Geology in 2000 and Beyond by John C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Los Cien Montes Más Prominentes Del Planeta D
LOS CIEN MONTES MÁS PROMINENTES DEL PLANETA D. Metzler, E. Jurgalski, J. de Ferranti, A. Maizlish Nº Nombre Alt. Prom. Situación Lat. Long. Collado de referencia Alt. Lat. Long. 1 MOUNT EVEREST 8848 8848 Nepal/Tibet (China) 27°59'18" 86°55'27" 0 2 ACONCAGUA 6962 6962 Argentina -32°39'12" -70°00'39" 0 3 DENALI / MOUNT McKINLEY 6194 6144 Alaska (USA) 63°04'12" -151°00'15" SSW of Rivas (Nicaragua) 50 11°23'03" -85°51'11" 4 KILIMANJARO (KIBO) 5895 5885 Tanzania -3°04'33" 37°21'06" near Suez Canal 10 30°33'21" 32°07'04" 5 COLON/BOLIVAR * 5775 5584 Colombia 10°50'21" -73°41'09" local 191 10°43'51" -72°57'37" 6 MOUNT LOGAN 5959 5250 Yukon (Canada) 60°34'00" -140°24’14“ Mentasta Pass 709 62°55'19" -143°40’08“ 7 PICO DE ORIZABA / CITLALTÉPETL 5636 4922 Mexico 19°01'48" -97°16'15" Champagne Pass 714 60°47'26" -136°25'15" 8 VINSON MASSIF 4892 4892 Antarctica -78°31’32“ -85°37’02“ 0 New Guinea (Indonesia, Irian 9 PUNCAK JAYA / CARSTENSZ PYRAMID 4884 4884 -4°03'48" 137°11'09" 0 Jaya) 10 EL'BRUS 5642 4741 Russia 43°21'12" 42°26'21" West Pakistan 901 26°33'39" 63°39'17" 11 MONT BLANC 4808 4695 France 45°49'57" 06°51'52" near Ozero Kubenskoye 113 60°42'12" c.37°07'46" 12 DAMAVAND 5610 4667 Iran 35°57'18" 52°06'36" South of Kaukasus 943 42°01'27" 43°29'54" 13 KLYUCHEVSKAYA 4750 4649 Kamchatka (Russia) 56°03'15" 160°38'27" 101 60°23'27" 163°53'09" 14 NANGA PARBAT 8125 4608 Pakistan 35°14'21" 74°35'27" Zoji La 3517 34°16'39" 75°28'16" 15 MAUNA KEA 4205 4205 Hawaii (USA) 19°49'14" -155°28’05“ 0 16 JENGISH CHOKUSU 7435 4144 Kyrghysztan/China 42°02'15" 80°07'30" -
Pathways and Mechanisms of Late Ordovician (Katian) Faunal Migrations of Laurentia and Baltica
Estonian Journal of Earth Sciences, 2015, 64, 1, 62–67 doi: 10.3176/earth.2015.11 Pathways and mechanisms of Late Ordovician (Katian) faunal migrations of Laurentia and Baltica Adriane R. Lama and Alycia L. Stigalla,b a Department of Geological Sciences, Ohio University, Athens 45701-2979, Ohio, U.S.A. b OHIO Center for Ecology and Evolutionary Studies, Ohio University, 316 Clippinger Laboratories, Athens 45701-2979, Ohio, U.S.A.; [email protected], [email protected] Received 2 July 2014, accepted 9 October 2014 Abstract. Late Ordovician strata within the Cincinnati Basin record a mass faunal migration event during the C4 and C5 depositional sequences. The geographic source region for the invaders and the paleoceanographic conditions that facilitated dispersal into the Cincinnati Basin has previously been poorly understood. Using Parsimony Analysis of Endemicity, biogeographic relationships among Laurentian and Baltic basins were analyzed for each of the C1–C5 depositional sequences to identify dispersal paths. The results support multiple dispersal pathways, including three separate dispersal events between Baltica and Laurentia. Within Laurentia, results support dispersal pathways between areas north of the Transcontinental Arch into the western Midcontinent, between the Upper Mississippi Valley into the Cincinnati Basin, and between the peri-cratonic Scoto-Appalachian Basin and the Cincinnati Basin. These results support the hypothesis that invasive taxa entered the Cincinnati Basin via multiple dispersal pathways and that the equatorial Iapetus current facilitated dispersal of organisms from Baltica to Laurentia. Within Laurentia, surface currents and large storms moving from northeast to southwest likely influenced the dispersal of organisms. Larval states were characterized for the Richmondian invaders, and most invaders were found to have had planktotrophic planktic larvae. -
Evolution of a Complex Isolated Dome System, Cerro Pizarro, Central Møxico
Bull Volcanol (2004) 66:322–335 DOI 10.1007/s00445-003-0313-y RESEARCH ARTICLE Nancy Riggs · Gerardo Carrasco-Nunez Evolution of a complex isolated dome system, Cerro Pizarro, central Mxico Received: 16 August 2002 / Accepted: 23 July 2003 / Published online: 30 October 2003 Springer-Verlag 2003 Abstract Cerro Pizarro is an isolated rhyolitic dome in Cerro Pizarro dome holds aspects in common with classic the intermontane Serdn-Oriental basin, located in the dome models and with larger stratovolcano systems. We eastern Trans-Mexican Volcanic Belt. Cerro Pizarro suggest that models that predict a simple evolution for erupted ~1.1 km3 of magma at about 220 ka. Activity domes fail to account for possibilities in evolutionary of Cerro Pizarro started with vent-clearing explosions at paths. Specifically, the formation of a cryptodome in the some depth; the resultant deposits contain clasts of local early stages of dome formation may be far more common basement rocks, including Cretaceous limestone, ~0.46- than generally recognized. Likewise, sector collapse of a Ma welded tuff, and basaltic lava. Subsequent explosive dome, although apparently rare, is a potential hazard that eruptions during earliest dome growth produced an must be recognized and for which planning must be done. alternating sequence of surge and fallout layers from an inferred small dome. As the dome grew both vertically Keywords Dome · Cryptodome · Eastern Mexican and laterally, it developed an external glassy carapace due Volcanic Belt · Dome collapse · Dome models to rapid chilling. Instability of the dome during emplace- ment caused the partial gravitational collapse of its flanks producing various block-and-ash-flow deposits. -
Climbers As Humanitarians: Helping Injured Migrants in Mexico
Appalachia Volume 69 Number 2 Summer/Fall 2018: Role Reversal in Article 4 the Mountains 2018 Climbers as Humanitarians: Helping Injured Migrants in Mexico Lisa Densmore Ballard Follow this and additional works at: https://digitalcommons.dartmouth.edu/appalachia Part of the Nonfiction Commons Recommended Citation Ballard, Lisa Densmore (2018) "Climbers as Humanitarians: Helping Injured Migrants in Mexico," Appalachia: Vol. 69 : No. 2 , Article 4. Available at: https://digitalcommons.dartmouth.edu/appalachia/vol69/iss2/4 This In This Issue is brought to you for free and open access by Dartmouth Digital Commons. It has been accepted for inclusion in Appalachia by an authorized editor of Dartmouth Digital Commons. For more information, please contact [email protected]. Climbers as Humanitarians Helping injured migrants in Mexico Lisa Densmore Ballard 24 Appalachia Appalachia_SF2018_FINAL REV3.indd 24 5/9/18 1:36 PM ico de Orizaba called to me when I first saw it in November P 2017, while driving into Tlachichuca, Mexico. I looked up its northwestern flank and wanted to stand on top of its white cone. It beckoned, cool and refreshing, framed by an azure sky, miles from where I stood. Around me, heat waves rose from the pavement and dust devils swirled among the cornstalk pyramids by the village gate. I realized I must not underestimate this alpine goliath. Pico de Orizaba (18,491 feet) is the third highest mountain in North America, after Denali in Alaska and Mount Logan in the Canadian Yukon. Located in Mexico’s volcanic belt, on the border of the states of Veracruz and Puebla, Orizaba rises prominently from a pancake-flat patchwork of corn and cactus in central Mexico. -
The Classic Upper Ordovician Stratigraphy and Paleontology of the Eastern Cincinnati Arch
International Geoscience Programme Project 653 Third Annual Meeting - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett – Kyle R. Hartshorn – Allison L. Young – Cameron E. Schwalbach – Alycia L. Stigall International Geoscience Programme (IGCP) Project 653 Third Annual Meeting - 2018 - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Kyle R. Hartshorn Dry Dredgers, 6473 Jayfield Drive, Hamilton, Ohio 45011, USA ([email protected]) Allison L. Young Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Cameron E. Schwalbach 1099 Clough Pike, Batavia, OH 45103, USA ([email protected]) Alycia L. Stigall Department of Geological Sciences and OHIO Center for Ecology and Evolutionary Studies, Ohio University, 316 Clippinger Lab, Athens, Ohio 45701, USA ([email protected]) ACKNOWLEDGMENTS We extend our thanks to the many colleagues and students who have aided us in our field work, discussions, and publications, including Chris Aucoin, Ben Dattilo, Brad Deline, Rebecca Freeman, Steve Holland, T.J. Malgieri, Pat McLaughlin, Charles Mitchell, Tim Paton, Alex Ries, Tom Schramm, and James Thomka. No less gratitude goes to the many local collectors, amateurs in name only: Jack Kallmeyer, Tom Bantel, Don Bissett, Dan Cooper, Stephen Felton, Ron Fine, Rich Fuchs, Bill Heimbrock, Jerry Rush, and dozens of other Dry Dredgers. We are also grateful to David Meyer and Arnie Miller for insightful discussions of the Cincinnatian, and to Richard A. -
Pico De Orizaba Trip Report
Pico De Orizaba Trip Report Humphrey is toplofty and metallizing flamingly while bivariate Gustaf devisees and conveys. Choosier and life-sized Orazio sentimentalizes some enrichment so irefully! Cetacean and gastronomic Delmar revelings her shopman ascend or unreeving unspeakably. She found sipping mojitos on to orizaba trip report are named for me focused on the true summit the earth This checklist includes all palm species breed in Pico de Orizaba National Park. Pico de Orizaba Trip Reports SummitPost. If ill find more error please that not wall to drop them. Pico de orizaba weather Midia Corporate. Pico de Orizaba trip report Mexico Lonely Planet Forum. Pico de Orizaba Global Volcanism Program. Mexico Pico de Orizaba Izta March 2012 LEMKE CLIMBS. Taken from 16000 on Ixta earlier in the ignorant Now two days later marsh found ourselves craning up foundation the face of Orizaba two vertical miles above. It all spend way have to Mexico City of same day that is indeed two hour trip for every full climb. Life change An Adventure FAQ Trip to Mexican highest mountain El Pico de Orizaba Trip Reports Life without An AdventureSpring BreakWildernessKidMountainsPico. Citaltpetl Pico de Orizaba 5636 m Primary factor 4926 m Saddle is 710. Citaltpetl. This knowledge report of Orizaba from SummitPost is a top example Don't take the altitude lightly we didn't and mill was quite worried about how compressed our. JG Climb Mexican Volcanoes Jagged Globe. A tube we can set for ourselves to lodge into her adventure once this year. Great experience climbing Pico De Orizaba with Orizaba. -
The HAWC Experiment at the Parque Nacional Pico De Orizaba
The HAWC experiment at the Parque Nacional Pico de Orizaba A feasibility study for the HAWC Collaboration Alberto Carrami˜nana1, Eduardo Mendoza1, Janina Nava1, Lil´ıV´azquez1,2 (1) Instituto Nacional de Astrof´ısica, Optica´ y Electr´onica Luis Enrique Erro 1, Tonantzintla, Puebla 72840, M´exico (2) Universidad Aut´onoma del Estado de M´exico April 16, 2007 Contents 1 The HAWC experiment 1 2 Science at the Parque Nacional Pico de Orizaba 3 2.1 Parque Nacional Pico de Orizaba . 3 2.2 Citlaltepetl and Tliltepetl . 7 2.2.1 Geology .......................... 7 2.2.2 Glaciers .......................... 10 2.2.3 Hydrology......................... 12 2.3 Weather conditions at Sierra Negra . 15 2.4 The Large Millimeter Telescope . 18 2.5 TheConsorcioSierraNegra . 21 3 HAWC at the Parque Nacional Pico de Orizaba 23 3.1 Thesite .............................. 23 3.1.1 The location for HAWC . 23 3.1.2 Land availability and permissions . 26 3.2 Theexperimentinfrastructure. 27 3.2.1 Thereservoir ....................... 27 3.2.2 Thedetector ....................... 30 3.2.3 Thebuilding ....................... 31 3.2.4 Power and communications . 33 3.2.5 Communications . 35 3.3 WaterforHAWC......................... 35 3.3.1 Geoelectrical studies . 36 3.3.2 Water precipitation: altimetric studies . 40 3.3.3 Quantifying water extraction . 43 3.4 Environmental considerations . 45 3.4.1 TheHAWCinfrastructure . 45 3.4.2 Water acquisition . 46 1 3.4.3 Operations ........................ 47 3.4.4 Post-operations . 48 3.5 Socialimpact ........................... 48 4 Operations and science 49 4.1 Operations ............................ 49 4.2 Budget............................... 49 4.3 Scientific input of the Mexican HAWC collaboration . -
WGBH/NOVA #4220 Making North America: Origins KIRK JOHNSON
WGBH/NOVA #4220 Making North America: Origins KIRK JOHNSON (Sant Director, Smithsonian National Museum of Natural History): North America, the land that we love: it looks pretty familiar, don’t you think? Well, think again! The ground that we walk on is full of surprises, if you know where to look. 00:25 As a geologist, the Grand Canyon is perhaps the best place in the world. Every single one of these layers tells its own story about what North America was like when that layer was deposited. So, are you ready for a little time-travelling? 00:38 I’m Kirk Johnson, the director of the Smithsonian National Museum of Natural History, and I’m taking off on the fieldtrip of a lifetime,… 00:50 Look at that rock there. That is crazy! …to find out, “How did our amazing continent get to be the way it is?” EMILY WOLIN (Geophysicist): Underneath Lake Superior, that’s about 30 miles of volcanic rock. KIRK JOHNSON: Thirty miles of volcanic rock? How did the landscape shape the creatures that lived and died here? Fourteen-foot-long fish, in Kansas. That’s what I’m telling you! 01:14 And how did we turn the rocks of our homeland… Ho-ho. Oh, man! …into riches? This thing is phenomenal. In this episode, we hunt down the clues to our continent’s epic past. 01:26 You can see new land being formed, right in front of your eyes. Why does this golf course hold the secret to the rise and fall of the Rockies? What forces nearly cracked North America in half? And is it possible that the New York City skyline… I’ve always wanted to do this. -
Some Isotopic and Geochemical Anomalies Observed in Mexico Prior to Large Scale Earthquakes and Volcanic Eruptions
41 SOME ISOTOPIC AND GEOCHEMICAL ANOMALIES 2) OBSERVED IN MEXICO PRIOR TO LARGE SCALE EARTHQUAKES AND VOLCANIC... s nucleare s investigacione e d l naciona o institut INSTITUTO NACIONAL DE INVESTIGACIONES NUCLEARES DIRECCIÓN DE INVESTIGACIÓN Y DESARROLLO SOME ISOTOPIC AND GEOCHEMICAL ANOMALIES OBSERVED IN MEXICO PRIOR TO LARGE SCALE EARTHQUAKES AND VOLCANIC ERUPTIONS. GERENCIA DE INVESTIGACIÓN APLICADA INFORME TÉCNICO IA-92-1 3 MAYO DE 1992. SOME ISOTOPIC AND GEOCHEMICAL ANOMALIES OBSERVED IN MEXICO PRIOR TO LARGE SCALE EARTHQUAKES AND VOLCANIC ERUPTIONS. S. de la CjDi2=a@ynaf, M.A. Amienta*, y N. Segovia A. Gerencia de Investigación Aplicada Dirección de Investigación y Desarrollo Instituto Nacional de Investigaciones Nucleares * Instituto de Geofísica de la U.N.A.M. GERENCIA DE INVESTIGACIÓN APLICADA INFORME TÉCNICO IA-92-13 MAYO DE 1992. SOME ISOTOPIC AND GEOCHEMICAL ANOMALIES OBSERVED IN MEXICO PRIOR TO LARGE SCALE EARTHQUAKES AND VOLCANIC ERUPTIONS Servando De la Cruz-Reyna1'3, M.Aurora Armienta H.1, Nuria Segovia2 1 Instituto de Geofisica, UNAM, Ciudad Universitaria, Mexico 04 510 D. F., (Mexico). 2 Instituto Nacional de Investigaciones Nucleares, Ap. Postal 18-1207, Mexico 11801, D.F. (Mexico). 3 consultant to CENAPRED (National Center for Disaster Prevention) Av. Delfin Madrigal 665, Mexico, D.F. (Mexico) SUMMARY A brief account of some experiences obtained in Mexico, related with the identification of geochemical precursors of volcanic eruptions and isotopic precursors of earthquakes and volcanic activity is given. The cases of three recent events of volcanic activity and one large earthquake are discussed in the context of an active geological environment. The positive results in the identification of some geochemical precursors that helped to evaluate the eruptive potential during two volcanic crises (Tacana 1986 and Colima 1991), and the significant radon-in-soil anomalies observed during a volcanic catastrophic eruption (El Chichón, 1982) and prior to a major earthquake (Michoacan, 1985) are critically analyzed. -
Justin V. Strauss Department of Earth Sciences Dartmouth College HB6105 Fairchild Hall Hanover, NH 03755 (603) 646–6954 [email protected]
Justin V. Strauss Department of Earth Sciences Dartmouth College HB6105 Fairchild Hall Hanover, NH 03755 (603) 646–6954 [email protected] Education Harvard University, Cambridge, MA PhD, Department of Earth and Planetary Sciences May 2015 MA, Department of Earth and Planetary Sciences May 2014 The Colorado College, Colorado Springs, CO BA, Department of Geology Aug. 2006 Teaching and Work Experience Dartmouth College, Department of Earth Sciences, Hanover, NH Assistant Professor Jan. 2016–present Stanford University, Department of Geological Sciences, Stanford, CA Agouron Institute Geobiology Postdoctoral Scholar July 2015 - Dec. 2015 Harvard University, Department of Earth and Planetary Sciences, Cambridge, MA Field Assistant – Dr. Francis Macdonald July 2009 - Aug. 2009 Field Assistant – Dr. Francis Macdonald May 2008 Princeton University, Department of Geosciences, Princeton, NJ Lab Technician – Dr. Adam Maloof Aug. 2007 - Dec. 2007 Field Assistant – Dr. Adam Maloof June 2007 - Aug. 2007 The Colorado College, Department of Geology, Colorado Springs, CO Paraprofessional Sept. 2006 - June 2007 Honors and Awards 2018 National Geographic Explorer 2018 American Chemical Society Doctoral New Investigator Award 2015 Agouron Institute Geobiology Postdoctoral Fellowship 2015 Geological Society of America Student Research Grant 2014 Geological Society of America Student Research Grant 2013 Star Family Prize for Excellence in Undergraduate Advising Nominee – Harvard University 2013 Bok Center Distinction in Teaching Award – Harvard University 2012 Bok Center Distinction in Teaching Award – Harvard University 2012 GACMAC 2012 Jerome Remick III Poster Award 2012 National Science Foundation Graduate Research Fellowship Recipient 2011 National Science Foundation GRFP Honorable Mention 2006 William A. Fischer Special Recognition Geosciences Award 2005 Patricia J. Buster Scholarship for Undergraduate Research 2004 Patricia J. -
Buenellus Chilhoweensis N. Sp. from the Murray Shale (Lower Cambrian Chilhowee Group) of Tennessee, the Oldest Known Trilobite from the Iapetan Margin of Laurentia
Journal of Paleontology, 92(3), 2018, p. 442–458 Copyright © 2018, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/18/0088-0906 doi: 10.1017/jpa.2017.155 Buenellus chilhoweensis n. sp. from the Murray Shale (lower Cambrian Chilhowee Group) of Tennessee, the oldest known trilobite from the Iapetan margin of Laurentia Mark Webster,1 and Steven J. Hageman2 1Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 〈[email protected]〉 2Department of Geology, Appalachian State University, Boone, North Carolina 28608, USA 〈[email protected]〉 Abstract.—The Ediacaran to lower Cambrian Chilhowee Group of the southern and central Appalachians records the rift-to-drift transition of the newly formed Iapetan margin of Laurentia. Body fossils are rare within the Chilhowee Group, and correlations are based almost exclusively on lithological similarities. A critical review of previous work highlights the relatively weak biostratigraphic and radiometric age constraints on the various units within the succession. Herein, we document a newly discovered fossil-bearing locality within the Murray Shale (upper Chilhowee Group) on Chilhowee Mountain, eastern Tennessee, and formally describe a nevadioid trilobite, Buenellus chilhoweensis n. sp., from that site. This trilobite indicates that the Murray Shale is of Montezuman age (provisional Cambrian Stage 3), which is older than the Dyeran (provisional late Stage 3 to early Stage 4) age suggested by the historical (mis)identification of “Olenellus sp.” from within the unit as reported by workers more than a century ago. -
Lichen-Associated Bacterial Diversity in the Trans-Mexican Volcanic Belt
Lichen-associated bacterial diversity in the Trans-Mexican Volcanic Belt A final report for the Explorers Club Exploration Fund, Diversa Award, 2007 Submitted April 2008 Brendan P. Hodkinson PhD Candidate, Biology Department Duke University, Durham, NC 27708 443-340-0917; [email protected] Google Earth™ view of the eastern portion of the Trans-Mexican Volcanic Belt, facing east from ~20 miles above the Valley of Mexico. Major landmarks include three volcanoes (Iztaccíhuatl, Popocatépetl, and Pico de Orizaba), a crater lake (Laguna Alchichica), and two major cities (Puebla and Xalapa). 2 In August 2007, I traveled to the biologically diverse eastern portion of the Trans- Mexican Volcanic Belt to collect fresh lichen specimens for my studies of bacterial diversity. My journey began in the city of Puebla, where I spent my first night. Nearby was the Parque Nacional Izta-Popo, home to North America’s second and third highest volcanoes, Popocatépetl (5,452 m) and Iztaccíhuatl (5,230 m). Iztaccíhuatl is the smaller of the two volcanoes, and, unlike Popocatépetl, is no longer active. Also, the peak of Iztaccíhuatl is the lowest point in Mexico with permanent snow and glaciers. This is a perfect place for sampling lichens because, in a relatively short amount of time, diverse lichen samples can be collected from a variety of elevations (at least 3,000 m of elevation change within the park). First morning in Mexico. Volcán Popocatépetl seen from the city of Puebla, with a hint of Volcán Iztaccíhuatl behind my head. 3 I then traveled to the state of Veracruz, an area that is world renown for its amazing biodiversity.