Strukturní Charakterizace Fágové Infekce V Bakteriálním Biofilmu

Total Page:16

File Type:pdf, Size:1020Kb

Strukturní Charakterizace Fágové Infekce V Bakteriálním Biofilmu PŘÍRODOVĚDECKÁ FAKULTA Strukturní charakterizace fágové infekce v bakteriálním biofilmu Diplomová práce YULIIA MIRONOVA Vedoucí práce: Ing. Zuzana Cieniková PhD Ústav experimentální biologie Obor Molekulární biologie a genetika Brno 2021 STRUKTURNÍ CHARAKTERIZACE FÁGOVÉ INFEKCE V BAKTERIÁLNÍM BIOFILMU STRUKTURNÍ CHARAKTERIZACE FÁGOVÉ INFEKCE V BAKTERIÁLNÍM BIOFILMU Bibliografický záznam Autor: Yuliia Mironova Přírodovědecká fakulta Masarykova univerzita Ústav experimentální biologie Název práce: Strukturní charakterizace fágové infekce v bakteriálním biofilmu Studijní program: Molekulární biologie a genetika Studijní obor: Molekulární biologie a genetika Vedoucí práce: Ing. Zuzana Cieniková PhD Rok: 2021 Počet stran: 75 Klíčová slova: kryo-EM, kryo-ET, bakteriofágy, fágová terapie, fág T7, Kmvviry, Pseudomonas aeruginosa, biofilm STRUKTURNÍ CHARAKTERIZACE FÁGOVÉ INFEKCE V BAKTERIÁLNÍM BIOFILMU Bibliographic record Author: Yuliia Mironova Faculty of Science Masaryk University Department of Experimental Biology Title of Thesis: Structural characterisation of phage infection in bacterial biofilm Degree Programme: Molecular biology and genetics Field of Study: Molecular biology and genetics Supervisor: Ing. Zuzana Cieniková PhD Year: 2021 Number of Pages: 75 Keywords: cryo-EM, cryo-ET, bacteriophages, phage therapy, phage T7, Phikmvviruses, Pseudomonas aeruginosa, biofilm STRUKTURNÍ CHARAKTERIZACE FÁGOVÉ INFEKCE V BAKTERIÁLNÍM BIOFILMU Anotace Bakteriofágy rodu Phikmvvirus jsou slibnými kandidáty pro fágovou terapií cílenou na Pseudomonas aeruginosa. Tato diplomová práce se zabývá strukturní charakteri- zací fága z rodu Phikmvvirus a procesu jeho infekce v buňkách P. aeruginosa. Jednot- livé stadia infekce byli analyzovány a struktura zralých virionů naplněných geno- mem byla vyřešena s pomocí kombinace kryo-elektronové mikroskopie a tomogra- fie. Nakonec byl předložen protokol fluorescenčního značení fága pro sledování in- fekce v bakteriálním biofilmu za použití “light-sheet” fluorescenční mikroskopie. STRUKTURNÍ CHARAKTERIZACE FÁGOVÉ INFEKCE V BAKTERIÁLNÍM BIOFILMU Abstract Phikmvviruses are promising candidates for phage therapy targeting Pseudomonas aeruginosa. This diploma thesis focuses on the structural characterization of a phage belonging to the Phikmvvirus genus and its infection in P. aeruginosa cells. Stages of the phage infection were investigated, and the structure of the mature virion filled with genome was determined using cryo-electron microscopy. Lastly, a protocol for phage fluorescent labelling, designed to study the phage infection in biofilm using light-sheet fluorescent microscopy, was developed. STRUKTURNÍ CHARAKTERIZACE FÁGOVÉ INFEKCE V BAKTERIÁLNÍM BIOFILMU STRUKTURNÍ CHARAKTERIZACE FÁGOVÉ INFEKCE V BAKTERIÁLNÍM BIOFILMU Declaration Prohlašuji, že jsem svoji práci vypracovala samostatně pod vedením vedoucího práce s využitím informačních zdrojů, které jsou v práci citovány. Brno June 15, 2021 ....................................... Yuliia Mironova STRUKTURNÍ CHARAKTERIZACE FÁGOVÉ INFEKCE V BAKTERIÁLNÍM BIOFILMU Acknowledgements I want to thank Ing. Zuzana Cieniková, PhD. and doc. Pavel Plevka, PhD for the possi- bility to join the research group, for the help and supervision during the experiments and writing of this thesis. I would also like to thank Mgr. Markéta Londýnová and Mgr. Marta Šiborová for the help with the phage propagation method, Ing. Ti- bor Füzik, Ph.D for the much appreciated help with reconstructions and dealing with computational problems, Mgr. Dominik Hrebík for providing the initial model of the phage, Mgr. Pavol Bardý Ph.D for the help with bioinformatics and the rest of Struc- tural virology group for all the help, support and friendliness they provided during the last two years. Core Facility Cryo-electron Microscopy and Tomography of CEITEC Masaryk University and CEITEC Proteomics Core Facility are gratefully acknowledged for the obtaining of the scientific data presented in this diploma thesis STRUKTURNÍ CHARAKTERIZACE FÁGOVÉ INFEKCE V BAKTERIÁLNÍM BIOFILMU Table of Contents Abbreviations 12 1 Theoretical introduction 13 1.1 Pseudomonas aeruginosa .......................................................................................... 13 1.1.1 Biofilm formation ............................................................................................. 13 1.1.2 Antibiotic resistance of P. aeruginosa .............................................................. 14 1.2 Phage therapy ............................................................................................................ 15 1.2.1 Candidate phages for the phage therapy ........................................................... 15 1.2.2 Pseudomonas phages from Phikmvvirus genus ................................................ 16 1.3 Phage T7 structure and life cycle .............................................................................. 17 1.4 Characterization of the phage structure and host-pathogen interactions ................... 19 1.4.1 Cryo-EM ........................................................................................................... 19 1.4.2 Fluorescent microscopy .................................................................................... 22 1.4.3 Fluorescent labelling of the phage and bacterium ............................................ 23 2 Aims and objectives 25 Appendix A Phage T7 protein structure 36 ABBREVIATIONS Abbreviations cryoEM – cryo-electron microscopy cryo-ET – cryo-electron tomography CTF – contrast transfer function EPS – extracellular matrix gpXX – gene product XX LC-MS/MS – Liquid Chromatography - Tandem Mass Spectrometry LSFM – light-sheet fluorescent microscopy MCP – major capsid protein MOI – multiplicity of infection PI – post infection TEM – transmission electron microscopy SNR – signal to noise ration SPA – single particle analysis STA – subtomogram averaging THEORETICAL INTRODUCTION 1 Theoretical introduction 1.1 Pseudomonas aeruginosa Gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen. It is com- monly associated with nosocomial diseases such as acute and chronic pneumonia, as well as surgical site, bloodstream, and urinary infections (Barbier et al., 2013; Weinstein et al., 2005). P. aeruginosa infections affect primarily immunocompromised individuals and are a leading cause of mortality in patients With cystic fibrosis (Lyczak et al., 2002; Sadikot et al., 2005). The spread of P. aeruginosa in hospitals is difficult to control due to its multi-drug resistance and the ability to form biofilms (Kerr and Snelling, 2009; Nemec et al., 2010; Soares et al., 2020). 1.1.1 Biofilm formation A biofilm is an aggregate of bacterial cells Which adhered to a surface and each other and are embedded in extracellular polymeric substances (EPS) (Vert et al., 2012). Its formation starts With the reversible adhesion of a planktonic cell to a surface (Fig. 1.I.). This attachment and later the sWitch to biofilm cell state is induced and regulated by quorum sensing (Kirisits and Parsek, 2006; Yan and Wu, 2019). In the right environmental conditions and due to meta- bolic changes, the attachment becomes irreversible, and the biofilm begins to grow and produce EPS (Fig 1.II.). In mature biofilm (Fig 1.III), EPS consists of eDNA, proteins and exopolysac- charides. The biofilm matrix provides structural integrity to the biofilm and mediates interac- tions betWeen the clustered cells. As the last stage of the development (Fig 1.IV) the biofilm disperses through release of planktonic cells (Flemming and Wingender, 2010; Harmsen et al., 2010; Maurice et al., 2018; Mulcahy et al., 2014; Rasamiravaka et al., 2015). The gene expression profile of P. aeruginosa biofilm cells differs from that of planktonic cells. Some metabolic changes in biofilm cells are associated With EPS components produc- tion, most notably alginate, Psl and Pel polysaccharides (Colvin et al., 2012; Flemming and Wingender, 2010; Vital-Lopez et al., 2015). Apart from that, the biofilm contains concentra- tion gradients of metabolites and oxygen, resulting in a metabolically heterogenous cell 13 THEORETICAL INTRODUCTION population (Wessel et al., 2014). Metabolically inactive persister cells that are resistant to an- tibiotics are located deep inside the biofilm While surface cells are metabolically active (Wood et al., 2013). Depending on available energy sources, the biofilm can form different morphol- ogies. “Mushroom”-like biofilm forms in the presence of glucose. Non-motile P. aeruginosa cells form the “mushroom” stack While motile cells are localized on the surface of the cap. In contrast, flat non-motile biofilm forms in the presence of citrate. Type IV pili and flagellum play a role in P. aeruginosa attachment and increase the structural integrity of the biofilm (Harmsen et al., 2010). Figure 1. Stages of biofilm development. I. – reversible attachment; II. – irreversible attachment; III. – biofilm maturation; IV. – biofilm dis- persal. Biofilm consists of heterogenous cell population: light green colour indicates planktonic cells, lime-green colour indicates cap-forming cells, red and pink colour indicates stack-forming cells, blue indicates persister cells. 1.1.2 Antibiotic resistance of P. aeruginosa Not long after the discovery
Recommended publications
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Pseudomonas Aeruginosa Pa5oct Jumbo Phage Impacts Planktonic and Biofilm 2 Population and Reduces Its Host Virulence
    bioRxiv preprint doi: https://doi.org/10.1101/405027; this version posted June 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Pseudomonas aeruginosa PA5oct jumbo phage impacts planktonic and biofilm 2 population and reduces its host virulence 3 4 Tomasz Olszak1, Katarzyna Danis-Wlodarczyk 1,2,#, Michal Arabski3, Grzegorz Gula1, 5 Barbara Maciejewska1, Slawomir Wasik4, Cédric Lood2,5, Gerard Higgins 6,7, Brian J. 6 Harvey7, Rob Lavigne2, Zuzanna Drulis-Kawa1* 7 8 1Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, 9 University of Wroclaw, Wroclaw, Poland 10 2Laboratory of Gene Technology, KU Leuven, Leuven, Belgium 11 3Department of Biochemistry and Genetics, Institute of Biology, The Jan Kochanowski 12 University in Kielce, Kielce, Poland 13 4Department of Molecular Physics, Institute of Physics, The Jan Kochanowski University in 14 Kielce, Kielce, Poland 15 5 Laboratory of Computational Systems Biology, KU Leuven, Leuven, Belgium 16 6National Children Research Centre, Dublin, Ireland 17 7Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and 18 Research Centre, Beaumont Hospital, Dublin, Ireland 19 20 # current affiliation: Department of Microbiology, Ohio State University, Columbus, OH, 21 United States 22 23 *Corresponding author 24 Zuzanna Drulis-Kawa 25 e-mail: [email protected] (ZDK) 26 27 Running title: PA5oct phage influence on Pseudomonas population 28 29 Keywords: giant bacteriophage, Pseudomonas aeruginosa, biofilm, Airway Surface Liquid 30 Infection model, phage-resistant mutants 1 bioRxiv preprint doi: https://doi.org/10.1101/405027; this version posted June 25, 2019.
    [Show full text]
  • The Phage-Encoded N-Acetyltransferase Rac Mediates Inactivation of Pseudomonas Aeruginosa Transcription by Cleavage of the RNA Polymerase Alpha Subunit
    viruses Article The Phage-Encoded N-Acetyltransferase Rac Mediates Inactivation of Pseudomonas aeruginosa Transcription by Cleavage of the RNA Polymerase Alpha Subunit 1, 1, 1 2 Pieter-Jan Ceyssens y , Jeroen De Smet z , Jeroen Wagemans , Natalia Akulenko , Evgeny Klimuk 2 , Subray Hedge 3, Marleen Voet 1, Hanne Hendrix 1, Jan Paeshuyse 1 , Bart Landuyt 4, Hua Xu 3, John Blanchard 3, Konstantin Severinov 2 and Rob Lavigne 1,* 1 Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; [email protected] (P.-J.C.); [email protected] (J.D.S.); [email protected] (J.W.); [email protected] (M.V.); [email protected] (H.H.); [email protected] (J.P.) 2 Institute of Molecular Genetics, Russian Academy of Sciences, 119334 Moscow, Russia; [email protected] (N.A.); [email protected] (E.K.); [email protected] (K.S.) 3 Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA; [email protected] (S.H.); [email protected] (H.X.); [email protected] (J.B.) 4 Department of Biology, KU Leuven, 3000 Leuven, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-16-379-524 Current affiliation: Antibiotics & Resistance Unit, Sciensano, 1050 Brussels, Belgium. y Current affiliation: Department of Microbial and Molecular Systems, KU Leuven, 2240 Geel, Belgium. z Received: 6 July 2020; Accepted: 1 September 2020; Published: 2 September 2020 Abstract: In this study, we describe the biological function of the phage-encoded protein RNA polymerase alpha subunit cleavage protein (Rac), a predicted Gcn5-related acetyltransferase encoded by phiKMV-like viruses.
    [Show full text]
  • 2016.013A-Db.A.V1.Fri1virus.Pdf
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2016.013a-dB officers) Short title: To create one (1) new genus, Fri1virus, including seven (7) new species in the subfamily Autographivirinae, family Podoviridae. (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 10 are required) 6 7 8 9 10 Author(s): Dann Turner—University of the West of England (United Kingdom) Andrew M. Kropinski—University of Guelph (Canada) Evelien M. Adriaenssens—University of Pretoria (South Africa) Jochen Klumpp—ETH Zurich (Switzerland) Jens H. Kuhn—NIH/NIAID/IRF-Frederick, Maryland (USA) Petr Leiman—École polytechnique fédérale de Lausanne (Switzerland) Mikhail M. Shneider—Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry (Russia) Corresponding author with e-mail address: Andrew M. Kropinski [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp . If ICTV Bacterial and Archaeal Viruses in doubt, contact the appropriate subcommittee chair (fungal, invertebrate, plant, prokaryote or Subcommittee vertebrate viruses) ICTV Study Group comments (if any) and response of the proposer: Date first submitted to ICTV: June 2016 Date of this revision (if different to above): ICTV-EC comments and response of the proposer: Page 1 of 7 MODULE 2: NEW SPECIES creating and naming one or more new species.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID- 19 Pandemic: A
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID- 19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. March 2021 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Raphael Freitas de Souza, Faculty of Dentistry, McGill University Paul Allison, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University March 31, 2021 1 Contents Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. .................................................................................................................................. 1 Foreword to the second update ............................................................................................. 4 Introduction ............................................................................................................................. 5 Project goal............................................................................................................................. 5 Specific objectives .................................................................................................................. 6 Methods used to identify and include relevant literature ......................................................
    [Show full text]
  • Exploring the Remarkable Diversity of Escherichia Coli Phages in The
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.911818; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Exploring the remarkable diversity of Escherichia coli 2 Phages in the Danish Wastewater Environment, Including 3 91 Novel Phage Species 4 Nikoline S. Olsen 1, Witold Kot 1,2* Laura M. F. Junco2 and Lars H. Hansen 1,2,* 5 1 Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde, Denmark; 6 [email protected] 7 2 Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 8 Frederiksberg C, Denmark; [email protected], [email protected] 9 * Correspondence: [email protected] Phone: +45 28 75 20 53, [email protected] Phone: +45 35 33 38 77 10 11 Funding: This research was funded by Villum Experiment Grant 17595, Aarhus University Research Foundation 12 AUFF Grant E-2015-FLS-7-28 to Witold Kot and Human Frontier Science Program RGP0024/2018. 13 Competing interests: The authors declare no competing interests. bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.911818; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Pseudomonas Aeruginosa Pa5oct Jumbo Phage Reduces Planktonic and Biofilm 2 Population and Impacts Its Host Virulence Through a Pseudolysogeny Event
    bioRxiv preprint doi: https://doi.org/10.1101/405027; this version posted August 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Pseudomonas aeruginosa PA5oct jumbo phage reduces planktonic and biofilm 2 population and impacts its host virulence through a pseudolysogeny event 3 4 Tomasz Olszak1, Katarzyna Danis-Wlodarczyk 1,2,#, Michal Arabski3, Grzegorz Gula1, 5 Slawomir Wasik4, Gerard Higgins 5,6, Brian J. Harvey6, Rob Lavigne2, Zuzanna Drulis- 6 Kawa1* 7 8 9 1Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, 10 University of Wroclaw, Wroclaw, Poland 11 2Laboratory of Gene Technology, KU Leuven, Leuven, Belgium 12 3Department of Biochemistry and Genetics, Institute of Biology, The Jan Kochanowski 13 University in Kielce, Kielce, Poland 14 4Department of Molecular Physics, Institute of Physics, The Jan Kochanowski University in 15 Kielce, Kielce, Poland 16 5National Children Research Centre, Dublin, Ireland 17 6Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and 18 Research Centre, Beaumont Hospital, Dublin, Ireland 19 20 # current affiliation: Department of Microbiology, Ohio State University, Columbus, OH, 21 United States 22 23 24 *Corresponding author. 25 E-mail: [email protected] (ZDK) 1 bioRxiv preprint doi: https://doi.org/10.1101/405027; this version posted August 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 26 Abstract 27 In this work we assess critical parameters to assess the in vitro capacity of the novel “jumbo” 28 phage PA5oct for phage therapy by studying its impact on the planktonic and biofilm population 29 of P.
    [Show full text]
  • Host Range and Molecular Characterization of a Lytic Pradovirus-Like Ralstonia Phage Rsop1idn Isolated from Indonesia
    Digital Repository Universitas Jember Host range and molecular characterization of a lytic Pradovirus-like Ralstonia phage RsoP1IDN isolated from Indonesia Hardian Susilo Addy, Moh Miftah Farid, Abdelmonim Ali Ahmad & Qi Huang Archives of Virology Official Journal of the Virology Division of the International Union of Microbiological Societies ISSN 0304-8608 Arch Virol DOI 10.1007/s00705-018-4033-1 1 23 Digital Repository Universitas Jember Your article is protected by copyright and all rights are held exclusively by This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Archives of Virology Digital Repository Universitas Jember https://doi.org/10.1007/s00705-018-4033-1 BRIEF REPORT Host range and molecular characterization of a lytic Pradovirus‑like Ralstonia phage RsoP1IDN isolated from Indonesia Hardian Susilo Addy1,2 · Moh Miftah Farid3 · Abdelmonim Ali Ahmad1,4 · Qi Huang1 Received: 15 March 2018 / Accepted: 18 July 2018 © This is a U.S.
    [Show full text]
  • Genomic Characterisation of Mushroom Pathogenic Pseudomonads and Their Interaction with Bacteriophages
    viruses Article Genomic Characterisation of Mushroom Pathogenic Pseudomonads and Their Interaction with Bacteriophages 1, 1,2, , 3 1,2 Nathaniel Storey y, Mojgan Rabiey * y , Benjamin W. Neuman , Robert W. Jackson and Geraldine Mulley 1 1 School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; [email protected] (N.S.); [email protected] (R.W.J.); [email protected] (G.M.) 2 School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham B15 2TT, UK 3 Biology Department, College of Arts, Sciences and Education, TAMUT, Texarkana, TX 75503, USA; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Received: 18 September 2020; Accepted: 5 November 2020; Published: 10 November 2020 Abstract: Bacterial diseases of the edible white button mushroom Agaricus bisporus caused by Pseudomonas species cause a reduction in crop yield, resulting in considerable economic loss. We examined bacterial pathogens of mushrooms and bacteriophages that target them to understand the disease and opportunities for control. The Pseudomonas tolaasii genome encoded a single type III protein secretion system (T3SS), but contained the largest number of non-ribosomal peptide synthase (NRPS) genes, multimodular enzymes that can play a role in pathogenicity, including a putative tolaasin-producing gene cluster, a toxin causing blotch disease symptom. However, Pseudomonas agarici encoded the lowest number of NRPS and three putative T3SS while non-pathogenic Pseudomonas sp. NS1 had intermediate numbers. Potential bacteriophage resistance mechanisms were identified in all three strains, but only P. agarici NCPPB 2472 was observed to have a single Type I-F CRISPR/Cas system predicted to be involved in phage resistance.
    [Show full text]
  • Genomic Characterization, Formulation and Efficacy in Planta
    Genomic Characterization, Formulation and Efficacy in Planta of a Siphoviridae and Podoviridae Protection Cocktail against the Bacterial Plant Pathogens Pectobacterium spp. Zaczek-Moczydlowska, M., Young, G. K., Trudgett, J., Fleming, C. C., Campbell, K., & O'Hanlon, R. (2020). Genomic Characterization, Formulation and Efficacy in Planta of a Siphoviridae and Podoviridae Protection Cocktail against the Bacterial Plant Pathogens Pectobacterium spp. Viruses, 12(2), [150]. https://doi.org/10.3390/v12020150 Published in: Viruses Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:02. Oct. 2021 Article Genomic Characterization, Formulation and Efficacy in Planta of a Siphoviridae and Podoviridae Protection Cocktail against the Bacterial Plant Pathogens Pectobacterium spp.
    [Show full text]
  • Comparative Analysis of 37 Acinetobacter Bacteriophages
    viruses Article Comparative Analysis of 37 Acinetobacter Bacteriophages Dann Turner 1,*, Hans-Wolfgang Ackermann 2,†, Andrew M. Kropinski 3, Rob Lavigne 4 ID , J. Mark Sutton 5 and Darren M. Reynolds 1 1 Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK; [email protected] 2 Faculty of Medicine, Department of Microbiology, Immunology and Infectiology, Université Laval, Quebec, QC G1X 46, Canada 3 Departments of Food Science, Molecular and Cellular Biology; and Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; [email protected] 4 Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, box 2462, 3001 Leuven, Belgium; [email protected] 5 National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-117-328-2563 † Deceased. Received: 4 December 2017; Accepted: 22 December 2017; Published: 24 December 2017 Abstract: Members of the genus Acinetobacter are ubiquitous in the environment and the multiple-drug resistant species A. baumannii is of significant clinical concern. This clinical relevance is currently driving research on bacterial viruses infecting A. baumannii, in an effort to implement phage therapy and phage-derived antimicrobials. Initially, a total of 42 Acinetobacter phage genome sequences were available in the international nucleotide sequence databases, corresponding to a total of 2.87 Mbp of sequence information and representing all three families of the order Caudovirales and a single member of the Leviviridae. A comparative bioinformatics analysis of 37 Acinetobacter phages revealed that they form six discrete clusters and two singletons based on genomic organisation and nucleotide sequence identity.
    [Show full text]
  • Pseudomonas Aeruginosa Pa5oct Jumbo Phage Impacts Planktonic and Biofilm Population and Reduces Its Host Virulence
    viruses Article Pseudomonas aeruginosa PA5oct Jumbo Phage Impacts Planktonic and Biofilm Population and Reduces Its Host Virulence 1 1,2, 3 1 Tomasz Olszak , Katarzyna Danis-Wlodarczyk y, Michal Arabski , Grzegorz Gula , Barbara Maciejewska 1, Slawomir Wasik 4,Cédric Lood 2,5 , Gerard Higgins 6,7, Brian J. Harvey 7, Rob Lavigne 2 and Zuzanna Drulis-Kawa 1,* 1 Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland; [email protected] (T.O.); [email protected] (K.D.-W.); [email protected] (G.G.); [email protected] (B.M.) 2 Laboratory of Gene Technology, KU Leuven, 3001 Heverlee, Belgium; [email protected] (C.L.); [email protected] (R.L.) 3 Department of Biochemistry and Genetics, Institute of Biology, The Jan Kochanowski University in Kielce, 25-406 Kielce, Poland; [email protected] 4 Department of Molecular Physics, Institute of Physics, The Jan Kochanowski University in Kielce, 25-406 Kielce, Poland; [email protected] 5 Laboratory of Computational Systems Biology, KU Leuven, 3000 Leuven, Belgium 6 National Children Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland; [email protected] 7 Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, 9 Dublin, Ireland; [email protected] * Correspondence: [email protected] Current address: Department of Microbiology, Ohio State University, Columbus, 43210 OH, USA. y Received: 25 September 2019; Accepted: 20 November 2019; Published: 23 November 2019 Abstract: The emergence of phage-resistant mutants is a key aspect of lytic phages-bacteria interaction and the main driver for the co-evolution between both organisms.
    [Show full text]