Recombineering in Mycobacteria Using Mycobacteriophage Proteins

Total Page:16

File Type:pdf, Size:1020Kb

Recombineering in Mycobacteria Using Mycobacteriophage Proteins RECOMBINEERING IN MYCOBACTERIA USING MYCOBACTERIOPHAGE PROTEINS by Julia Catherine van Kessel B.S. Biology, Utica College of Syracuse University, 2003 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2008 UNIVERSITY OF PITTSBURGH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Julia Catherine van Kessel It was defended on July 24, 2008 and approved by Roger W. Hendrix, Ph.D., Biological Sciences, University of Pittsburgh William R. Jacobs, Jr., Ph.D., Albert Einstein College of Medicine Jeffrey G. Lawrence, Ph.D., Biological Sciences, University of Pittsburgh Valerie Oke, Ph.D., Biological Sciences, University of Pittsburgh Dissertation Advisor: Graham F. Hatfull, Ph.D., Biological Sciences, University of Pittsburgh ii Copyright © by Julia Catherine van Kessel 2008 iii RECOMBINEERING IN MYCOBACTERIA USING MYCOBACTERIOPHAGE PROTEINS Julia Catherine van Kessel, Ph.D. University of Pittsburgh, 2008 Genetic manipulations of Mycobacterium tuberculosis are complicated by its slow growth, inefficient DNA uptake, and relatively high levels of illegitimate recombination. Most methods for construction of gene replacement mutants are lengthy and complicated, and the lack of generalized transducing phages that infect M. tuberculosis prevents simple construction of isogenic mutant strains. Characterization and genomic analysis of mycobacteriophages has provided numerous molecular and genetic tools for the mycobacteria. Recently, genes encoding homologues of the Escherichia coli Rac prophage RecET proteins were revealed in the genome of mycobacteriophage Chec9c. RecE and RecT are functional analogues of the phage λ Red recombination proteins, Exo (exonuclease) and Beta (recombinase), respectively. These recombination enzymes act coordinately to promote high levels of recombination in vivo in E. coli and related bacteria using short regions of homology, facilitating the development of a powerful genetic technique called ‘recombineering.’ Biochemical characterization of Che9c gp60 and gp61 demonstrated that they possess exonuclease and DNA binding activities, respectively, similar to RecET and λ Exo/Beta. Expression of gp60/gp61 in M. smegmatis and M. tuberculosis substantially increases homologous recombination such that 90% of recovered colonies are the desired gene replacement mutants. Further development of this system demonstrated that Che9c gp61 iv facilitates introduction of selectable and non-selectable point mutations on mycobacterial genomes at high frequencies using short (<50 nt) ssDNA substrates. The mycobacterial recombineering system provides a simple and efficient method for mutagenesis with minimal DNA manipulation. While it is clear that similar phage-encoded recombinase homologues are rare, they can be readily identified by genomic studies and by in vivo characterization. Several putative recombination systems have been identified in mycobacteriophages Halo, BPs, and Giles, and recombineering of drug-resistance point mutations provides an easy assay for recombinase activity. Analysis of recombinases from various phages – including λ Beta and E. coli RecT – indicates that these proteins function best in their native bacteria. The mycobacteriophage-encoded proteins exhibited varying levels of activity, suggesting that analysis of multiple proteins is required to achieve optimal recombination frequencies. The apparent species-specific nature of these recombinases suggests the recombineering technology could likely be extended to any bacterial system through characterization of host-specific bacteriophages. v TABLE OF CONTENTS PREFACE.................................................................................................................................xviii 1.0 INTRODUCTION........................................................................................................ 1 1.1 GENETICS AND RECOMBINATION IN MYCOBACTERIA .................... 2 1.1.1 Barriers to genetics in M. tuberculosis ........................................................ 2 1.1.2 Genetics in other mycobacteria ................................................................... 5 1.1.3 Recombination in mycobacteria .................................................................. 7 1.1.3.1 Gene replacement by homologous recombination in M. smegmatis.8 1.1.3.2 Evidence of illegitimate recombination in M. tuberculosis.............. 11 1.1.3.3 The recombination genes of M. tuberculosis..................................... 12 1.1.3.4 The debate over homologous and illegitimate recombination in mycobacteria ...................................................................................................... 14 1.1.4 Mycobacteriophage-derived genetic tools................................................. 16 1.1.5 Genetic techniques for allelic replacement............................................... 18 1.1.5.1 AES structural modifications ............................................................ 21 1.1.5.2 Treatment of the AES......................................................................... 22 1.1.5.3 Plasmid delivery of the AES .............................................................. 23 1.1.5.4 The counter-selection strategy........................................................... 24 1.1.5.5 Specialized transduction .................................................................... 27 vi 1.2 SINGLE STRAND ANNEALING PROTEINS.............................................. 31 1.2.1 Single strand annealing protein families .................................................. 34 1.2.2 The Red recombination proteins............................................................ 36 1.2.3 The Rac prophage RecET recombination proteins ................................. 38 1.2.4 The P22 Erf, Arf, and Abc recombination proteins ................................ 40 1.2.5 SSAP mechanisms of recombination in vivo: single strand annealing versus strand exchange.............................................................................................. 41 1.3 RECOMBINEERING IN ESCHERICHIA COLI........................................... 42 1.3.1 Recombineering systems: λ Red and RecET............................................ 43 1.3.2 The recombineering strategy for mutagenesis ......................................... 45 1.3.2.1 Recombineering with dsDNA substrates.......................................... 46 1.3.2.2 Recombineering with ssDNA substrates........................................... 48 1.4 SPECIFIC AIMS OF THIS STUDY................................................................ 55 1.4.1 Specific Aim 1: Bioinformatic and biochemical analysis of mycobacteriophage Che9c-encoded RecET homologues. ...................................... 56 1.4.2 Specific Aim 2: Development of a mycobacterial recombineering system using mycobacteriophage Che9c-encoded recombination proteins. ..................... 56 1.4.3 Specific Aim 3: Identification of additional mycobacteriophage-encoded recombination systems............................................................................................... 57 2.0 MYCOBACTERIOPHAGE CHE9C ENCODES RECE AND RECT HOMOLOGUES......................................................................................................................... 58 2.1 INTRODUCTION ............................................................................................. 58 vii 2.2 BIOINFORMATIC ANALYSES OF MYCOBACTERIOPHAGES REVEALS A PUTATIVE RECOMBINATION SYSTEM............................................ 61 2.3 PURIFICATION OF CHE9C GP60 AND GP61 PROTEINS ...................... 65 2.4 CHE9C GP60 IS AN EXONUCLEASE .......................................................... 67 2.5 CHE9C GP61 BINDS SSDNA AND DSDNA ................................................. 69 2.6 CONCLUSIONS................................................................................................ 74 3.0 DEVELOPMENT OF THE MYCOBACTERIAL RECOMBINEERING SYSTEM. ..................................................................................................................................... 76 3.1 INTRODUCTION ............................................................................................. 76 3.2 EXPRESSION OF CHE9C RECOMBINATION GENES IN VIVO ........... 78 3.3 ALLELIC REPLACEMENT MUTAGENESIS............................................. 85 3.3.1 Che9c gp60 and gp61 promote homologous recombination in vivo ....... 85 3.3.2 Recombineering requires both Che9c gp60 and gp61............................. 87 3.3.3 Recombineering of the M. smegmatis groEL1 gene.................................. 88 3.3.4 Recombineering frequencies are limited by DNA uptake efficiency...... 91 3.3.5 Recombineering of other M. smegmatis genes.......................................... 92 3.3.6 Recombineering of the M. tuberculosis groEL1 gene............................... 93 3.3.7 Recombineering efficiently targets replicating plasmids. ....................... 96 3.4 POINT MUTAGENESIS .................................................................................. 98 3.4.1 ssDNA recombineering of replicating plasmids requires only Che9c gp61…… ..................................................................................................................... 98 3.4.2 Introducing point mutations in the M. smegmatis chromosome by ssDNA recombineering........................................................................................................
Recommended publications
  • Properties of a Genetically Unique Mycobacteriophage Amanda K
    Western Kentucky University TopSCHOLAR® Masters Theses & Specialist Projects Graduate School Spring 2019 Properties of a Genetically Unique Mycobacteriophage Amanda K. Staples Follow this and additional works at: https://digitalcommons.wku.edu/theses Part of the Environmental Microbiology and Microbial Ecology Commons, Microbial Physiology Commons, Other Microbiology Commons, and the Virology Commons This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by an authorized administrator of TopSCHOLAR®. For more information, please contact [email protected]. PROPERTIES OF A GENETICALLY UNIQUE MYCOBACTERIOPHAGE A Thesis Presented to The Faculty of the Department of Biology Western Kentucky University Bowling Green, Kentucky In Partial Fulfillment Of the Requirements for the Degree Master of Science By Amanda K. Staples May 2019 I dedicate this thesis to my sons, Donovan and Dresden Staples. Life is filled with good times and bad times. I wish you both all the strength and wisdom to face the challenges that come your way. Learn and grow from everything and everyone. Always listen to your heart and don’t be afraid to take the road less traveled. Never forget how much I love you both. ACKNOWLEDGMENTS I would like to take the opportunity to express my profound gratitude to all those who contributed to the support and guidance vital in completing this research. Though I am not able to thank all the caring people involved, their assistance has been invaluable. First and foremost, I must pay homage to my family, beginning with my mom. Without her, I would not be able to manage the majority of the chaos surrounding my life.
    [Show full text]
  • Contents More Information
    Cambridge University Press 978-0-521-86297-4 - Horizontal Gene Transfer in the Evolution of Pathogenesis Edited by Michael Hensel and Herbert Schmidt Table of Contents More information Contents ix Preface page xi Contributors xv PART I Theoretical Considerations on the Evolution of Bacterial Pathogens 1 Genomes in Motion: Gene Transfer as a Catalyst for Genome Change 3 Jeffrey G. Lawrence and Heather Hendrickson 2 Bacterial Recombination in vivo 23 Xavier Didelot and Daniel Falush PART II Mobile Genetic Elements in Bacterial Evolution 3 Phage-bacterium Co-evolution and Its Implication for Bacterial Pathogenesis 49 Harald Brussow¨ 4 The Role of Bacteriophages in the Generation and Spread of Bacterial Pathogens 79 Roger W. Hendrix and Sherwood R. Casjens 5 Genomic Islands in the Bacterial Chromosome – Paradigms of Evolution in Quantum Leaps 113 Tobias Olschl¨ ager¨ and Jorg¨ Hacker PART III Paradigms of Bacterial Evolution 6 Genomic Islands in Plant-pathogenic Bacteria 137 Dawn L. Arnold and Robert W. Jackson © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-86297-4 - Horizontal Gene Transfer in the Evolution of Pathogenesis Edited by Michael Hensel and Herbert Schmidt Table of Contents More information 7 Prophage Contribution to Salmonella Virulence and Diversity 159 Sebastien´ Lemire, Nara Figueroa-Bossi, and Lionello Bossi 8 Pathogenic Yersinia: Stepwise Gain of Virulence due to Sequential Acquisition of Mobile Genetic Elements 193 Elisabeth Carniel 9 Genomic or Pathogenicity Islands in Streptococcus pneumoniae 217 Barbara Albiger, Christel Blomberg, Jessica Dagerhamn, Staffan Normark, and Birgitta Henriques-Normark 10 The Mobile Genetic Elements of Staphylococcus aureus 237 Richard P.
    [Show full text]
  • Dynamics and Genetic Diversification of Escherichia Coli During Experimental Adaptation to an Anaerobic Environment
    Dynamics and genetic diversification of Escherichia coli during experimental adaptation to an anaerobic environment Thomas J. Finn1,2,3, Sonal Shewaramani1,2,4, Sinead C. Leahy1, Peter H. Janssen1 and Christina D. Moon1 1 Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand 2 New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand 3 Department of Biochemistry, University of Otago, Dunedin, New Zealand 4 Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States of America ABSTRACT Background. Many bacteria are facultative anaerobes, and can proliferate in both anoxic and oxic environments. Under anaerobic conditions, fermentation is the primary means of energy generation in contrast to respiration. Furthermore, the rates and spectra of spontaneous mutations that arise during anaerobic growth differ to those under aerobic growth. A long-term selection experiment was undertaken to investigate the genetic changes that underpin how the facultative anaerobe, Escherichia coli, adapts to anaerobic environments. Methods. Twenty-one populations of E. coli REL4536, an aerobically evolved 10,000th generation descendent of the E. coli B strain, REL606, were established from a clonal ancestral culture. These were serially sub-cultured for 2,000 generations in a defined minimal glucose medium in strict aerobic and strict anaerobic environments, as well as in a treatment that fluctuated between the two environments. The competitive fitness of the evolving lineages was assessed at approximately 0, 1,000 and 2,000 generations, in both the environment of selection and the alternative environment. Whole genome re-sequencing was performed on random colonies from all lineages after 2,000-generations.
    [Show full text]
  • Amplification–Mutagenesis: Evidence That ‘‘Directed’’ Adaptive Mutation and General Hypermutability Result from Growth with a Selected Gene Amplification
    Amplification–mutagenesis: Evidence that ‘‘directed’’ adaptive mutation and general hypermutability result from growth with a selected gene amplification Heather Hendrickson*†, E. Susan Slechta*, Ulfar Bergthorsson*, Dan I. Andersson‡, and John R. Roth*§ *Department of Biology, University of Utah, Salt Lake City, UT 84112; and ‡Swedish Institute for Infectious Disease Control, S 17182 Solna, Sweden Communicated by Nancy Kleckner, Harvard University, Cambridge, MA, December 18, 2001 (received for review September 9, 2001) When a particular lac mutant of Escherichia coli starves in the presence We have suggested (9) that apparently directed mutation of lactose, nongrowing cells appear to direct mutations preferentially could be explained if the leaky lac allele used in this experiment to sites that allow growth (adaptive mutation). This observation were amplified so as to allow slow growth of a clone on lactose. suggested that growth limitation stimulates mutability. Evidence is Reversion would then occur when the growing clone has accu- provided here that this behavior is actually caused by a standard mulated enough mutant lac copies. What appears to be a Darwinian process in which natural selection acts in three sequential directed single step mutation in a nongrowing cell can result steps. First, growth limitation favors growth of a subpopulation with from selection acting on growing cells within a colony. The ؉ an amplification of the mutant lac gene; next, it favors cells with a lac required growth will not be evident in the lawn between colonies, revertant allele within the amplified array. Finally, it favors loss but can be revealed by appropriate analysis of developing ؉ of mutant copies until a stable haploid lac revertant arises and colonies (9).
    [Show full text]
  • Exploring the Enzymatic and Antibacterial Activities of Novel Mycobacteriophage Lysin B Enzymes
    International Journal of Molecular Sciences Article Exploring the Enzymatic and Antibacterial Activities of Novel Mycobacteriophage Lysin B Enzymes Adel Abouhmad 1,2 , Ahmed H. Korany 3 , Carl Grey 1, Tarek Dishisha 4 and Rajni Hatti-Kaul 1,* 1 Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden; [email protected] (A.A.); [email protected] (C.G.) 2 Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt 3 Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt; [email protected] 4 Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt; [email protected] * Correspondence: [email protected]; Tel.: +46-462-224-840 Received: 30 March 2020; Accepted: 28 April 2020; Published: 30 April 2020 Abstract: Mycobacteriophages possess different sets of lytic enzymes for disruption of the complex cell envelope of the mycobacteria host cells and release of the viral progeny. Lysin B (LysB) enzymes are mycolylarabinogalactan esterases that cleave the ester bond between the arabinogalactan and mycolic acids in the mycolylarabinogalactan-peptidoglycan (mAGP) complex in the cell envelope of mycobacteria. In the present study, four LysB enzymes were produced recombinantly and characterized with respect to their enzymatic and antibacterial activities. Examination of the kinetic parameters for the hydrolysis of para-nitrophenyl ester substrates, shows LysB-His6 enzymes to be active against a range of substrates (C4–C16), with a catalytic preference towards p-nitrophenyl laurate (C12).
    [Show full text]
  • Title 1 Ribosome Provisioning Activates a Bistable Switch
    bioRxiv preprint doi: https://doi.org/10.1101/244129; this version posted April 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title 2 Ribosome provisioning activates a bistable switch coupled to fast exit from stationary 3 phase 4 5 Authors: 6 P. Remigi1*, G.C. Ferguson2, S. De Monte3,4 and P.B. Rainey1,5,6* 7 1 New Zealand Institute For Advanced Study, Massey University, AucKland 0745, New 8 Zealand 9 2 Institute oF Natural and Mathematical Sciences, Massey University, AucKland 0745, New 10 Zealand 3 11 Institut de biologie de l’Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, 12 INSERM, PSL Université Paris 75005 Paris, France 13 4 Department oF Evolutionary Theory, Max PlancK Institute For Evolutionary Biology, Plön 14 24306, Germany 15 5 Department oF Microbial Population Biology, Max PlancK Institute For Evolutionary Biology, 16 Plön 24306, Germany 6 17 Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris 18 Tech), CNRS UMR 8231, PSL Research University, 75231 Paris, France 19 20 * Corresponding authors: 21 Philippe Remigi ([email protected]) and Paul B. Rainey ([email protected]) 22 bioRxiv preprint doi: https://doi.org/10.1101/244129; this version posted April 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 23 Abstract: 24 Observations oF bacteria at the single-cell level have revealed many instances oF phenotypic 25 heterogeneity within otherwise clonal populations, but the selective causes, molecular bases 26 and broader ecological relevance remain poorly understood.
    [Show full text]
  • Wednesday 28Th August Thursday 29Th August
    QMB Programme Queenstown Molecular Biology Week and Webster Centre for Infectious Diseases Symposium: Of Microbes and Men – Translational Medical Microbiology in the 21st Century 29 August – 30 August, 2013 Rydges Hotel, Queenstown, New Zealand th Wednesday 28 August Time Details Location 7.00pm - Late QMB conference dinner Skyline Restaurant th Thursday 29 August Time Details Location 9.00am-9.10am Introduction and opening remarks: Clancy’s Room Professor Kurt Krause Director of the Webster Centre for Infectious Diseases, University of Otago 9.10am-10.00am Opening plenary: Chair: Professor Kurt Krause Clancy’s Room Associate Professor Bill Hanage Department of Epidemiology, Harvard School of Public Health The power of many: population genomics for epidemiology and ecology 10.00am-10.30am Morning tea Trade Area Session 1: From bench to bedside: advances in molecular diagnostics Chair: Dr Deborah Williamson 10.30am-10.45am Professor Jane Hill Clancy’s Room University of Vermont Toward using breath to diagnose lung infections 10.45am-11.10am Professor David Murdoch Clancy’s Room sponsored by Thermo Fisher Scientific University of Otago Molecular testing for respiratory pathogens: benefits and pitfalls 11.10am-11.40am Dr Steven Tong Clancy’s Room Menzies School of Health Research, Darwin How whole genome sequencing is changing the diagnostic landscape 11.40am-12.05pm Dr Sally Roberts Clancy’s Room Auckland District Health Board Advances in TB molecular diagnostics and typing methods 12.05pm-12.30pm Dr Barry Bochner Clancy’s Room BIOLOG technologies
    [Show full text]
  • The Secret Lives of Mycobacteriophages
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Virus Research, Vol. 82, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Graham F. Hatfull, The Secret Lives of Mycobacteriophages. In Małgorzata Łobocka and Wacław T. Szybalski, editors: Advances in Virus Research, Vol. 82, Burlington: Academic Press, 2012, pp. 179-288. ISBN: 978-0-12-394621-8 © Copyright 2012 Elsevier Inc. Academic Press. Author's personal copy CHAPTER 7 The Secret Lives of Mycobacteriophages Graham F. Hatfull Contents I. Introduction 180 II. The Mycobacteriophage Genomic Landscape 182 A. Overview of 80 sequenced mycobacteriophage genomes 182 B. Grouping of mycobacteriophages into clusters and subclusters 187 C. Relationships between viral morphologies and cluster types 189 D. Relationships between GC% and cluster types 189 E. Mycobacteriophage phamilies 190 F. Genome organizations 191 III. Phages of Individual Clusters, Subclusters, and Singletons 192 A.
    [Show full text]
  • Amplification–Mutagenesis: Evidence That ''Directed'' Adaptive Mutation
    Amplification–mutagenesis: Evidence that ‘‘directed’’ adaptive mutation and general hypermutability result from growth with a selected gene amplification Heather Hendrickson*†, E. Susan Slechta*, Ulfar Bergthorsson*, Dan I. Andersson‡, and John R. Roth*§ *Department of Biology, University of Utah, Salt Lake City, UT 84112; and ‡Swedish Institute for Infectious Disease Control, S 17182 Solna, Sweden Communicated by Nancy Kleckner, Harvard University, Cambridge, MA, December 18, 2001 (received for review September 9, 2001) When a particular lac mutant of Escherichia coli starves in the presence We have suggested (9) that apparently directed mutation of lactose, nongrowing cells appear to direct mutations preferentially could be explained if the leaky lac allele used in this experiment to sites that allow growth (adaptive mutation). This observation were amplified so as to allow slow growth of a clone on lactose. suggested that growth limitation stimulates mutability. Evidence is Reversion would then occur when the growing clone has accu- provided here that this behavior is actually caused by a standard mulated enough mutant lac copies. What appears to be a Darwinian process in which natural selection acts in three sequential directed single step mutation in a nongrowing cell can result steps. First, growth limitation favors growth of a subpopulation with from selection acting on growing cells within a colony. The ؉ an amplification of the mutant lac gene; next, it favors cells with a lac required growth will not be evident in the lawn between colonies, revertant allele within the amplified array. Finally, it favors loss but can be revealed by appropriate analysis of developing ؉ of mutant copies until a stable haploid lac revertant arises and colonies (9).
    [Show full text]
  • Identification of Mycobacteriophage Toxic Genes Reveals New Features Of
    www.nature.com/scientificreports OPEN Identifcation of mycobacteriophage toxic genes reveals new features of mycobacterial physiology and morphology Ching‑Chung Ko & Graham F. Hatfull* Double‑stranded DNA tailed bacteriophages typically code for 50–200 genes, of which 15–35 are involved in virion structure and assembly, DNA packaging, lysis, and DNA metabolism. However, vast numbers of other phage genes are small, are not required for lytic growth, and are of unknown function. The 1,885 sequenced mycobacteriophages encompass over 200,000 genes in 7,300 distinct protein ‘phamilies’, 77% of which are of unknown function. Gene toxicity provides potential insights into function, and here we screened 193 unrelated genes encoded by 13 diferent mycobacteriophages for their ability to impair the growth of Mycobacterium smegmatis. We identifed 45 (23%) mycobacteriophage genes that are toxic when expressed. The impacts on M. smegmatis growth range from mild to severe, but many cause irreversible loss of viability. Expression of most of the severely toxic genes confers altered cellular morphologies, including flamentation, polar bulging, curving, and, surprisingly, loss of viability of one daughter cell at division, suggesting specifc impairments of mycobacterial growth. Co‑immunoprecipitation and mass spectrometry show that toxicity is frequently associated with interaction with host proteins and alteration or inactivation of their function. Mycobacteriophages thus present a massive reservoir of genes for identifying mycobacterial essential functions, identifying potential drug targets and for exploring mycobacteriophage physiology. Te bacteriophage population is vast, dynamic, old, and highly diverse 1. Phage genome sizes vary considerably from 5 to 500 kbp, but the average size of referenced phage genome sequences in publicly available databases is ~ 50 kbp2.
    [Show full text]
  • Exploring the Remarkable Diversity of Escherichia Coli Phages in The
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.911818; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Exploring the remarkable diversity of Escherichia coli 2 Phages in the Danish Wastewater Environment, Including 3 91 Novel Phage Species 4 Nikoline S. Olsen 1, Witold Kot 1,2* Laura M. F. Junco2 and Lars H. Hansen 1,2,* 5 1 Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde, Denmark; 6 [email protected] 7 2 Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 8 Frederiksberg C, Denmark; [email protected], [email protected] 9 * Correspondence: [email protected] Phone: +45 28 75 20 53, [email protected] Phone: +45 35 33 38 77 10 11 Funding: This research was funded by Villum Experiment Grant 17595, Aarhus University Research Foundation 12 AUFF Grant E-2015-FLS-7-28 to Witold Kot and Human Frontier Science Program RGP0024/2018. 13 Competing interests: The authors declare no competing interests. bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.911818; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Risks from Gmos Due to Horizontal Gene Transfer
    Environ. Biosafety Res. 7 (2008) 123–149 Available online at: c ISBR, EDP Sciences, 2008 www.ebr-journal.org DOI: 10.1051/ebr:2008014 Review article Risks from GMOs due to Horizontal Gene Transfer Paul KEESE* Office of the Gene Technology Regulator, PO Box 100 Woden, ACT 2606, Australia Horizontal gene transfer (HGT) is the stable transfer of genetic material from one organism to another without reproduction or human intervention. Transfer occurs by the passage of donor genetic material across cellular boundaries, followed by heritable incorporation to the genome of the recipient organism. In addition to conju- gation, transformation and transduction, other diverse mechanisms of DNA and RNA uptake occur in nature. The genome of almost every organism reveals the footprint of many ancient HGT events. Most commonly, HGT involves the transmission of genes on viruses or mobile genetic elements. HGT first became an issue of public concern in the 1970s through the natural spread of antibiotic resistance genes amongst pathogenic bacteria, and more recently with commercial production of genetically modified (GM) crops. However, the frequency of HGT from plants to other eukaryotes or prokaryotes is extremely low. The frequency of HGT to viruses is poten- tially greater, but is restricted by stringent selection pressures. In most cases the occurrence of HGT from GM crops to other organisms is expected to be lower than background rates. Therefore, HGT from GM plants poses negligible risks to human health or the environment. Keywords: horizontal gene transfer / risk assessment / genetically modified plant / lateral gene transfer / antibiotic resistance / risk regulation INTRODUCTION of HGT (Welch et al., 2002).
    [Show full text]