The Tectonics of North America a Discussion to Accompany the Tectonic Map of North America Scale 1:5,000,000

Total Page:16

File Type:pdf, Size:1020Kb

The Tectonics of North America a Discussion to Accompany the Tectonic Map of North America Scale 1:5,000,000 The Tectonics of North America A Discussion to Accompany the Tectonic Map of North America Scale 1:5,000,000 GEOLOGICAL SURVEY PROFESSIONAL PAPER 628 The Tectonics of North America A Discussion to Accompany the Tectonic Map of North America Scale 1:5,000,000 By PHILIP B. KING GEOLOGICAL SURVEY PROFESSIONAL PAPER 628 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1969 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director First printing 1969 Second printing 1970 Third printing 1970 Fourth printing 1978 Fifth printing 1981 For sale by the Distribution Branch, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304 CONTENTS Page "The Tectonic Map of North America" Continued Pw Abstract..._______________________________________ 1 Phanerozoic foldbelts Continued Introduction __ ___ __ ____ ___________ 1 Sedimentary units______________ ________ 4C Tectonic maps defined ___________________________ 1 Geosynclinal deposits.... __ 46 Historical sketch __ ______ _____________ 2 Eugeosynclinal deposits _ _ 47 Appraisal of existing tectonic maps ________________ 7 Miogeosynclinal deposits. _____________ 47 Representation of platform areas_________________ 8 Metamorphism of geosynclinal deposits..__ 4P Representation of foldbelts_____________________ 8 Deposits of successor basins....__________ 4P "Tectonic Map of United States"_____ ^_ 8 Younger basinal deposits.__ ______ 50 "Tectonic Map of Australia".________________ 9 Thick deposits in structurally negative "Tectonic Map of U.S.S.R. and Adjacent Areas," areas._________________ ____________ 50 and "Tectonic Map of Europe"_________ 9 Volcanic units_______________ _ 50 "Tectonic Map of Canada"___________ 11 Plutonic units____________ ______ 51 "Tectonic Map of Mexico" and "Tectonic Map Granitic rocks.______ _ __ 51 of U.S.S.R."___________________________ 15 Mafic plutonic rocks_____ 5? Representation of subsea areas.______________ 17 Ultramafic rocks______________________ 5? "The Tectonic Map of North America".-_____________ 18 Description of foldbelts____________________ 5f Compilation of the map_________________________ 18 (K) Innuitian foldbelt____________ Specifications of the map____________________ 19 (J) East Greenland foldbelt_________ Platform areas.______________________________ 21 (L) Appalachian foldbelt..______________ 56 (A) Platform areas within the Precambrian. ___ 21 Northern Appalachians.__________ 56 (B) Platform deposits on Precambrian base­ Southern Appalachians.____________ 5f ment _________________________________ 22 (M) Ouachita foldbelt____________ 61 (C) Platform deposits on Paleozoic basement. _ 24 Structural systems related to Ouachita (D) Platform deposits on Mesozoic basement. _ 27 foldbelt-..._____________. 64 (E) Volcanic rocks and associated sediments of (O) Cordilleran foldbelt____________ 64 North Atlantic province.________________ 27 Northern Cordillera___________ 65 (F) Icecaps________________________________ 29 Central Cordillera. __ __________ 6r Foldbelts of Precambrian age_________________ 30 Southern Cordillera_______.___ 7? Stratigrapbic classification._________________ 30 (P) Pacific foldbelt______________ 74 Tectonic classification. ______________________ 32 Alaska. ____________________ 7ft Foldbelts of Canadian Shield_________________ 33 Washington and Oregon. 7ft Foldbelts of Greenland________________ 36 California and Baja California.__... 76 Foldbelts south of Canadian Shield. __________ 37 (Q) Antillean foldbelt_____________ 77 Precambrian of northern South America______ 42 (N) Andean foldbelt______________ 7f Phanerozoic foldbelts ___________________ 43 Subsea areas______________________ 80 The tectonic cycle_______________ 43 Fault zones______________________ 81 Terminology _________________________ 44 Glossary.____________________________ 8f Geosyncline___________.._____________ 44 References cited______________________ 87 Orogeny______________________ 44 Index of units on "Tectonic Map of North America" Names of orogenies..._____________ 45 which are referred to in text_______________ 9f m IV CONTENTS ILLUSTRATIONS Page FIQTJRE 1. Structural map of Bighorn Mountains uplift, Wyoming and Montana, by N. H. Darton___________________ 2 2. Structural maps of the Jura Mountains, Switzerland, after Albert Heim____________________________ 3 3. Tectonic map of the Alps, by Rudolf Staub____--_-____- __ _______________________________________ 4 4. Tectonic sketch map showing the chief belts of folding in the American Cordilleran system, by Hans StillS__ 6 5. Maps of eastern Tennessee and western North Carolina showing three methods of representing the geology.__ 13 6. Tectonic map of north-central Nevada showing "structural stages" in an area of complex superposed rocks and structures.-_____-_--__-_-_-_-------_---------------------_------- _____ __ ___ 14 7. Map of Gulf Coastal Plain in Texas, Louisiana, and Mississippi showing structure contours on two horizons in the strata of the platform cover_________________-________-__-_-_____-_--__-___________ ____________ 26 8. Map of North Atlantic Ocean and adjacent lands showing plateau basalts of North Atlantic province. ______ 28 9. Map of the Canadian Shield showing provinces that contain Precambrian rocks of different ages.______________ 34 10. Map of North America showing inferred extent of exposed and buried provinces of Precambrian rocks__ 39 11. Map of northeastern Greenland showing inferred extent of the late Precambrian Carolinidian foldbelt._______ 55 12. Tectonic maps of the two larger areas of exposure of the Ouachita foldbelt_________________________________ 62 13. Map of northern Nevada showing extent of Antler orogenic belt of middle Paleozoic time___________________ 71 14. Map showing transverse structural features in the southern part of the area of the "Tectonic Map of North America," and in adjacent regions_______________-_-_---_---_--__-_____________________________ 82 TABLES Page TABLE 1. Comparison of various classifications of the Precambrian-__.__________________________ ___________ __ 31 2. Classification of orogenies in Canadian Shield_______-_____--_--_-_-___---_-__-__-_- __ ___ 33 3. Summary of Precambrian rocks and events south of Canadian Shield______________ , ______________._ 40 THE TECTONICS OF NORTH AMERICA A DISCUSSION TO ACCOMPANY THE TECTONIC MAP OF NORTH AMERICA, SCALE 1:5,000,000 By PHILIP B. KING ABSTRACT use and understanding of the map, by providing expla­ The "Tectonic Map of North America," on a scale of nations more lengthy than could be included in th^ 1: 5,000,000, has been compiled by the United States Geologi­ cal Survey in collaboration with other national geological sur­ legend of the map itself. Such a discussion is the mor> veys, and with the assistance of various individuals. The desirable because the map embodies innovations derived- compilers made use of tectonic maps of some of the countries partly from techniques of tectonic mapping that hav maps that have been published or are in process of publication. been developed during the last few decades by geologists In addition, many other basic maps and reports were consulted. in other countries, and that may not as yet be well North America is divided technically into foldbelts of dif­ known, or be well understood in North America. ferent ages and platform areas where flat-lying or gently tilted rocks lie upon basements of earlier foldbelts. The two most TECTONIC MAPS DEFINED extensive platform areas are those with Precambrian basement in the central craton, and those with Paleozoic basement in the A tectonic map portrays the architecture of the up­ Atlantic and Gulf Coastal Plains. Configuration of the upper per part of the earth's crust that is, the features prc - surface of the basement beneath the platforms is shown by contours on a 500-meter interval. duced by deformation and other earth forces and rep­ The foldbelts include three of Precambrian age whose principal resents this architecture by means of symbols, pattern1" exposures are in the Canadian Shield, but which also emerge and colors. Such a map differs from the more familir.r in various outlying areas. The foldbelts of younger ages lie areal geologic map, whose primary aim is to represent nearer the edges of the continent, and include four that are the surface distribution of rocks of various kinds and mainly of Paleozoic age, two that are mainly of Mesozoic age, and two that are mainly of Cenozoic age. Each foldbelt was ages. Nevertheless, most tectonic maps contain some in­ formed during a geotectonic cycle many geologic periods in dication of the ages and kinds of rocks from which th^ length, beginning with a geosynclinal phase, passing through structures were made, and areal geologic maps contain a time of orogeny, and ending with a postorogenic phase. some indication of the structures of the rocks repre­ On the "Tectonic Map of North America" the foldbelts are sented, so that distinctions between the two kinds of distinguished by different colors according to age; where several significant times of deformation occurred within them, these maps are not absolute. Tectonic maps are nearly synony­ are represented by tints of the prevailing colors. The different mous with structural maps, just as the subject of teu­ kinds of rocks which make up the foldbelts are shown by pat­ tonics is nearly synonymous with that of structural terns of these colors. geology. Nevertheless, geologists commonly make a In the foldbelts, the principal sedimentary rock units
Recommended publications
  • Baylor Geological Studies
    BAYLORGEOLOGICA L STUDIES PAUL N. DOLLIVER Creative thinking is more important than elaborate FRANK PH.D. PROFESSOR OF GEOLOGY BAYLOR UNIVERSITY 1929-1934 Objectives of Geological Training at Baylor The training of a geologist in a university covers but a few years; his education continues throughout his active life. The purposes of train­ ing geologists at Baylor University are to provide a sound basis of understanding and to foster a truly geological point of view, both of which are essential for continued professional growth. The staff considers geology to be unique among sciences since it is primarily a field science. All geologic research in­ cluding that done in laboratories must be firmly supported by field observations. The student is encouraged to develop an inquiring ob­ jective attitude and to examine critically all geological concepts and principles. The development of a mature and professional attitude toward geology and geological research is a principal concern of the department. Frontis. Sunset over the Canadian River from near the abandoned settlement of Old Tascosa, Texas. The rampart-like cliffs on the horizon first inspired the name "Llano Estacado" (Palisaded Plain) among Coronado's men. THE BAYLOR UNIVERSITY PRESS WACO, TEXAS BAYLOR GEOLOGICAL STUDIES BULLETIN NO. 42 Cenozoic Evolution of the Canadian River Basin Paul N. DoUiver BAYLOR UNIVERSITY Department of Geology Waco, Texas Spring 1984 Baylor Geological Studies EDITORIAL STAFF Jean M. Spencer Jenness, M.S., Editor environmental and medical geology O. T. Ph.D., Advisor, Cartographic Editor what have you Peter M. Allen, Ph.D. urban and environmental geology, hydrology Harold H. Beaver, Ph.D.
    [Show full text]
  • Vertical Motions of Australia During the Cretaceous
    Basin Research (1994) 6,63-76 The planform of epeirogeny: vertical motions of Australia during the Cretaceous Mark Russell and Michael Gurnis* Department of Geological Sciences, The University of Michigan, Ann Arbor, MI 48109-1063,USA ABSTRACT Estimates of dynamic motion of Australia since the end of the Jurassic have been made by modelling marine flooding and comparing it with palaeogeographical reconstructions of marine inundation. First, sediment isopachs were backstripped from present-day topography. Dynamic motion was determined by the displacement needed to approximate observed flooding when allowance is made for changes in eustatic sea-level. The reconstructed inundation patterns suggest that during the Cretaceous, Australia remained a relatively stable platform, and flooding in the eastern interior during the Early Cretaceous was primarily the result of the regional tectonic motion. Vertical motion during the Cretaceous was much smaller than the movement since the end of the Cretaceous. Subsidence and marine flooding in the Eromanga and Surat Basins, and the subsequent 500 m of uplift of the eastern portion of the basin, may have been driven by changes in plate dynamics during the Mesozoic. Convergence along the north-east edge of Australia between 200 and 100 Ma coincides with platform sedimentation and subsidence within the Eromanga and Surat Basins. A major shift in the position of subduction at 140Ma was coeval with the marine incursion into the Eromanga. When subduction ended at 95 Ma, marine inundation of the Eromanga also ended. Subsidence and uplift of the eastern interior is consistent with dynamic models of subduction in which subsidence is generated when the dip angle of the slab decreases and uplift is generated when subduction terminates (i.e.
    [Show full text]
  • Assembly, Configuration, and Break-Up History of Rodinia
    Author's personal copy Available online at www.sciencedirect.com Precambrian Research 160 (2008) 179–210 Assembly, configuration, and break-up history of Rodinia: A synthesis Z.X. Li a,g,∗, S.V. Bogdanova b, A.S. Collins c, A. Davidson d, B. De Waele a, R.E. Ernst e,f, I.C.W. Fitzsimons g, R.A. Fuck h, D.P. Gladkochub i, J. Jacobs j, K.E. Karlstrom k, S. Lu l, L.M. Natapov m, V. Pease n, S.A. Pisarevsky a, K. Thrane o, V. Vernikovsky p a Tectonics Special Research Centre, School of Earth and Geographical Sciences, The University of Western Australia, Crawley, WA 6009, Australia b Department of Geology, Lund University, Solvegatan 12, 223 62 Lund, Sweden c Continental Evolution Research Group, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia d Geological Survey of Canada (retired), 601 Booth Street, Ottawa, Canada K1A 0E8 e Ernst Geosciences, 43 Margrave Avenue, Ottawa, Canada K1T 3Y2 f Department of Earth Sciences, Carleton U., Ottawa, Canada K1S 5B6 g Tectonics Special Research Centre, Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia h Universidade de Bras´ılia, 70910-000 Bras´ılia, Brazil i Institute of the Earth’s Crust SB RAS, Lermontova Street, 128, 664033 Irkutsk, Russia j Department of Earth Science, University of Bergen, Allegaten 41, N-5007 Bergen, Norway k Department of Earth and Planetary Sciences, Northrop Hall University of New Mexico, Albuquerque, NM 87131, USA l Tianjin Institute of Geology and Mineral Resources, CGS, No.
    [Show full text]
  • The Geology of the Enosburg Area, Vermont
    THE GEOLOGY OF THE ENOSBURG AREA, VERMONT By JOlIN G. DENNIS VERMONT GEOLOGICAL SURVEY CHARLES G. DOLL, State Geologist Published by VERMONT DEVELOPMENT DEPARTMENT MONTPELIER, VERMONT BULLETIN No. 23 1964 TABLE OF CONTENTS PAGE ABSTRACT 7 INTRODUCTION ...................... 7 Location ........................ 7 Geologic Setting .................... 9 Previous Work ..................... 10 Method of Study .................... 10 Acknowledgments .................... 10 Physiography ...................... 11 STRATIGRAPHY ...................... 12 Introduction ...................... 12 Pinnacle Formation ................... 14 Name and Distribution ................ 14 Graywacke ...................... 14 Underhill Facics ................... 16 Tibbit Hill Volcanics ................. 16 Age......................... 19 Underhill Formation ................... 19 Name and Distribution ................ 19 Fairfield Pond Member ................ 20 White Brook Member ................. 21 West Sutton Slate ................... 22 Bonsecours Facies ................... 23 Greenstones ..................... 24 Stratigraphic Relations of the Greenstones ........ 25 Cheshire Formation ................... 26 Name and Distribution ................ 26 Lithology ...................... 26 Age......................... 27 Bridgeman Hill Formation ................ 28 Name and Distribution ................ 28 Dunham Dolomite .................. 28 Rice Hill Member ................... 29 Oak Hill Slate (Parker Slate) .............. 29 Rugg Brook Dolomite (Scottsmore
    [Show full text]
  • Pathways and Mechanisms of Late Ordovician (Katian) Faunal Migrations of Laurentia and Baltica
    Estonian Journal of Earth Sciences, 2015, 64, 1, 62–67 doi: 10.3176/earth.2015.11 Pathways and mechanisms of Late Ordovician (Katian) faunal migrations of Laurentia and Baltica Adriane R. Lama and Alycia L. Stigalla,b a Department of Geological Sciences, Ohio University, Athens 45701-2979, Ohio, U.S.A. b OHIO Center for Ecology and Evolutionary Studies, Ohio University, 316 Clippinger Laboratories, Athens 45701-2979, Ohio, U.S.A.; [email protected], [email protected] Received 2 July 2014, accepted 9 October 2014 Abstract. Late Ordovician strata within the Cincinnati Basin record a mass faunal migration event during the C4 and C5 depositional sequences. The geographic source region for the invaders and the paleoceanographic conditions that facilitated dispersal into the Cincinnati Basin has previously been poorly understood. Using Parsimony Analysis of Endemicity, biogeographic relationships among Laurentian and Baltic basins were analyzed for each of the C1–C5 depositional sequences to identify dispersal paths. The results support multiple dispersal pathways, including three separate dispersal events between Baltica and Laurentia. Within Laurentia, results support dispersal pathways between areas north of the Transcontinental Arch into the western Midcontinent, between the Upper Mississippi Valley into the Cincinnati Basin, and between the peri-cratonic Scoto-Appalachian Basin and the Cincinnati Basin. These results support the hypothesis that invasive taxa entered the Cincinnati Basin via multiple dispersal pathways and that the equatorial Iapetus current facilitated dispersal of organisms from Baltica to Laurentia. Within Laurentia, surface currents and large storms moving from northeast to southwest likely influenced the dispersal of organisms. Larval states were characterized for the Richmondian invaders, and most invaders were found to have had planktotrophic planktic larvae.
    [Show full text]
  • Council of Conseil De I
    Nr. 65 E-ISSN 0250-7072 COUNCIL OF CONSEIL DE I . * Naturopa No. 65-1990 Editorial M. Smet 3 Friess-Irrmann Quality as well as quantity H. Hacourt 5 1 No-till agriculture G. de Ploey 7 Divergent interests M. Böschung 8 1 ------------- Editorial CENTRE Space and time G. P. Black - G. Gonggrijp 10 NATUROPA G eo-Trail H. Schönlaub 14 The Nigardsbreen glacier L. Erikstad 15 The kind of Europe we want c. Lalumière 16 early thirty years ago the Council of Belgium is delighted to have hosted in Brus­ De Zândkoele G. Gonggrijp 18 Europe became the first European in­ sels in October1990the European Ministerial N tergovernmental organisation to take Conference on the Environment at which this Irish peatlands D. Daly 20 an interest in environment issues. It is now us­ question was discussed. The Ministers con­ ing its experience in the service o f one o f the sidered the feasibility study and opted for Naturopa is published in English, French, major enivronment problems facing our soci­ what they regarded as the most appropriate German, Italian, Spanish and Portuguese Danish cliffs A . Nielsen 22 ety: soil protection. instrument for co-operation in soil protec­ by the Centre Naturopa o f the Council of tion. Europe, BP 431 R6, F-67006 Strasbourg The soil is the foundation o f all life on earth, The Dorset coast W. A. Wimbledon 24 Cedex. the very basis of our food production, the At the conference, the Ministers also con­ ground on which all human facilities are built sidered the text o f a European Conservation Editor responsible: Swiss moraines B.
    [Show full text]
  • Subsurface Geology of Cenozoic Deposits, Gulf Coastal Plain, South-Central United States
    REGIONAL STRATIGRAPHY AND _^ SUBSURFACE GEOLOGY OF CENOZOIC DEPOSITS, GULF COASTAL PLAIN, SOUTH-CENTRAL UNITED STATES V U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1416-G AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications re­ leased prior to the current year are listed in the most recent annual "Price and Availability List." Publications that may be listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" may no longer be available. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices listed below. BY MAIL OVER THE COUNTER Books Books and Maps Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books and maps of the U.S. Geological Survey are available niques of Water-Resources Investigations, Circulars, publications over the counter at the following U.S. Geological Survey offices, all of general interest (such as leaflets, pamphlets, booklets), single of which are authorized agents of the Superintendent of Docu­ copies of Earthquakes & Volcanoes, Preliminary Determination of ments. Epicenters, and some miscellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtainable by mail from ANCHORAGE, Alaska-Rm.
    [Show full text]
  • The Petroleum Potential of the Riphean–Vendian Succession of Southern East Siberia
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/253369249 The petroleum potential of the Riphean–Vendian succession of southern East Siberia CHAPTER in GEOLOGICAL SOCIETY LONDON SPECIAL PUBLICATIONS · MAY 2012 Impact Factor: 2.58 · DOI: 10.1144/SP366.1 CITATIONS READS 2 95 4 AUTHORS, INCLUDING: Olga K. Bogolepova Uppsala University 51 PUBLICATIONS 271 CITATIONS SEE PROFILE Alexander P. Gubanov Scandiz Research 55 PUBLICATIONS 485 CITATIONS SEE PROFILE Available from: Olga K. Bogolepova Retrieved on: 08 March 2016 Downloaded from http://sp.lyellcollection.org/ by guest on March 25, 2013 Geological Society, London, Special Publications The petroleum potential of the Riphean-Vendian succession of southern East Siberia James P. Howard, Olga K. Bogolepova, Alexander P. Gubanov and Marcela G?mez-Pérez Geological Society, London, Special Publications 2012, v.366; p177-198. doi: 10.1144/SP366.1 Email alerting click here to receive free e-mail alerts when service new articles cite this article Permission click here to seek permission to re-use all or request part of this article Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes © The Geological Society of London 2013 Downloaded from http://sp.lyellcollection.org/ by guest on March 25, 2013 The petroleum potential of the Riphean–Vendian succession of southern East Siberia JAMES P. HOWARD*, OLGA K. BOGOLEPOVA, ALEXANDER P. GUBANOV & MARCELA GO´ MEZ-PE´ REZ CASP, West Building, 181a Huntingdon Road, Cambridge CB3 0DH, UK *Corresponding author (e-mail: [email protected]) Abstract: The Siberian Platform covers an area of c.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Assembling Laurentia—Integrated Theme Sessions on Tectonic Turning Points
    Assembling Laurentia—Integrated Theme Sessions on Tectonic Turning Points Michael L. Williams, Dept. of Geosciences, University of Massachusetts, Amherst, Massachusetts 01003, USA, [email protected]; Dawn A. Kellett, Geological Survey of Canada–Atlantic Division, Natural Resources Canada/Government of Canada, 1 Challenger Drive, Dartmouth, Nova Scotia B2Y 4A2, Canada, [email protected]; Basil Tikoff*, Dept. of Geoscience, University of Wisconsin– Madison, 1215 W. Dayton Street, Madison, Wisconsin 53706, USA, [email protected]; Steven J. Whitmeyer, Dept. of Geology and Environmental Science, James Madison University, 801 Carrier Drive, MSC 6903, Harrisonburg, Virginia 22807, USA, [email protected] The North American continent records the headlined by a Pardee Symposium, which and the broader implications of, these changes, evolution of tectonic processes and tectonic will provide an overview of the tectonic evo- and to widen the scope of investigation environments from the earliest Archean to lution of Laurentia and an introduction to the beyond a particular boundary or regional geo- modern times. The continent hosts a rich concept of key “Turning Points.” Seven logical event to the scale of Laurentia itself. Archean (and possibly Hadean) record, at related topical sessions, under the general The time slices for the topical sessions are as least three great Proterozoic orogenic belts, heading “Assembling Laurentia,” will span follows (with brief explanations from each and a wide range of Phanerozoic tectonic, the GSA meeting.
    [Show full text]
  • NATIONAL REPORT Cartography in Switzerland 2011 – 2015 NATIONAL REPORT Cartography in Switzerland 2011 – 2015
    NATIONAL REPORT Cartography in Switzerland 2011 – 2015 NATIONAL REPORT Cartography in Switzerland 2011 – 2015 This report has been prepared by the Swiss Society of Cartography (SSC) and eventually submitted to the 16th General Assembly of the International Cartographic Association (ICA) in Rio de Janeiro, Brazil in August 2015. Front cover Imprint Publisher 1 2 3 4 Swiss Society of Cartography SSC Publication No 19 Design, Desktop Publishing, Compilation Stefan Räber Support 5 6 7 8 Institute of Cartography and Geoinformation, ETH Zurich (Chair of Cartography) 9 10 11 12 13 14 15 16 17 18 19 20 1 City map, Rimensberger Grafische Dienstleistungen 11 Geo-analysis and Visualization, Mappuls AG 2 Geological map, swisstopo 12 City map Lima, Editorial Lima2000 S.A.C. 3 Statistical Atlas, Federal Statistical Office (FSO) 13 Trafimage, evoq communications AG 4 Overview map, Canton of Grisons 14 Züri compact, CAT Design 5 Hand-coloured map of Switzerland, Waldseemüller 15 Island peak, climbing-map.com GmbH 6 Matterhorn, Arolla sheet 283, swisstopo 16 Hiking map, Orell Füssli Kartographie AG 7 City map Zurich, Orell Füssli Kartographie AG 17 City map Berne, Mappuls AG 8 Cadastral plan, Canton of Lucerne 18 Road map, Hallwag Kümmerly+Frey AG 9 Area Chart ICAO, Muff Map, Skyguide 19 Aarau, sheet 1070, swisstopo 10 Mount Kenya, Beilstein Kartographische Dienstleistungen 20 Meyer Atlas, Edition Cavelti Cartography in Switzerland 2011 – 2015 National Report | 2 National Report 2011–2015 Table of Contents Introduction Institutions Preface 4 Alpine
    [Show full text]
  • The Classic Upper Ordovician Stratigraphy and Paleontology of the Eastern Cincinnati Arch
    International Geoscience Programme Project 653 Third Annual Meeting - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett – Kyle R. Hartshorn – Allison L. Young – Cameron E. Schwalbach – Alycia L. Stigall International Geoscience Programme (IGCP) Project 653 Third Annual Meeting - 2018 - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Kyle R. Hartshorn Dry Dredgers, 6473 Jayfield Drive, Hamilton, Ohio 45011, USA ([email protected]) Allison L. Young Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Cameron E. Schwalbach 1099 Clough Pike, Batavia, OH 45103, USA ([email protected]) Alycia L. Stigall Department of Geological Sciences and OHIO Center for Ecology and Evolutionary Studies, Ohio University, 316 Clippinger Lab, Athens, Ohio 45701, USA ([email protected]) ACKNOWLEDGMENTS We extend our thanks to the many colleagues and students who have aided us in our field work, discussions, and publications, including Chris Aucoin, Ben Dattilo, Brad Deline, Rebecca Freeman, Steve Holland, T.J. Malgieri, Pat McLaughlin, Charles Mitchell, Tim Paton, Alex Ries, Tom Schramm, and James Thomka. No less gratitude goes to the many local collectors, amateurs in name only: Jack Kallmeyer, Tom Bantel, Don Bissett, Dan Cooper, Stephen Felton, Ron Fine, Rich Fuchs, Bill Heimbrock, Jerry Rush, and dozens of other Dry Dredgers. We are also grateful to David Meyer and Arnie Miller for insightful discussions of the Cincinnatian, and to Richard A.
    [Show full text]