Ncomms4518.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Ncomms4518.Pdf ARTICLE Received 13 Aug 2013 | Accepted 26 Feb 2014 | Published 27 Mar 2014 DOI: 10.1038/ncomms4518 Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids Lynnette Fernandez-Cuesta1,*, Martin Peifer1,2,*, Xin Lu1, Ruping Sun3,LukaOzretic´4, Danila Seidel1,5, Thomas Zander1,6,7, Frauke Leenders1,5, Julie George1,ChristianMu¨ller1, Ilona Dahmen1, Berit Pinther1, Graziella Bosco1, Kathryn Konrad8, Janine Altmu¨ller8,9,10, Peter Nu¨rnberg2,8,9, Viktor Achter11,UlrichLang11,12, Peter M. Schneider13, Magdalena Bogus13,AlexSoltermann14, Odd Terje Brustugun15,16,ÅslaugHelland15,16, Steinar Solberg17, Marius Lund-Iversen18,SaschaAnse´n6,ErichStoelben19, Gavin M. Wright20, Prudence Russell21, Zoe Wainer20, Benjamin Solomon22, John K. Field23, Russell Hyde23, Michael P.A. Davies23, Lukas C. Heukamp4,7, Iver Petersen24,SvenPerner25, Christine M. Lovly26, Federico Cappuzzo27, William D. Travis28,Ju¨rgen Wolf5,6,7, Martin Vingron3, Elisabeth Brambilla29,StefanA.Haas3, Reinhard Buettner4,5,7 & Roman K. Thomas1,4,5 Pulmonary carcinoids are rare neuroendocrine tumours of the lung. The molecular alterations underlying the pathogenesis of these tumours have not been systematically studied so far. Here we perform gene copy number analysis (n ¼ 54), genome/exome (n ¼ 44) and transcriptome (n ¼ 69) sequencing of pulmonary carcinoids and observe frequent mutations in chromatin-remodelling genes. Covalent histone modifiers and subunits of the SWI/SNF complex are mutated in 40 and 22.2% of the cases, respec- tively, with MEN1, PSIP1 and ARID1A being recurrently affected. In contrast to small-cell lung cancer and large-cell neuroendocrine lung tumours, TP53 and RB1 mutations are rare events, suggesting that pulmonary carcinoids are not early progenitor lesions of the highly aggressive lung neuroendocrine tumours but arise through independent cellular mechanisms. These data also suggest that inactivation of chromatin-remodelling genes is sufficient to drive transformation in pulmonary carcinoids. 1 Department of Translational Genomics, Center of Integrated Oncology Cologne–Bonn, Medical Faculty, University of Cologne, 50924 Cologne, Germany. 2 Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany. 3 Computational Molecular Biology Group, Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany. 4 Department of Pathology, University Hospital Medical Center, University of Cologne, 50937 Cologne, Germany. 5 Laboratory of Translational Cancer Genomics, Center of Integrated Oncology Cologne—Bonn, University of Cologne, 50924 Cologne, Germany. 6 Department I of Internal Medicine, Center of Integrated Oncology Ko¨ln-Bonn, University of Cologne, 50924 Cologne, Germany. 7 Network Genomic Medicine, University Hospital Cologne, Center of Integrated Oncology Cologne Bonn, 50924 Cologne, Germany. 8 Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany. 9 Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany. 10 Institute of Human Genetics, University of Cologne, Cologne 50931, Germany. 11 Computing Center, University of Cologne, 50931 Cologne, Germany. 12 Department of Informatics, University of Cologne, 50931 Cologne, Germany. 13 Institute of Legal Medicine, University of Cologne, 50823 Cologne, Germany. 14 Institute for Surgical Pathology, University Hospital Zurich, 8091 Zurich, Switzerland. 15 Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N- 0424 Oslo, Norway. 16 Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway. 17 Department of Thoracic Surgery, Rikshospitalet, Oslo University Hospital, N-0027 Oslo, Norway. 18 Department of pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway. 19 Thoracic Surgery, Lungenklinik Merheim, Kliniken der Stadt Ko¨ln gGmbH, 51109 Cologne, Germany. 20 Department of Surgery, St Vincent’s Hospital, University of Melbourne, Melbourne, Victoria 3065, Australia. 21 Department of Pathology, St Vincent’s Hospital, Melbourne, Victoria 3065, Australia. 22 Department of Haematology and Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia. 23 Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool Cancer Research Centre, Liverpool L3 9TA, UK. 24 Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany. 25 Department of Prostate Cancer Research, Institute of Pathology, University Hospital of Bonn, 53127 Bonn, Germany. 26 Vanderbilt-Ingram Cancer Center, Nashville, Tennessee 37232, USA. 27 Department of Medical Oncology, Istituto Toscano Tumouri, 57100 Livorno, Italy. 28 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. 29 Department of Pathology, CHU Grenoble INSERM U823, Institute Albert Bonniot 38043, CS10217 Grenoble, France. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to R.K.T., (email: roman.thomas@uni-Ko¨ln.de). NATURE COMMUNICATIONS | 5:3518 | DOI: 10.1038/ncomms4518 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4518 ulmonary carcinoids are neuroendocrine tumours that NonFermentable) complex are mutated in 40 and 22.2% of the account for about 2% of pulmonary neoplasms. On the cases, respectively. By contrast, mutations of TP53 and RB1 are Pbasis of the WHO classification of 2004, carcinoids can be only found in 2 out of 45 cases, suggesting that these genes are subdivided into typical or atypical, the latter ones being very rare not main drivers in pulmonary carcinoids. (about 0.2%)1. Most carcinoids can be cured by surgery; however, inoperable tumours are mostly insensitive to chemo- and radiation therapies1. Apart from few low-frequency alterations, Results such as mutations in MEN1 (ref. 1), comprehensive genome In total, we generated genome/exome sequencing data for 44 analyses of this tumour type have so far been lacking. independent tumour-normal pairs, and for most of them, also Here we conduct integrated genome analyses2 on data from RNAseq (n ¼ 39, 69 in total) and SNP 6.0 (n ¼ 29, 54 in total) chromosomal gene copy number of 54 tumours, genome and data (Supplementary Table 1). Although no significant focal exome sequencing of 29 and 15 tumour-normal pairs, copy number alterations were observed across the tumours respectively, as well as transcriptome sequencing of 69 tumours. analysed, we detected a copy number pattern compatible with Chromatin-remodelling is the most frequently mutated pathway chromothripsis3 in a stage-III atypical carcinoid of a former in pulmonary carcinoids; the genes MEN1, PSIP1 and ARID1A smoker (Fig. 1a; Supplementary Fig. 1). The intensely clustered were recurrently affected by mutations. Specifically, covalent genomic structural alterations found in this sample were histone modifiers and subunits of the SWI/SNF (SWich/Sucrose restricted to chromosomes 3, 12 and 13, and led to the a b 22 4 20 21 1 19 18 2 3 17 2 16 3 15 1 Copy number 14 0 13 4 12 5 004080120160 200 40 80 120 0 40 80 120 11 chr3 (Mbp) chr12 (Mbp) chr13 (Mbp) 10 6 Copy number Intra-chromosomal Inter-chromosomal 9 7 Raw copy number 8 segments chimeric transcript chimeric transcript c d 12 1.0 SQ 10 0.8 AD 8 SCLC G:C>A:T 0.6 A:T>G:C 6 C:G>A:T Muts/Mb Mutation rate 0.4 C:G>G:C 4 A:T>T:A A:T>C:G 0.2 2 PCA 0 0.0 SCLC Evol PCA Figure 1 | Genomic characterization of pulmonary carcinoids. (a) CIRCOS plot of the chromothripsis case. The outer ring shows chromosomes arranged end to end. Somatic copy number alterations (gains in red and losses in blue) detected by 6.0 SNP arrays are depicted in the inside ring. (b)Copy numbers and chimeric transcripts of affected chromosomes. Segmented copy number states (blue points) are shown together with raw copy number data averaged over 50 adjacent probes (grey points). To show the different levels of strength for the identified chimeric transcripts, all curves are scaled according to the sequencing coverage at the fusion point. (c) Mutation frequency detected by genome and exome sequencing in pulmonary carcinoids (PCA). Each blue dot represents the number of mutations (muts) per Mb in one pulmonary carcinoid sample. Average frequencies are also shown for adenocarcinomas (AD), squamous (SQ) and small-cell lung cancer (SCLC) based on previous studies2,4,5.(d) Comparison of context-independent transversion and transition rates (an overall strand symmetry is assumed) between rates derived from molecular evolution (evol)36, from a previous SCLC sequencing study2 and from the PCA genome and exome sequencing. All rates are scaled such that their overall sum is 1. 2 NATURE COMMUNICATIONS | 5:3518 | DOI: 10.1038/ncomms4518 | www.nature.com/naturecommunications & 2014 Macmillan Publishers Limited. All rights reserved. NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4518 ARTICLE expression of several chimeric transcripts (Fig. 1b; Supplementary MEN1 is a molecular adaptor that physically links MLL with the Table 2). Some of these chimeric transcripts affected genes chromatin-associated protein PSIP1, an interaction that is involved in chromatin-remodelling processes, including out-of- required for MLL/MEN1-dependent functions7. MEN1 also acts frame fusion
Recommended publications
  • TERT Promoter Mutations Occur Frequently in Gliomas and a Subset of Tumors Derived from Cells with Low Rates of Self-Renewal
    TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal Patrick J. Killelaa,1, Zachary J. Reitmana,1, Yuchen Jiaob,1, Chetan Bettegowdab,c,1, Nishant Agrawalb,d, Luis A. Diaz, Jr.b, Allan H. Friedmana, Henry Friedmana, Gary L. Galliac,d, Beppino C. Giovanellae, Arthur P. Grollmanf, Tong-Chuan Heg, Yiping Hea, Ralph H. Hrubanh, George I. Jalloc, Nils Mandahli, Alan K. Meekerh,m, Fredrik Mertensi, George J. Nettoh,l, B. Ahmed Rasheeda, Gregory J. Rigginsc, Thomas A. Rosenquistf, Mark Schiffmanj, Ie-Ming Shihh, Dan Theodorescuk, Michael S. Torbensonh, Victor E. Velculescub, Tian-Li Wangh, Nicolas Wentzensenj, Laura D. Woodh, Ming Zhangb, Roger E. McLendona, Darell D. Bignera, Kenneth W. Kinzlerb, Bert Vogelsteinb,2, Nickolas Papadopoulosb, and Hai Yana,2 aThe Preston Robert Tisch Brain Tumor Center at Duke, Pediatric Brain Tumor Foundation Institute at Duke, and Department of Pathology, Duke University Medical Center, Durham, NC 27710; bLudwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231; Departments of cNeurosurgery, dOtolaryngology—Head and Neck Surgery, hPathology, lUrology, and mOncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231; eChristus Stehlin Foundation for Cancer Research, Houston, TX 77025; fDepartment of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794; gMolecular Oncology Laboratory, Department of Orthopaedic
    [Show full text]
  • Multiple Cellular Proteins Interact with LEDGF/P75 Through a Conserved Unstructured Consensus Motif
    ARTICLE Received 19 Jan 2015 | Accepted 1 Jul 2015 | Published 6 Aug 2015 DOI: 10.1038/ncomms8968 Multiple cellular proteins interact with LEDGF/p75 through a conserved unstructured consensus motif Petr Tesina1,2,3,*, Katerˇina Cˇerma´kova´4,*, Magdalena Horˇejsˇ´ı3, Katerˇina Procha´zkova´1, Milan Fa´bry3, Subhalakshmi Sharma4, Frauke Christ4, Jonas Demeulemeester4, Zeger Debyser4, Jan De Rijck4,**, Va´clav Veverka1,** & Pavlı´na Rˇeza´cˇova´1,3,** Lens epithelium-derived growth factor (LEDGF/p75) is an epigenetic reader and attractive therapeutic target involved in HIV integration and the development of mixed lineage leukaemia (MLL1) fusion-driven leukaemia. Besides HIV integrase and the MLL1-menin complex, LEDGF/p75 interacts with various cellular proteins via its integrase binding domain (IBD). Here we present structural characterization of IBD interactions with transcriptional repressor JPO2 and domesticated transposase PogZ, and show that the PogZ interaction is nearly identical to the interaction of LEDGF/p75 with MLL1. The interaction with the IBD is maintained by an intrinsically disordered IBD-binding motif (IBM) common to all known cellular partners of LEDGF/p75. In addition, based on IBM conservation, we identify and validate IWS1 as a novel LEDGF/p75 interaction partner. Our results also reveal how HIV integrase efficiently displaces cellular binding partners from LEDGF/p75. Finally, the similar binding modes of LEDGF/p75 interaction partners represent a new challenge for the development of selective interaction inhibitors. 1 Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo nam. 2, 166 10 Prague, Czech Republic. 2 Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 128 44 Prague, Czech Republic.
    [Show full text]
  • SMARCA1 Antibody A
    Revision 1 C 0 2 - t SMARCA1 Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 0 5 Web: [email protected] 4 www.cellsignal.com 9 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB, IP H Endogenous 130 Rabbit P28370 6594 Product Usage Information 5. Ho, L. and Crabtree, G.R. (2010) Nature 463, 474-84. 6. Landry, J.W. et al. (2011) Genes Dev 25, 275-86. Application Dilution 7. Landry, J. et al. (2008) PLoS Genet 4, e1000241. Western Blotting 1:1000 Immunoprecipitation 1:50 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity SMARCA1 Antibody recognizes endogenous levels of total SMARCA1 protein. Species Reactivity: Human Source / Purification Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues near the amino terminus of human SMARCA1 protein. Antibodies are purified by protein A and peptide affinity chromatography. Background SMARCA1 (SNF2L) is one of the two orthologs of the ISWI (imitation switch) ATPases encoded by the mammalian genome (1). The ISWI chromatin remodeling complexes were first identified in Drosophila and have been shown to remodel and alter nucleosome spacing in vitro (2). SMARCA1 is the catalytic subunit of the nucleosome remodeling factor (NURF) and CECR2-containing remodeling factor (CERF) complexes (3-5).
    [Show full text]
  • Monoclonal Antibody to SMARCA1
    AM50455PU-N OriGene Technologies Inc. OriGene EU Acris Antibodies GmbH 9620 Medical Center Drive, Ste 200 Schillerstr. 5 Rockville, MD 20850 32052 Herford UNITED STATES GERMANY Phone: +1-888-267-4436 Phone: +49-5221-34606-0 Fax: +1-301-340-8606 Fax: +49-5221-34606-11 [email protected] [email protected] Monoclonal Antibody to SMARCA1 - Purified Alternate names: ATP-dependent helicase SMARCA1, Nucleosome-remodeling factor subunit SNF2L, Probable global transcription activator SNF2L1, SNF2L, SNF2L1, SWI/SNF-related matrix- associated actin-dependent regulator of chromatin subfamily A member 1 Catalog No.: AM50455PU-N Quantity: 0.1 mg Concentration: lot-specific Background: Nucleosome-remodeling factor subunit SNF2L, also known as SWI/SNF-related matrix- associated actin-dependent regulator of chromatin subfamily A member 1 (SMARCA1), is the energy-transducing component of NURF (nucleosome-remodeling factor) and CERF (CECR2-containing-remodeling factor) complexes. These complexes facilitate the disruption of chromatin structure in an ATP-dependent manner. SNF2L potentiates neurite outgrowth, and may be involved in brain development by regulating En-1 and En-2 expression as well as in the development of luteal cells. Uniprot ID: P28370 NCBI: NP_003060.2 GeneID: 6594 Host / Isotype: Rat / IgG2b Clone: SNF 2C4 Immunogen: GST-tagged recombinant protein corresponding to human SNF2L. Format: State: Liquid purified Ig fraction Purification: Protein G Chromatography Buffer System: 0.1 M Tris-Glycine (pH 7.4), 150 mM NaCl with 0.05% sodium azide. Applications: Immunohistochemistry: A representative lot was used by an an independent laboratory to detect SNF2L in certain, normal human organ tissues. (Eckey, M., et al.
    [Show full text]
  • SMARCA1 (D4Q7V) Rabbit
    SMARCA1 (D4Q7V) Rabbit mAb Store at -20°C 3 n 100 µl Orders n 877-616-CELL (2355) (10 western blots) [email protected] Support n 877-678-TECH (8324) [email protected] Web n www.cellsignal.com New 03/13 #12483 For Research Use Only. Not For Use In Diagnostic Procedures. Entrez-Gene ID #6594 Swiss-Prot Acc. #P28370 Storage: Supplied in 10 mM sodium HEPES (pH 7.5), 150 Applications Species Cross-Reactivity* Molecular Wt. Isotype mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% W, IP H, Mk 130 kDa Rabbit IgG** sodium azide. Store at –20°C. Do not aliquot the antibody. Endogenous *Species cross-reactivity is determined by western blot. Background: SMARCA1 (SNF2L) is one of the two ortho- ** Anti-rabbit secondary antibodies must be used to logs of the ISWI (imitation switch) ATPases encoded by the detect this antibody. kDa LN18 SW620 HeLa HT-29 Saos-2 OVCAR8COS-7 mammalian genome (1). The ISWI chromatin remodeling Recommended Antibody Dilutions: complexes were first identified in Drosophila and have been 200 140 Western blotting 1:1000 shown to remodel and alter nucleosome spacing in vitro (2). SMARCA1 100 Immunoprecipitation 1:100 SMARCA1 is the catalytic subunit of the nucleosome re- 80 modeling factor (NURF) and CECR2-containing remodeling For product specific protocols please see the web page 60 factor (CERF) complexes (3-5). The NURF complex plays an 50 for this product at www.cellsignal.com. important role in neuronal physiology by promoting neurite 40 Please visit www.cellsignal.com for a complete listing outgrowth and regulation of Engrailed homeotic genes that 30 of recommended complementary products.
    [Show full text]
  • Contribution of Multiple Inherited Variants to Autism Spectrum Disorder (ASD) in a Family with 3 Affected Siblings
    G C A T T A C G G C A T genes Article Contribution of Multiple Inherited Variants to Autism Spectrum Disorder (ASD) in a Family with 3 Affected Siblings Jasleen Dhaliwal 1 , Ying Qiao 1,2, Kristina Calli 1,2, Sally Martell 1,2, Simone Race 3,4,5, Chieko Chijiwa 1,5, Armansa Glodjo 3,5, Steven Jones 1,6 , Evica Rajcan-Separovic 2,7, Stephen W. Scherer 4 and Suzanne Lewis 1,2,5,* 1 Department of Medical Genetics, University of British Columbia (UBC), Vancouver, BC V6H 3N1, Canada; [email protected] (J.D.); [email protected] (Y.Q.); [email protected] (K.C.); [email protected] (S.M.); [email protected] (C.C.); [email protected] (S.J.) 2 BC Children’s Hospital, Vancouver, BC V5Z 4H4, Canada; [email protected] 3 Department of Pediatrics, University of British Columbia (UBC), Vancouver, BC V6T 1Z7, Canada; [email protected] (S.R.); [email protected] (A.G.) 4 The Centre for Applied Genomics and McLaughlin Centre, Hospital for Sick Children and University of Toronto, Toronto, ON M5G 0A4, Canada; [email protected] 5 BC Children’s and Women’s Health Center, Vancouver, BC V6H 3N1, Canada 6 Michael Smith Genome Sciences Centre, Vancouver, BC V5Z 4S6, Canada 7 Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC V6T 1Z7, Canada * Correspondence: [email protected] Abstract: Autism Spectrum Disorder (ASD) is the most common neurodevelopmental disorder in Citation: Dhaliwal, J.; Qiao, Y.; Calli, children and shows high heritability.
    [Show full text]
  • Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT) Beyond SMARCA4 Mutations: a Comprehensive Genomic Analysis
    cells Article Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT) beyond SMARCA4 Mutations: A Comprehensive Genomic Analysis Aurélie Auguste 1,Félix Blanc-Durand 2 , Marc Deloger 3 , Audrey Le Formal 1, Rohan Bareja 4,5, David C. Wilkes 4 , Catherine Richon 6,Béatrice Brunn 2, Olivier Caron 6, Mojgan Devouassoux-Shisheboran 7,Sébastien Gouy 2, Philippe Morice 2, Enrica Bentivegna 2, Andrea Sboner 4,5,8, Olivier Elemento 4,8, Mark A. Rubin 9 , Patricia Pautier 2, Catherine Genestie 10, Joanna Cyrta 4,9,11 and Alexandra Leary 1,2,* 1 Medical Oncologist, Gynecology Unit, Lead Translational Research Team, INSERM U981, Gustave Roussy, 94805 Villejuif, France; [email protected] (A.A.); [email protected] (A.L.F.) 2 Gynecological Unit, Department of Medicine, Gustave Roussy, 94805 Villejuif, France; [email protected] (F.B.-D.); [email protected] (B.B.); [email protected] (S.G.); [email protected] (P.M.); [email protected] (E.B.); [email protected] (P.P.) 3 Bioinformatics Core Facility, Gustave Roussy Cancer Center, UMS CNRS 3655/INSERM 23 AMMICA, 94805 Villejuif, France; [email protected] 4 Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10001, USA; [email protected] (R.B.); [email protected] (D.C.W.); [email protected] (A.S.); [email protected] (O.E.); [email protected] (J.C.) 5 Institute for Computational Biomedicine, Weill Cornell
    [Show full text]
  • SUPPLEMENTARY NOTE Co-Activation of GR and NFKB
    SUPPLEMENTARY NOTE Co-activation of GR and NFKB alters the repertoire of their binding sites and target genes. Nagesha A.S. Rao1*, Melysia T. McCalman1,*, Panagiotis Moulos2,4, Kees-Jan Francoijs1, 2 2 3 3,5 Aristotelis Chatziioannou , Fragiskos N. Kolisis , Michael N. Alexis , Dimitra J. Mitsiou and 1,5 Hendrik G. Stunnenberg 1Department of Molecular Biology, Radboud University Nijmegen, the Netherlands 2Metabolic Engineering and Bioinformatics Group, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece 3Molecular Endocrinology Programme, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Greece 4These authors contributed equally to this work 5 Corresponding authors E-MAIL: [email protected] ; TEL: +31-24-3610524; FAX: +31-24-3610520 E-MAIL: [email protected] ; TEL: +30-210-7273741; FAX: +30-210-7273677 Running title: Global GR and NFKB crosstalk Keywords: GR, p65, genome-wide, binding sites, crosstalk SUPPLEMENTARY FIGURES/FIGURE LEGENDS AND SUPPLEMENTARY TABLES 1 Rao118042_Supplementary Fig. 1 A Primary transcript Mature mRNA TNF/DMSO TNF/DMSO 8 12 r=0.74, p< 0.001 r=0.61, p< 0.001 ) 2 ) 10 2 6 8 4 6 4 2 2 0 Fold change (mRNA) (log Fold change (primRNA) (log 0 −2 −2 −2 0 2 4 −2 0 2 4 Fold change (RNAPII) (log2) Fold change (RNAPII) (log2) B chr5: chrX: 56 _ 104 _ DMSO DMSO 1 _ 1 _ 56 _ 104 _ TA TA 1 _ 1 _ 56 _ 104 _ TNF TNF Cluster 1 1 _ Cluster 2 1 _ 56 _ 104 _ TA+TNF TA+TNF 1 _ 1 _ CCNB1 TSC22D3 chr20: chr17: 25 _ 33 _ DMSO DMSO 1 _ 1 _ 25 _ 33 _ TA TA 1 _ 1 _ 25 _ 33 _ TNF TNF Cluster 3 1 _ Cluster 4 1 _ 25 _ 33 _ TA+TNF TA+TNF 1 _ 1 _ GPCPD1 CCL2 chr6: chr22: 77 _ 35 _ DMSO DMSO 1 _ 77 _ 1 _ 35 _ TA TA 1 _ 1 _ 77 _ 35 _ TNF Cluster 5 Cluster 6 TNF 1 _ 1 _ 77 _ 35 _ TA+TNF TA+TNF 1 _ 1 _ TNFAIP3 DGCR6 2 Supplementary Figure 1.
    [Show full text]
  • Duplication 9P and Their Implication to Phenotype
    Guilherme et al. BMC Medical Genetics (2014) 15:142 DOI 10.1186/s12881-014-0142-1 RESEARCH ARTICLE Open Access Duplication 9p and their implication to phenotype Roberta Santos Guilherme1, Vera Ayres Meloni1, Ana Beatriz Alvarez Perez1, Ana Luiza Pilla1, Marco Antonio Paula de Ramos1, Anelisa Gollo Dantas1, Sylvia Satomi Takeno1, Leslie Domenici Kulikowski2 and Maria Isabel Melaragno1* Abstract Background: Trisomy 9p is one of the most common partial trisomies found in newborns. We report the clinical features and cytogenomic findings in five patients with different chromosome rearrangements resulting in complete 9p duplication, three of them involving 9p centromere alterations. Methods: The rearrangements in the patients were characterized by G-banding, SNP-array and fluorescent in situ hybridization (FISH) with different probes. Results: Two patients presented de novo dicentric chromosomes: der(9;15)t(9;15)(p11.2;p13) and der(9;21)t(9;21) (p13.1;p13.1). One patient presented two concomitant rearranged chromosomes: a der(12)t(9;12)(q21.13;p13.33) and an psu i(9)(p10) which showed FISH centromeric signal smaller than in the normal chromosome 9. Besides the duplication 9p24.3p13.1, array revealed a 7.3 Mb deletion in 9q13q21.13 in this patient. The break in the psu i(9) (p10) probably occurred in the centromere resulting in a smaller centromere and with part of the 9q translocated to the distal 12p with the deletion 9q occurring during this rearrangement. Two patients, brother and sister, present 9p duplication concomitant to 18p deletion due to an inherited der(18)t(9;18)(p11.2;p11.31)mat.
    [Show full text]
  • Integrated Analysis of the Critical Region 5P15.3–P15.2 Associated with Cri-Du-Chat Syndrome
    Genetics and Molecular Biology, 42, 1(suppl), 186-196 (2019) Copyright © 2019, Sociedade Brasileira de Genética. Printed in Brazil DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2018-0173 Research Article Integrated analysis of the critical region 5p15.3–p15.2 associated with cri-du-chat syndrome Thiago Corrêa1, Bruno César Feltes2 and Mariluce Riegel1,3* 1Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. 2Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. 3Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil. Abstract Cri-du-chat syndrome (CdCs) is one of the most common contiguous gene syndromes, with an incidence of 1:15,000 to 1:50,000 live births. To better understand the etiology of CdCs at the molecular level, we investigated theprotein–protein interaction (PPI) network within the critical chromosomal region 5p15.3–p15.2 associated with CdCs using systemsbiology. Data were extracted from cytogenomic findings from patients with CdCs. Based on clin- ical findings, molecular characterization of chromosomal rearrangements, and systems biology data, we explored possible genotype–phenotype correlations involving biological processes connected with CdCs candidate genes. We identified biological processes involving genes previously found to be associated with CdCs, such as TERT, SLC6A3, and CTDNND2, as well as novel candidate proteins with potential contributions to CdCs phenotypes, in- cluding CCT5, TPPP, MED10, ADCY2, MTRR, CEP72, NDUFS6, and MRPL36. Although further functional analy- ses of these proteins are required, we identified candidate proteins for the development of new multi-target genetic editing tools to study CdCs.
    [Show full text]
  • Multiple Endocrine Neoplasia Type 1 (MEN1)
    Lab Management Guidelines v2.0.2019 Multiple Endocrine Neoplasia Type 1 (MEN1) MOL.TS.285.A v2.0.2019 Introduction Multiple Endocrine Neoplasia Type 1 (MEN1) is addressed by this guideline. Procedures addressed The inclusion of any procedure code in this table does not imply that the code is under management or requires prior authorization. Refer to the specific Health Plan's procedure code list for management requirements. Procedures addressed by this Procedure codes guideline MEN1 Known Familial Mutation Analysis 81403 MEN1 Deletion/Duplication Analysis 81404 MEN1 Full Gene Sequencing 81405 What is Multiple Endocrine Neoplasia Type 1 Definition Multiple Endocrine Neoplasia Type 1 (MEN1) is an inherited form of tumor predisposition characterized by multiple tumors of the endocrine system. Incidence or Prevalence MEN1 has a prevalence of 1/10,000 to 1/100,000 individuals.1 Symptoms The presenting symptom in 90% of individuals with MEN1 is primary hyperparathyroidism (PHPT). Parathyroid tumors cause overproduction of parathyroid hormone which leads to hypercalcemia. The average age of onset is 20-25 years. Parathyroid carcinomas are rare in individuals with MEN1.2,3,4 Pituitary tumors are seen in 30-40% of individuals and are the first clinical manifestation in 10% of familial cases and 25% of simplex cases. Tumors are typically solitary and there is no increased prevalence of pituitary carcinoma in individuals with MEN1.2,5 © eviCore healthcare. All Rights Reserved. 1 of 9 400 Buckwalter Place Boulevard, Bluffton, SC 29910 (800) 918-8924 www.eviCore.com Lab Management Guidelines v2.0.2019 Prolactinomas are the most commonly seen pituitary subtype and account for 60% of pituitary adenomas.
    [Show full text]
  • 1 Zinc-Finger Endonuclease Targeting PSIP-1 Inhibits HIV-1 Integration 1 2
    AAC Accepts, published online ahead of print on 12 May 2014 Antimicrob. Agents Chemother. doi:10.1128/AAC.02690-14 Copyright © 2014, American Society for Microbiology. All Rights Reserved. 1 Zinc-finger endonuclease targeting PSIP-1 inhibits HIV-1 integration 2 3 Roger Badia, Eduardo Pauls, Eva Riveira-Munoz, Bonaventura Clotet, José A. Esté* 4 and Ester Ballana 5 6 IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de 7 Barcelona, 08916 Badalona, Spain. 8 9 Running title: ZFN targeting PSIP1 inhibits HIV-1 integration 10 11 12 13 * Corresponding author mailing address: 14 José A. Esté 15 IrsiCaixa, Hospital Germans Trias i Pujol, C. Canyet s/n, 08916 Badalona, Spain 16 Phone: 34 934656374 17 FAX: 34 934653968 18 E-mail: [email protected] 19 20 Key words 21 Zinc finger endonuclease, Ledgf/p75, integrase, HIV-1 22 1 23 ABSTRACT 24 Genome editing using zinc-finger nucleases (ZFN) has been successfully 25 applied to disrupt CCR5 or CXCR4 host factors, inhibiting viral entry and infection. 26 Gene therapy using ZFN to modify PSIP1 gene, encoding for LEDGF protein, might 27 restrain an early step of viral replication cycle at the integration level. ZFNs targeting 28 the PSIP1 gene (ZFNLEDGF) were designed to specifically recognize the sequence after 29 the integrase binding domain (IBD) of LEDGF/p75 protein. ZFNLEDGF 30 successfully recognized the target region of the PSIP1 gene in TZM-bl cells by 31 heteroduplex formation and DNA sequence analysis. Gene editing induced a frame 32 shift of the coding region and resulted in the abolishment of LEDGF expression at 33 mRNA and protein level.
    [Show full text]