Chlorostoma Funebralis (=Tegula Funebralis) Phylum: Mollusca Class: Gastropoda, Prosbranchia Order: Archeogastropoda the Black Turban Or Top Shell Snail (A

Total Page:16

File Type:pdf, Size:1020Kb

Chlorostoma Funebralis (=Tegula Funebralis) Phylum: Mollusca Class: Gastropoda, Prosbranchia Order: Archeogastropoda the Black Turban Or Top Shell Snail (A Chlorostoma funebralis (=Tegula funebralis) Phylum: Mollusca Class: Gastropoda, Prosbranchia Order: Archeogastropoda The black turban or top shell snail (A. Adams, 1855) Family: Trochidae, Monodontinae Description Possible Misidentifications Size—to 50 mm or more high (Carlton and The Trochidae are herbivorous, conical Roth 1975), usually less than 25 mm (Keep snails, pearly within, with round, entire 1935); this specimen 20 mm diameter, 17 mm apertures and thin horny circular opercula high. (Griffith 1975). The Turbinidae, a similar Color—exterior purplish-black, not shiny; with family, are also conical, but they have a white eroded apex. Gray when dry. Interior calcareous operculum, and are represented white with a black margin; a pearly or here only by Astraea, a large subtidal and "rainbow" deep interior patch. White around offshore species. columella (McLean 1969) (fig. 1) The other common genus of the Trochidae Shell Shape—strong; 4 inflated whorls; rather is Calliostoma, a conical top shell, which is top-shaped, (conical) with a flat base; round distinguished from Chlorostoma chiefly by its aperture, nearly round, horny operculum: lack of denticles or nodes on the columella. family Trochidae (Griffith 1975). Small snails Its whorls are not inflated like Chlorostoma's. are about as high as wide (figs. 1, 2); older Calliostoma is found on the outer shores, not ones become higher than wide (Frank in bays; it has many spiral ribs, no umbilicus, 1965b). and various distinctive colorations. Sculpture—below the suture is an impressed Snails of the genus Chlorostoma have line (Oldroyd 1924), or a scaly band (Carlton strong columellar nodes, a round, thin, horny and Roth 1975): "foliaceous incremental operculum with many spiral lines, and a lamellae" (Oldroyd 1924) (figs. 1. 2). Whorls pearly interior. They sometimes have a "spirally lirate," i.e. having up to 17 thread-like periostracum. The 3 other species of spiral lines (figs. 1, 2); sometimes smooth Chlorostoma found on the Pacific coast are except for base, or strongly sculptured above not known to be estuarine: (fig. 2). Tegula montereyi probably does not occur Umbilicus—covered by a callus, nearly above Bolinas Bay, north of San Francisco; it always closed (Carlton and Roth 1975) (fig. occupies the low intertidal off-shore zone, 3). Specimens with an open umbilicus do not often in kelp beds. This species is brown, with have a flange between umbilicus and a strong, open umbilicus and a strictly conical aperture. (not inflated) profile. Columella—spirally twisted (Oldroyd 1924), Tegula pulligo, the dusky turban, occurs in with 2 denticles (nodes) near base (fig. 3), the low intertidal in California; it is the lower node worn or indistinct. dominant Tegula in Puget Sound (Griffith Aperture—round, complete; no anterior notch 3 1975), where it occurs in open coasts and in or canal (fig. 3): aperture length less than /4 protected situations (Kozloff 1974a). T. pulligo shell length. has an open umbilicus with the inner lip Outer Lip—smooth, black-rimmed, without produced into a flange (it is closed in T. sculpture (fig. 3). funebralis). It has a brown (not purple or Operculum—thin; round, numerous spiral black) periostracum; its basic color is brown lines; horny, not calcareous (fig. 4). or gray, sometimes with orange, white or Radula—with a single central tooth; 5-7 brown spots on the edge. Its habitat is open pointed lateral teeth, 8-10 marginal teeth (fig. rocky beaches (Griffith 1975). 6). Chlorostoma brunnea, the brown turban, is Foot—long, relatively narrow; with epipodal the closest to C. funebralis in Oregon; it does tentacles along sides: family Trochidae (4 on not seem to occur in Puget Sound (Kozloff each side: species funebralis (fig. 5). 1974a), and is very common on the outer shores in Oregon and around San Francisco (Packard 1918). It has only one node on the Digitized 2010 – Last Updated 1979 – E-mail corrections to [email protected] columella, as opposed to C. funebralis' two; mm diameter. Breeding probably once a year its shell is brown or orange brown, and it lacks (Paine 1979); reproductive size of snails 14 the scaly subsutural band of funebralis mm (Paine 1971). Planktonic veliger larvae (Carlton and Roth 1975). C. brunnea is found emerge on 7th day, settle 12th day. Long life of lower in the intertidal than funebralis, or in off- T. funebralis ensures increased lifetime shore kelp beds near the surface; probably reproductive effort (Frank 1975). never in estuaries. Longevity—lives up to 30 years; average age Tegula gallina, the speckled tegula, is gray may be 10 years (Frank 1975). to green, lacks the scaly subsutural band, and Growth Rate—young snails grow rapidly: is found south of Santa Barbara. It is closely from 4-5.6 mm and 27 mg average weight related to C. funebralis; the radulae are quite (June) to 5.6-9.8 mm. 177.3 mg (following similar (Merriman 1967). March) (Morris et al 1980). California snails do not show growth rings of Oregon snails, Ecological Information which in older animals reveal an annual Range—Vancouver, B.C., to central Baja winter cessation of growth (Frank 1975). California (McLean 1969). Food—"a catholic feeder" (Frank 1975): Local Distribution—marine portions of large almost any common alga. Prefers Macrocystis Oregon. estuaries; Coos Bay: Pigeon Point. integrifolia, Nereocystis luetkeana, Habitat—avoids exposed outer coast Rhodoglossum affine, Gigartina canaliculata: situations although it is found in rocky i.e. fleshy forms. If not available, will eat protected outer tidepools (Carlton and Roth encrusting green alga, Ralfsia pacifica, 1975); marine portions of estuaries in rocky detritus (Abbott et al 1964). situations amongst seaweed (Griffith 1975). Predators—Pisaster ochraceus in low Strongly built: can withstand surf. Females intertidal. Although Chlorostoma is not its found in more exposed places than males at preferred prey, Pisaster can consume over ¼ low tide (Frank 1975). Species is negatively the available snails (Frank 1965b). Possibly phototactic: seeks the light (Morris et al 1980). limpet Collisella; carnivorous snail Nucella; Salinity—collected at 30 ‰ salt. Cannot crab Cancer antennarius. withstand continued exposure to low salinity. Behavior—larger animals migrate to lower Temperature—found in temperate waters intertidal. Species is sedentary, aggregates at only. With black color can get quite warm low tide, moves up to rock tops at nighttime during exposure to sun at low tides. high tides (not diurnal ones) (Morris et al Tidal Level—on outer shores, most common 1980). Territory: tends to live in a radius of at high inter-tidal (2-0 m) (Frank 1975); found about 1.5 m for months; a daily movement of in midintertidal as well." In estuary found at 0- about 1m (Frank 1975). Snails move well on +1 ft. Small snails settle high, live there 5-6 rocks, are clumsy on sand. They place years, then migrate to lower levels (to +0.6- - pebbles on the foot to alter balance (Morris et 0.2 m) (Paine 1979). al 1980). Escape predators by sensory Associates—on outer coast: slipper shell perception (seastars), or by crawling onto top Crepidula and several limpets (Collisella), of predator's shell (carnivorous snails). which can be predatory. Empty shells used by hermit crabs. Bibliography 1. ABBOTT, D. P., L. R. BLINKS, J. H. Quantitative Information PHILLIPS, and R. H. STOHLER. Weight—this specimen 4g wet, with shell. 1964. The biology of Tegula Abundance—most abundant mid-intertidal funebralis. The Veliger. 6 Supplement. grazer (Frank 1975). 2. CARLTON, J. T., and B. ROTH. 1975. Phylum Mollusca: Shelled Gastropods, Life History Information p. 467-514. In: Light's manual; Reproduction—dioecious; eggs and sperm intertidal invertebrates of the central exuded into water. Sexes can be determined California coast. S. F. Light, R. I. by color of foot sole: males are light, females Smith, and J. T. Carlton (eds.). darker; female gonad bright green from egg University of California Press, yolk. Egg masses gelatinous, about 3 mm Berkeley. diameter; several hundred eggs, about 0.19 3. FRANK, P. W. 1965b. Shell growth in Digitized 2010 – Last Updated 1979 – E-mail corrections to [email protected] a natural population of the turban snail 14. ——.1979. The Pisaster-Tegula Tegula funebralis. Growth. 29:395- interaction: Prey patches, predator 403. food preference and intertidal 4. ——. 1975. Latitudinal variation in the community structure. Ecology. 50:950- life history features of Tegula 961. funebralis (Prosobranchia: Trochidae). Marine Biology. 31:181-192. 5. FRITCHMAN, H. K. 1965. The radulae of Tegula species from the west coast of North America and suggested intrageneric relationship. The Veliger. 8:11-14. 6. GRIFFITH, L. M. 1975. The intertidal univalves of Britsh Columbia. British Columbian Provincial Museum Handbook. 26:1-101. 7. KEEP, J., J. Longstreth (eds). 1935. West coast shells; a description in familiar terms of principal marine, fresh-water, and land mollusks of the United States, British Columbia, and Alaska, found west of the Sierra. Calif., Stanford University Press; London, H. Milford, Oxford University Press, Stanford University. 8. KOZLOFF, E. N. 1974a. Keys to the marine invertebrates of Puget Sound, the San Juan Archipelago, and adjacent regions. University of Washington Press, Seattle & London. 9. MCLEAN, J. H. 1969. Marine shells of southern California. [Los Angeles] Los Angeles County Museum of Natural History. 10. MERRIMAN, J. A. 1967. Systematic implications of radular structures of west cost species of Tegula. The Veliger. 9:399-403. 11. MORRIS, R. H., D. P. ABBOTT, and E. C. HADERLIE. 1980. Intertidal invertebrates of California. Stanford University Press, Stanford, California. 12. OLDROYD, I. S. 1924. Marine shells of Puget Sound and vicinity. University of Washington Press, Seattle. 13. PAINE, R. T. 1971. Energy flow in a natural population of the herbivorous gastropod Tegula funebralis. Liminology and Oceanography. 16:86- 98. Digitized 2010 – Last Updated 1979 – E-mail corrections to [email protected] Digitized 2010 – Last Updated 1979 – E-mail corrections to [email protected] .
Recommended publications
  • GASTROPOD CARE SOP# = Moll3 PURPOSE: to Describe Methods Of
    GASTROPOD CARE SOP# = Moll3 PURPOSE: To describe methods of care for gastropods. POLICY: To provide optimum care for all animals. RESPONSIBILITY: Collector and user of the animals. If these are not the same person, the user takes over responsibility of the animals as soon as the animals have arrived on station. IDENTIFICATION: Common Name Scientific Name Identifying Characteristics Blue topsnail Calliostoma - Whorls are sculptured spirally with alternating ligatum light ridges and pinkish-brown furrows - Height reaches a little more than 2cm and is a bit greater than the width -There is no opening in the base of the shell near its center (umbilicus) Purple-ringed Calliostoma - Alternating whorls of orange and fluorescent topsnail annulatum purple make for spectacular colouration - The apex is sharply pointed - The foot is bright orange - They are often found amongst hydroids which are one of their food sources - These snails are up to 4cm across Leafy Ceratostoma - Spiral ridges on shell hornmouth foliatum - Three lengthwise frills - Frills vary, but are generally discontinuous and look unfinished - They reach a length of about 8cm Rough keyhole Diodora aspera - Likely to be found in the intertidal region limpet - Have a single apical aperture to allow water to exit - Reach a length of about 5 cm Limpet Lottia sp - This genus covers quite a few species of limpets, at least 4 of them are commonly found near BMSC - Different Lottia species vary greatly in appearance - See Eugene N. Kozloff’s book, “Seashore Life of the Northern Pacific Coast” for in depth descriptions of individual species Limpet Tectura sp. - This genus covers quite a few species of limpets, at least 6 of them are commonly found near BMSC - Different Tectura species vary greatly in appearance - See Eugene N.
    [Show full text]
  • Mollusks of Manuel Antonio National Park, Pacific Costa Rica
    Rev. Biol. Trop. 49. Supl. 2: 25-36, 2001 www.rbt.ac.cr, www.ucr.ac.cr Mollusks of Manuel Antonio National Park, Pacific Costa Rica Samuel Willis 1 and Jorge Cortés 2-3 1140 East Middle Street, Gettysburg, Pennsylvania 17325, USA. 2Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, 2060 San José, Costa Rica. FAX: (506) 207-3280. E-mail: [email protected] 3Escuela de Biología, Universidad de Costa Rica, 2060 San José, Costa Rica. (Received 14-VII-2000. Corrected 23-III-2001. Accepted 11-V-2001) Abstract: The mollusks in Manuel Antonio National Park on the central section of the Pacific coast of Costa Rica were studied along thirty-six transects done perpendicular to the shore, and by random sampling of subtidal environments, beaches and mangrove forest. Seventy-four species of mollusks belonging to three classes and 40 families were found: 63 gastropods, 9 bivalves and 2 chitons, during this study in 1995. Of these, 16 species were found only as empty shells (11) or inhabited by hermit crabs (5). Forty-eight species were found at only one locality. Half the species were found at one site, Puerto Escondido. The most diverse habitat was the low rocky intertidal zone. Nodilittorina modesta was present in 34 transects and Nerita scabricosta in 30. Nodilittorina aspera had the highest density of mollusks in the transects. Only four transects did not clustered into the four main groups. The species composition of one cluster of transects is associated with a boulder substrate, while another cluster of transects associates with site.
    [Show full text]
  • The Biology of Seashores - Image Bank Guide All Images and Text ©2006 Biomedia ASSOCIATES
    The Biology of Seashores - Image Bank Guide All Images And Text ©2006 BioMEDIA ASSOCIATES Shore Types Low tide, sandy beach, clam diggers. Knowing the Low tide, rocky shore, sandstone shelves ,The time and extent of low tides is important for people amount of beach exposed at low tide depends both on who collect intertidal organisms for food. the level the tide will reach, and on the gradient of the beach. Low tide, Salt Point, CA, mixed sandstone and hard Low tide, granite boulders, The geology of intertidal rock boulders. A rocky beach at low tide. Rocks in the areas varies widely. Here, vertical faces of exposure background are about 15 ft. (4 meters) high. are mixed with gentle slopes, providing much variation in rocky intertidal habitat. Split frame, showing low tide and high tide from same view, Salt Point, California. Identical views Low tide, muddy bay, Bodega Bay, California. of a rocky intertidal area at a moderate low tide (left) Bays protected from winds, currents, and waves tend and moderate high tide (right). Tidal variation between to be shallow and muddy as sediments from rivers these two times was about 9 feet (2.7 m). accumulate in the basin. The receding tide leaves mudflats. High tide, Salt Point, mixed sandstone and hard rock boulders. Same beach as previous two slides, Low tide, muddy bay. In some bays, low tides expose note the absence of exposed algae on the rocks. vast areas of mudflats. The sea may recede several kilometers from the shoreline of high tide Tides Low tide, sandy beach.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 98. NUMBER 10 MOLLUSKS COLLECTED ON THE PRESIDENTIAL CRUISE OF 1938 (With Five Plates) BY PAUL BARTSGH Curator, Division of Mollusks, U. S. National Museum AND HARALD ALFRED REHDER Assistant Curator, Division of Mollusks, U. S. National Museum (Publication 3535) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION JUNE 13, 1939 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 98, NUMBER 10 MOLLUSKS COLLECTED ON THE PRESIDENTIAL CRUISE OF 1938 (With Five Plates) BY PAUL BARTSGH Curator, Division of Mollusks, U. S. National Museum AND HARALD ALFRED REHDER Assistant Curator, Division of Mollusks, U. S. National Museum (Publication 3535) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION JUNE 13, 1939 BALTIMORE, MD., D. 8. A. MOLLUSKS COLLECTED ON THE PRESIDENTIAL CRUISE OF 1938 By PAUL BARTSCH Curator, Division of Mollusks, U. S. National Museum AND HARALD ALFRED REHDER Assistant Curator, Division of Mollusks, U. S. National Museum (With Five Plates) During President Franklin D. Roosevelt's cruise in the Pacific and Atlantic Oceans in 1938, on board the U.S.S. Houston, Dr. Waldo L. Schmitt, Curator of the Division of Marine Invertebrates of the LInited States National Museum, served as Naturalist. Among other things he made collections of mollusks in many rarely visited places, which resulted in the discovery of a new subgenus and a number of new species and subspecies, which are here described. We also give a list of all the species collected, believing this to be of especial interest, since little is known of the marine fauna of the places in which they were obtained. A particularly interesting fact presented by these collections is the Indo-Pacific relationship of the marine mollusks of Clipperton Island, which suggests a drift fauna.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Miocene Vetigastropoda and Neritimorpha (Mollusca, Gastropoda) of Central Chile
    Journal of South American Earth Sciences 17 (2004) 73–88 www.elsevier.com/locate/jsames Miocene Vetigastropoda and Neritimorpha (Mollusca, Gastropoda) of central Chile Sven N. Nielsena,*, Daniel Frassinettib, Klaus Bandela aGeologisch-Pala¨ontologisches Institut und Museum, Universita¨t Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany bMuseo Nacional de Historia Natural, Casilla 787, Santiago, Chile Abstract Species of Vetigastropoda (Fissurellidae, Turbinidae, Trochidae) and one species of Neritimorpha (Neritidae) from the Navidad area, south of Valparaı´so, and the Arauco Peninsula, south of Concepcio´n, are described. Among these, the Fissurellidae comprise Diodora fragilis n. sp., Diodora pupuyana n. sp., two additional unnamed species of Diodora, and a species resembling Fissurellidea. Turbinidae are represented by Cantrainea sp., and Trochidae include Tegula (Chlorostoma) austropacifica n. sp., Tegula (Chlorostoma) chilena n. sp., Tegula (Chlorostoma) matanzensis n. sp., Tegula (Agathistoma) antiqua n. sp., Bathybembix mcleani n. sp., Gibbula poeppigii [Philippi, 1887] n. comb., Diloma miocenica n. sp., Fagnastesia venefica [Philippi, 1887] n. gen. n. comb., Fagnastesia matanzana n. gen. n. sp., Calliostoma mapucherum n. sp., Calliostoma kleppi n. sp., Calliostoma covacevichi n. sp., Astele laevis [Sowerby, 1846] n. comb., and Monilea riorapelensis n. sp. The Neritidae are represented by Nerita (Heminerita) chilensis [Philippi, 1887]. The new genus Fagnastesia is introduced to represent low-spired trochoideans with a sculpture of nodes below the suture, angulated whorls, and a wide umbilicus. This Miocene Chilean fauna includes genera that have lived at the coast and in shallow, relatively warm water or deeper, much cooler water. This composition therefore suggests that many of the Miocene formations along the central Chilean coast consist of displaced sediments.
    [Show full text]
  • Biology 136L – Invertebrate Zoology Lab Molluscan Diversity Lab Guide Author: Allison J
    Page 1 of 9 Biology 136L – Invertebrate zoology lab Molluscan diversity lab guide Author: Allison J. Gong Figure source: Brusca and Brusca, 2003. Invertebrates, 2nd edition. Sinauer Associates, Inc. The Mollusca comprise a huge taxon, second only to the Arthropoda in terms of number of extant species. They are successful in marine, freshwater, and terrestrial habitats. There are probably close to 100,000 species of living molluscs, including such diverse forms as snails, clams, slugs, and squids. There are also some 35,000 fossil species. You have already dissected two common local marine molluscs – a snail (Chlorostoma funebralis) and a bivalve (Mytilus californianus) – and should be familiar with their internal and external anatomy. This understanding will help you make sense of the diversity of body forms you will observe in representatives of other molluscan taxa. With any luck I will have specimens from four of the seven extant molluscan classes for you: Polyplacophora, Bivalvia, Cephalopoda, and Gastropoda. In strictly pedagogical terms, we can use a non-existent creature called a Hypothetical Ancestral Mollusc (HAM) as a starting point on which natural selection has acted to produce the variety of molluscan body plans that we see today. This HAM was a benthic animal adapted for life on hard surfaces, crawling around on its muscular ventral foot and using its radula to scrape algal and detrital films. It was poorly cephalized with an anterior head and had a single, cap-shaped shell that could be clamped down to protect the visceral mass and other soft body parts. The mantle cavity enclosed several pairs of bipectinate ctenidia, or gills.
    [Show full text]
  • Evolutionary Consequences of Food Chain Length in Kelp Forest Communities (Biogeography/Coevolution/Herbivory/Phlorotannins/Predation) PETER D
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 8145-8148, August 1995 Ecology Evolutionary consequences of food chain length in kelp forest communities (biogeography/coevolution/herbivory/phlorotannins/predation) PETER D. STEINBERG*, JAMES A. ESTEStt, AND FRANK C. WINTER§ *School of Biological Sciences, University of New South Wales, P.O. Box 1, Kensington, New South Wales, 2033, Australia; tNational Biological Service, A-316 Earth and Marine Sciences Building, University of California, Santa Cruz, CA 95064; and §University of Auckland, Leigh Marine Laboratory, P.O. Box 349, Warkworth, New Zealand Communicated by Robert T. Paine, University of Washington, Seattle, WA, May 12, 1995 ABSTRACT Kelp forests are strongly influenced by mac- consistently important structuring processes throughout the roinvertebrate grazing on fleshy macroalgae. In the North food web. Under these conditions, we would predict that Pacific Ocean, sea otter predation on macroinvertebrates top-level consumers are resource limited. Consequently, the substantially reduces the intensity of herbivory on macroal- next lower trophic level should be consumer limited, in turn gae. Temperate Australasia, in contrast, has no known pred- causing the level below that (if one exists) to again be resource ator of comparable influence. These ecological and biogeo- limited. Looking downward through the food web from this graphic patterns led us to predict that (i) the intensity of very generalized perspective, a pattern emerges of strongly herbivory should be greater in temperate Australasia than in interacting couplets of adjacent trophic levels. Given these the North Pacific Ocean; thus (ii) Australasian seaweeds have circumstances, the interactive coupling between plants and been under stronger selection to evolve chemical defenses and herbivores should be strong in even-numbered systems and (iii) Australasian herbivores have been more strongly selected weak in odd-numbered systems, a prediction recently substan- to tolerate these compounds.
    [Show full text]
  • Intertidal Narrative
    Warner Pacific College Boiler Bay Intertidal Trip - Dwight J. Kimberly This is a summary of things to look for on the field trip and a few suggestions to make the trip more enjoyable for you. Be careful where you step because the intertidal floor is the home of many animals. No animals will be collected without a permit. When close to the surf, watch the ocean at all times. Take your time climbing around the rocks. They are slick and a fall could break a bone or remove skin. Use the accompanying checklist to key the phyla that you have learned in the course The following discussion is based upon Ricketts and Calvin, Between the Pacific Tides. Three factors modify the intertidal marine fauna: 1) wave shock, 2) tidal exposure and 3) type of bottom. You will see an example of the protected rocky coast in which the shock of the waves is reduced by the influence of a long sloping shelf. Other possible modifications which produce the same result are offshore reefs, headlands, islands or large kelp beds. The bottom is typically rocky and affords a firm substrate for animal attachment to plants and animals. By turning over rocks you will uncover a myriad of animals, but at the same time expose them to the fatal effects of the sun. Therefore, replace the rocks as you found them to assure the survival of these animals. The zonation of the animal life as a result of the tides is apparent. Familiarize yourself with the zones and their characteristics. ZONE 1.
    [Show full text]
  • Gastropoda: Littorinidae) from the Quaternary of Chile
    Palaeontologia Electronica palaeo-electronica.org A new species of Echinolittorina Habe, 1956 (Gastropoda: Littorinidae) from the Quaternary of Chile Juan Francisco Araya and David G. Reid ABSTRACT We describe a new fossil littorinid species, Echinolittorina nielseni sp. nov., from the Quaternary Caldera Strata, Región de Atacama, northern Chile. Fossils of littorin- ids are globally rare because of their high-intertidal habitat on rocky shores. The new species has a large, broad shell with strong spiral ribs and an angled periphery, differ- ing from the two living littorinids currently found along the coasts of mainland Chile and from all the extant species distributed in the southeastern Pacific. In comparison with the living Chilean Echinolittorina peruviana, the new species shows stronger ribs and more inflated whorls, but they share an unusual detail in the irregular arrangement of spiral sculpture. We hypothesize that the new species may be ancestral or sister to E. peruviana and discuss the adaptive significance of shell sculpture. Juan Francisco Araya. Departamento de Geología, Universidad de Atacama, Copayapu 485, Copiapó, Región de Atacama, Chile and Programa de Doctorado en Sistemática y Biodiversidad, Universidad de Concepción, Concepción, Chile. [email protected] author: zoobank.org/Authors/443B4F42-FB13-42A6-B92B-1B0F835698A9 orcid.org/0000-0002-4087-964 David G. Reid. Mollusca Research Group, Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom. [email protected] Keywords: Quaternary; Pleistocene; SE Pacific Ocean; Littoraria; new species Submission: 19 September 2015 Acceptance: 29 January 2016 INTRODUCTION cies continue to be discovered in the area, particu- larly in the Región de Atacama (Osorio, 2012; The shallow-water marine molluscs living in Araya, 2013).
    [Show full text]
  • Emily Sue Stafford
    Measuring and Interpreting Predation on Gastropod Shells by Emily Sue Stafford A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Earth and Atmospheric Sciences University of Alberta © Emily Sue Stafford, 2014 ABSTRACT This dissertation focuses on problems and progress in studying crushing predation on gastropods in the Modern and the fossil record. Although crushing predation tends to be destructive, it is possible to gather data on crushing predation from multiple angles. Chapter 2 applies an ichnotaxonomic name, Caedichnus, to the trace created by peeling crab predators. Chapter 3 the relationship between shell repair frequency and predation mortality in a modern gastropod community. In this case, repair frequency was likely a direct product of variation in predator abundance and strength. Chapter 4 focused on hermit crabs, an organism that inhabits gastropod shells and exposes those shells to predation even after the original gastropod inhabitant has died. The predatory crabs showed no preference for snail or hermit crab prey, which may mean that hermit crab habitation does not significantly alter the crab-on-snail predation patterns present in a shell assemblage. Chapter 5 expanded on previous work by the author, using a method by G.J. Vermeij to estimate crushing predation in a gastropod assemblage even when individual instances of predatory damage cannot be identified. Vermeij Crushing Analysis (VCA) uses drilled shells to establish a baseline of taphonomic damage in a shell assemblage; the chapter refines and examines this method more deeply, in addition to applying the method to compare predation on modern and fossil gastropod shell assemblages.
    [Show full text]
  • Tezula Funebralis Shell Height Variance in the Intertidal Zones
    Laci Uyesono Structural Comparison Adaptations of Marine Animals Tezula funebralis Shell height variance in the Intertidal zones Introduction The Pacific Coast of the United States is home to a great diversity of biota that populates both extremes, from the constantly battered rocks to the calm ocean floor. As a result of this diversity or because of this diversity there are distinct zones created by the physical, chemical, and biological constraints of the organisms. Tegula funebralis (T funebralis) commonly called the Black Turban shell is found in the low to high intertidal zones of rocky shores on or under rocks grazing on macroalgae. T funebralis can be purple to black in color with four whirls on top (usually worn down to a light color at the top), average 3cm in diameter, and can live up to 100 years (Sept 1999). T funebralis' density tends to be greater in the mid to high intertidal zone due to predation by octopus, Pisaster ochraceous, and crabs (Fawcett 1984). They also show a pattern of distribution where juveniles (those not of reproductive size —14mm) stay in the mid intertidal zone because it is midway between the physical stress of desiccation and the biological stress of predation (Fawcett 1984). Generally larger snails are able to withstand desiccation more then smaller snails, but larger Tegula have a greater advantage living lower in the intertidal even at the risk of predation. They are kept at moderate levels in this zone because Pisaster feeds on them and reduces their density, which then increases the food abundance for those who remain (Doering and Phillips 1983).
    [Show full text]