M. Adriaenssens—University of Pretoria (South Africa) Jochen Klumpp—ETH Zurich (Switzerland) Jens H. Kuhn—NIH/NIAID/IRF-Frederick, Maryland (USA) Petr Leiman—École polytechnique fédérale de Lausanne (Switzerland) Mikhail M. Shneider—Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry (Russia) Corresponding author with e-mail address: Andrew M. Kropinski [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp . If ICTV Bacterial and Archaeal Viruses in doubt, contact the appropriate subcommittee chair (fungal, invertebrate, plant, prokaryote or Subcommittee vertebrate viruses) ICTV Study Group comments (if any) and response of the proposer: Date first submitted to ICTV: June 2016 Date of this revision (if different to above): ICTV-EC comments and response of the proposer: Page 1 of 7 MODULE 2: NEW SPECIES creating and naming one or more new species. -
Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID- 19 Pandemic: A
Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID- 19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. March 2021 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Raphael Freitas de Souza, Faculty of Dentistry, McGill University Paul Allison, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University March 31, 2021 1 Contents Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. .................................................................................................................................. 1 Foreword to the second update ............................................................................................. 4 Introduction ............................................................................................................................. 5 Project goal............................................................................................................................. 5 Specific objectives .................................................................................................................. 6 Methods used to identify and include relevant literature ...................................................... -
The Secret Lives of Mycobacteriophages
Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Virus Research, Vol. 82, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Graham F. Hatfull, The Secret Lives of Mycobacteriophages. In Małgorzata Łobocka and Wacław T. Szybalski, editors: Advances in Virus Research, Vol. 82, Burlington: Academic Press, 2012, pp. 179-288. ISBN: 978-0-12-394621-8 © Copyright 2012 Elsevier Inc. Academic Press. Author's personal copy CHAPTER 7 The Secret Lives of Mycobacteriophages Graham F. Hatfull Contents I. Introduction 180 II. The Mycobacteriophage Genomic Landscape 182 A. Overview of 80 sequenced mycobacteriophage genomes 182 B. Grouping of mycobacteriophages into clusters and subclusters 187 C. Relationships between viral morphologies and cluster types 189 D. Relationships between GC% and cluster types 189 E. Mycobacteriophage phamilies 190 F. Genome organizations 191 III. Phages of Individual Clusters, Subclusters, and Singletons 192 A. -
Identification of Mycobacteriophage Toxic Genes Reveals New Features Of
www.nature.com/scientificreports OPEN Identifcation of mycobacteriophage toxic genes reveals new features of mycobacterial physiology and morphology Ching‑Chung Ko & Graham F. Hatfull* Double‑stranded DNA tailed bacteriophages typically code for 50–200 genes, of which 15–35 are involved in virion structure and assembly, DNA packaging, lysis, and DNA metabolism. However, vast numbers of other phage genes are small, are not required for lytic growth, and are of unknown function. The 1,885 sequenced mycobacteriophages encompass over 200,000 genes in 7,300 distinct protein ‘phamilies’, 77% of which are of unknown function. Gene toxicity provides potential insights into function, and here we screened 193 unrelated genes encoded by 13 diferent mycobacteriophages for their ability to impair the growth of Mycobacterium smegmatis. We identifed 45 (23%) mycobacteriophage genes that are toxic when expressed. The impacts on M. smegmatis growth range from mild to severe, but many cause irreversible loss of viability. Expression of most of the severely toxic genes confers altered cellular morphologies, including flamentation, polar bulging, curving, and, surprisingly, loss of viability of one daughter cell at division, suggesting specifc impairments of mycobacterial growth. Co‑immunoprecipitation and mass spectrometry show that toxicity is frequently associated with interaction with host proteins and alteration or inactivation of their function. Mycobacteriophages thus present a massive reservoir of genes for identifying mycobacterial essential functions, identifying potential drug targets and for exploring mycobacteriophage physiology. Te bacteriophage population is vast, dynamic, old, and highly diverse 1. Phage genome sizes vary considerably from 5 to 500 kbp, but the average size of referenced phage genome sequences in publicly available databases is ~ 50 kbp2. -
Risks from Gmos Due to Horizontal Gene Transfer
Environ. Biosafety Res. 7 (2008) 123–149 Available online at: c ISBR, EDP Sciences, 2008 www.ebr-journal.org DOI: 10.1051/ebr:2008014 Review article Risks from GMOs due to Horizontal Gene Transfer Paul KEESE* Office of the Gene Technology Regulator, PO Box 100 Woden, ACT 2606, Australia Horizontal gene transfer (HGT) is the stable transfer of genetic material from one organism to another without reproduction or human intervention. Transfer occurs by the passage of donor genetic material across cellular boundaries, followed by heritable incorporation to the genome of the recipient organism. In addition to conju- gation, transformation and transduction, other diverse mechanisms of DNA and RNA uptake occur in nature. The genome of almost every organism reveals the footprint of many ancient HGT events. Most commonly, HGT involves the transmission of genes on viruses or mobile genetic elements. HGT first became an issue of public concern in the 1970s through the natural spread of antibiotic resistance genes amongst pathogenic bacteria, and more recently with commercial production of genetically modified (GM) crops. However, the frequency of HGT from plants to other eukaryotes or prokaryotes is extremely low. The frequency of HGT to viruses is poten- tially greater, but is restricted by stringent selection pressures. In most cases the occurrence of HGT from GM crops to other organisms is expected to be lower than background rates. Therefore, HGT from GM plants poses negligible risks to human health or the environment. Keywords: horizontal gene transfer / risk assessment / genetically modified plant / lateral gene transfer / antibiotic resistance / risk regulation INTRODUCTION of HGT (Welch et al., 2002). -
Environmental Effects on Mycobacteriophage Cepens Kandice Cantrell University of North Georgia, [email protected]
University of North Georgia Nighthawks Open Institutional Repository Honors Theses Honors Program Spring 2019 Environmental Effects on Mycobacteriophage Cepens Kandice Cantrell University of North Georgia, [email protected] Follow this and additional works at: https://digitalcommons.northgeorgia.edu/honors_theses Part of the Biology Commons Recommended Citation Cantrell, Kandice, "Environmental Effects on Mycobacteriophage Cepens" (2019). Honors Theses. 46. https://digitalcommons.northgeorgia.edu/honors_theses/46 This Honors Thesis is brought to you for free and open access by the Honors Program at Nighthawks Open Institutional Repository. It has been accepted for inclusion in Honors Theses by an authorized administrator of Nighthawks Open Institutional Repository. Environmental Effects on Mycobacteriophage Cepens - Host Interactions A Thesis Submitted to the Faculty of the University of North Georgia In Partial Fulfilment Of the Requirements for the Degree Bachelors of Science in Biology With Honors Kandice Cantrell Spring 2019 Acknowledgements This work was supported by the Biology Department at University of North Georgia as well as the Center for Undergraduate Research and Creative Activities at University of North Georgia and contributions by the SEA-PHAGES project at the Howard Hughes Medical Institute. Special thanks to Dr. Kanak, Dr. Shanks, Dr. Giles and Stephen Smith for guidance on this project. Abstract Bacteriophage (phage) are viruses that infect and use bacterial hosts for viral replication. Study of these bacterial viruses has led to such discoveries as knowing DNA is the molecule of inheritance12. Study of phage has also led to discovery and implementation of novel therapeutic treatment of infections. Known as “phage therapy”, phage have been utilized in curing a patient of the highly virulent infection known as MRSA11.