Multiple Epigenetic Modifiers Induce Aggressive Viral Extinction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment. -
SMARCA1 Antibody A
Revision 1 C 0 2 - t SMARCA1 Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 0 5 Web: [email protected] 4 www.cellsignal.com 9 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB, IP H Endogenous 130 Rabbit P28370 6594 Product Usage Information 5. Ho, L. and Crabtree, G.R. (2010) Nature 463, 474-84. 6. Landry, J.W. et al. (2011) Genes Dev 25, 275-86. Application Dilution 7. Landry, J. et al. (2008) PLoS Genet 4, e1000241. Western Blotting 1:1000 Immunoprecipitation 1:50 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity SMARCA1 Antibody recognizes endogenous levels of total SMARCA1 protein. Species Reactivity: Human Source / Purification Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues near the amino terminus of human SMARCA1 protein. Antibodies are purified by protein A and peptide affinity chromatography. Background SMARCA1 (SNF2L) is one of the two orthologs of the ISWI (imitation switch) ATPases encoded by the mammalian genome (1). The ISWI chromatin remodeling complexes were first identified in Drosophila and have been shown to remodel and alter nucleosome spacing in vitro (2). SMARCA1 is the catalytic subunit of the nucleosome remodeling factor (NURF) and CECR2-containing remodeling factor (CERF) complexes (3-5). -
1 Canonical BAF Complex in Regulatory T Cells 2 3 Chin
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.26.964981; this version posted February 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 A genome-wide CRISPR screen reveals a role for the BRD9-containing non- 2 canonical BAF complex in regulatory T cells 3 4 Chin-San Loo1,3,#, Jovylyn Gatchalian2,#, Yuqiong Liang1, Mathias Leblanc1, Mingjun 5 Xie1, Josephine Ho2, Bhargav Venkatraghavan1, Diana C. Hargreaves2*, and Ye 6 Zheng1* 7 8 1. NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for 9 Biological Studies 10 2. Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies 11 3. Division of Biological Sciences, University of California, San Diego 12 # Co-first authors 13 * Co-corresponding authors 14 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.26.964981; this version posted February 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 15 Summary 16 Regulatory T cells (Tregs) play a pivotal role in suppressing auto-reactive T cells 17 and maintaining immune homeostasis. Treg development and function are 18 dependent on the transcription factor Foxp3. Here we performed a genome-wide 19 CRISPR/Cas9 knockout screen to identify the regulators of Foxp3 in mouse 20 primary Tregs. The results showed that Foxp3 regulators are highly enriched in 21 genes encoding SWI/SNF and SAGA complex subunits. Among the three 22 SWI/SNF-related complexes, the non-canonical or ncBAF (also called GBAF or 23 BRD9-containing BAF) complex promoted the expression of Foxp3, whereas the 24 PBAF complex repressed its expression. -
Monoclonal Antibody to SMARCA1
AM50455PU-N OriGene Technologies Inc. OriGene EU Acris Antibodies GmbH 9620 Medical Center Drive, Ste 200 Schillerstr. 5 Rockville, MD 20850 32052 Herford UNITED STATES GERMANY Phone: +1-888-267-4436 Phone: +49-5221-34606-0 Fax: +1-301-340-8606 Fax: +49-5221-34606-11 [email protected] [email protected] Monoclonal Antibody to SMARCA1 - Purified Alternate names: ATP-dependent helicase SMARCA1, Nucleosome-remodeling factor subunit SNF2L, Probable global transcription activator SNF2L1, SNF2L, SNF2L1, SWI/SNF-related matrix- associated actin-dependent regulator of chromatin subfamily A member 1 Catalog No.: AM50455PU-N Quantity: 0.1 mg Concentration: lot-specific Background: Nucleosome-remodeling factor subunit SNF2L, also known as SWI/SNF-related matrix- associated actin-dependent regulator of chromatin subfamily A member 1 (SMARCA1), is the energy-transducing component of NURF (nucleosome-remodeling factor) and CERF (CECR2-containing-remodeling factor) complexes. These complexes facilitate the disruption of chromatin structure in an ATP-dependent manner. SNF2L potentiates neurite outgrowth, and may be involved in brain development by regulating En-1 and En-2 expression as well as in the development of luteal cells. Uniprot ID: P28370 NCBI: NP_003060.2 GeneID: 6594 Host / Isotype: Rat / IgG2b Clone: SNF 2C4 Immunogen: GST-tagged recombinant protein corresponding to human SNF2L. Format: State: Liquid purified Ig fraction Purification: Protein G Chromatography Buffer System: 0.1 M Tris-Glycine (pH 7.4), 150 mM NaCl with 0.05% sodium azide. Applications: Immunohistochemistry: A representative lot was used by an an independent laboratory to detect SNF2L in certain, normal human organ tissues. (Eckey, M., et al. -
SMARCA1 (D4Q7V) Rabbit
SMARCA1 (D4Q7V) Rabbit mAb Store at -20°C 3 n 100 µl Orders n 877-616-CELL (2355) (10 western blots) [email protected] Support n 877-678-TECH (8324) [email protected] Web n www.cellsignal.com New 03/13 #12483 For Research Use Only. Not For Use In Diagnostic Procedures. Entrez-Gene ID #6594 Swiss-Prot Acc. #P28370 Storage: Supplied in 10 mM sodium HEPES (pH 7.5), 150 Applications Species Cross-Reactivity* Molecular Wt. Isotype mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% W, IP H, Mk 130 kDa Rabbit IgG** sodium azide. Store at –20°C. Do not aliquot the antibody. Endogenous *Species cross-reactivity is determined by western blot. Background: SMARCA1 (SNF2L) is one of the two ortho- ** Anti-rabbit secondary antibodies must be used to logs of the ISWI (imitation switch) ATPases encoded by the detect this antibody. kDa LN18 SW620 HeLa HT-29 Saos-2 OVCAR8COS-7 mammalian genome (1). The ISWI chromatin remodeling Recommended Antibody Dilutions: complexes were first identified in Drosophila and have been 200 140 Western blotting 1:1000 shown to remodel and alter nucleosome spacing in vitro (2). SMARCA1 100 Immunoprecipitation 1:100 SMARCA1 is the catalytic subunit of the nucleosome re- 80 modeling factor (NURF) and CECR2-containing remodeling For product specific protocols please see the web page 60 factor (CERF) complexes (3-5). The NURF complex plays an 50 for this product at www.cellsignal.com. important role in neuronal physiology by promoting neurite 40 Please visit www.cellsignal.com for a complete listing outgrowth and regulation of Engrailed homeotic genes that 30 of recommended complementary products. -
Contribution of Multiple Inherited Variants to Autism Spectrum Disorder (ASD) in a Family with 3 Affected Siblings
G C A T T A C G G C A T genes Article Contribution of Multiple Inherited Variants to Autism Spectrum Disorder (ASD) in a Family with 3 Affected Siblings Jasleen Dhaliwal 1 , Ying Qiao 1,2, Kristina Calli 1,2, Sally Martell 1,2, Simone Race 3,4,5, Chieko Chijiwa 1,5, Armansa Glodjo 3,5, Steven Jones 1,6 , Evica Rajcan-Separovic 2,7, Stephen W. Scherer 4 and Suzanne Lewis 1,2,5,* 1 Department of Medical Genetics, University of British Columbia (UBC), Vancouver, BC V6H 3N1, Canada; [email protected] (J.D.); [email protected] (Y.Q.); [email protected] (K.C.); [email protected] (S.M.); [email protected] (C.C.); [email protected] (S.J.) 2 BC Children’s Hospital, Vancouver, BC V5Z 4H4, Canada; [email protected] 3 Department of Pediatrics, University of British Columbia (UBC), Vancouver, BC V6T 1Z7, Canada; [email protected] (S.R.); [email protected] (A.G.) 4 The Centre for Applied Genomics and McLaughlin Centre, Hospital for Sick Children and University of Toronto, Toronto, ON M5G 0A4, Canada; [email protected] 5 BC Children’s and Women’s Health Center, Vancouver, BC V6H 3N1, Canada 6 Michael Smith Genome Sciences Centre, Vancouver, BC V5Z 4S6, Canada 7 Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC V6T 1Z7, Canada * Correspondence: [email protected] Abstract: Autism Spectrum Disorder (ASD) is the most common neurodevelopmental disorder in Citation: Dhaliwal, J.; Qiao, Y.; Calli, children and shows high heritability. -
Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT) Beyond SMARCA4 Mutations: a Comprehensive Genomic Analysis
cells Article Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT) beyond SMARCA4 Mutations: A Comprehensive Genomic Analysis Aurélie Auguste 1,Félix Blanc-Durand 2 , Marc Deloger 3 , Audrey Le Formal 1, Rohan Bareja 4,5, David C. Wilkes 4 , Catherine Richon 6,Béatrice Brunn 2, Olivier Caron 6, Mojgan Devouassoux-Shisheboran 7,Sébastien Gouy 2, Philippe Morice 2, Enrica Bentivegna 2, Andrea Sboner 4,5,8, Olivier Elemento 4,8, Mark A. Rubin 9 , Patricia Pautier 2, Catherine Genestie 10, Joanna Cyrta 4,9,11 and Alexandra Leary 1,2,* 1 Medical Oncologist, Gynecology Unit, Lead Translational Research Team, INSERM U981, Gustave Roussy, 94805 Villejuif, France; [email protected] (A.A.); [email protected] (A.L.F.) 2 Gynecological Unit, Department of Medicine, Gustave Roussy, 94805 Villejuif, France; [email protected] (F.B.-D.); [email protected] (B.B.); [email protected] (S.G.); [email protected] (P.M.); [email protected] (E.B.); [email protected] (P.P.) 3 Bioinformatics Core Facility, Gustave Roussy Cancer Center, UMS CNRS 3655/INSERM 23 AMMICA, 94805 Villejuif, France; [email protected] 4 Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10001, USA; [email protected] (R.B.); [email protected] (D.C.W.); [email protected] (A.S.); [email protected] (O.E.); [email protected] (J.C.) 5 Institute for Computational Biomedicine, Weill Cornell -
Frequent Loss of Heterozygosity Targeting the Inactive X Chromosome in Melanoma
6476 Vol. 9, 6476–6482, December 15, 2003 Clinical Cancer Research Frequent Loss of Heterozygosity Targeting the Inactive X Chromosome in Melanoma James O. Indsto,1 Najah T. Nassif,2 INTRODUCTION Richard F. Kefford,1 and Graham J. Mann1 Chromosomal deletions and amplification events are fre- 1Westmead Institute for Cancer Research, University of Sydney at quent in advanced neoplasms and provide evidence for the Westmead Millennium Institute, Westmead, New South Wales, existence and location of putative tumor suppressor genes Australia, and 2Department of Cell and Molecular Biology, University (TSGs) and oncogenes. In melanoma, 9p and 10q deletions are of Technology, Sydney, New South Wales, Australia most frequent, and losses on 6q, 11q, 1p, 15p, 17q, and 18q are also frequently found (1, 2). However, no studies have focused on the X chromosome. In the human female, random inactiva- ABSTRACT tion of one copy of an X chromosome by hypermethylation is an After previous preliminary observations of paradoxical early event in embryogenesis, resulting in most tissues being a deletion events affecting the inactive X chromosome in mel- mosaic in terms of X inactivation status. Neoplasms, being anoma, we have surveyed the X chromosome for deletions clonal expansions of single precursor cells, usually share a using 23 polymorphic microsatellite markers in 28 inform- common X inactivation status. This can be conveniently assayed ative (female XX) metastatic melanomas. Ten tumors (36%) using the methylation-sensitive restriction enzyme HpaII, which showed at least one loss of heterozygosity (LOH) event, and has a recognition site within the highly polymorphic exon 1 in two cases an entire chromosome showed LOH at all CAG repeat (ARTR) in the androgen receptor (AR) gene. -
Inactivation of the PBRM1 Tumor Suppressor Gene Amplifies
Inactivation of the PBRM1 tumor suppressor gene − − amplifies the HIF-response in VHL / clear cell renal carcinoma Wenhua Gaoa, Wei Lib,c, Tengfei Xiaoa,b,c, Xiaole Shirley Liub,c, and William G. Kaelin Jr.a,d,1 aDepartment of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; bCenter for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215; cDepartment of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA 02115; and dHoward Hughes Medical Institute, Chevy Chase, MD 20815 Contributed by William G. Kaelin, Jr., December 1, 2016 (sent for review October 31, 2016; reviewed by Charles W. M. Roberts and Ali Shilatifard) Most clear cell renal carcinomas (ccRCCs) are initiated by somatic monolayer culture and in soft agar (10). These effects were not, inactivation of the VHL tumor suppressor gene. The VHL gene prod- however, proven to be on-target, and were not interrogated in uct, pVHL, is the substrate recognition unit of an ubiquitin ligase vivo. As a step toward understanding the role of BAF180 in that targets the HIF transcription factor for proteasomal degrada- ccRCC, we asked whether BAF180 participates in the canonical tion; inappropriate expression of HIF target genes drives renal car- PBAF complex in ccRCC cell lines and whether loss of BAF180 cinogenesis. Loss of pVHL is not sufficient, however, to cause ccRCC. measurably alters ccRCC behavior in cell culture and in mice. Additional cooperating genetic events, including intragenic muta- tions and copy number alterations, are required. -
The H3K9 Methylation Writer SETDB1 and Its Reader MPP8 Cooperate to Silence Satellite DNA Repeats in Mouse Embryonic Stem Cells
G C A T T A C G G C A T genes Article The H3K9 Methylation Writer SETDB1 and Its Reader MPP8 Cooperate to Silence Satellite DNA Repeats in Mouse Embryonic Stem Cells 1,2,3,4 1 1, 1 Paola Cruz-Tapias , Philippe Robin , Julien Pontis y, Laurence Del Maestro and Slimane Ait-Si-Ali 1,* 1 Epigenetics and Cell Fate (EDC), Centre National de la Recherche Scientifique (CNRS), Université de Paris, Université Paris Diderot, F-75013 Paris, France; [email protected] (P.C.-T.); [email protected] (P.R.); julien.pontis@epfl.ch (J.P.); [email protected] (L.D.M.) 2 Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá 111221, Colombia 3 School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia 4 Doctoral Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá 111221, Colombia * Correspondence: [email protected]; Tel.: +33-(0)1-5727-8919 Current: Ecole Polytechnique Fédérale de Lausanne (EPFL), SV LVG Station 19, 1015 Lausanne, Switzerland. y Received: 25 August 2019; Accepted: 24 September 2019; Published: 25 September 2019 Abstract: SETDB1 (SET Domain Bifurcated histone lysine methyltransferase 1) is a key lysine methyltransferase (KMT) required in embryonic stem cells (ESCs), where it silences transposable elements and DNA repeats via histone H3 lysine 9 tri-methylation (H3K9me3), independently of DNA methylation. The H3K9 methylation reader M-Phase Phosphoprotein 8 (MPP8) is highly expressed in ESCs and germline cells. Although evidence of a cooperation between H3K9 KMTs and MPP8 in committed cells has emerged, the interplay between H3K9 methylation writers and MPP8 in ESCs remains elusive. -
Insights Into Functional Connectivity in Mammalian Signal Transduction Pathways by Pairwise
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.30.891200; this version posted December 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Insights into Functional Connectivity in Mammalian Signal Transduction Pathways by Pairwise Comparison of Protein Interaction Partners of Critical Signaling Hubs Chilakamarti V. Ramana * Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA *Correspondence should be addressed: Chilakamarti V .Ramana, Telephone. (603)-738-2507, E-mail: [email protected] ORCID ID: /0000-0002-5153-8252 1 bioRxiv preprint doi: https://doi.org/10.1101/2019.12.30.891200; this version posted December 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Growth factors and cytokines activate signal transduction pathways and regulate gene expression in eukaryotes. Intracellular domains of activated receptors recruit several protein kinases as well as transcription factors that serve as platforms or hubs for the assembly of multi-protein complexes. The signaling hubs involved in a related biologic function often share common interaction proteins and target genes. This functional connectivity suggests that a pairwise comparison of protein interaction partners of signaling hubs and network analysis of common partners and their expression analysis might lead to the identification of critical nodes in cellular signaling. -
Downloading and Running the Code
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.30.069690; this version posted December 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Identification of disease treatment mechanisms through the multiscale interactome Camilo Ruiz,1;2 Marinka Zitnik,3 Jure Leskovec1;4;˚ 1 Computer Science Department, Stanford University, Stanford, CA 94305, USA 2 Bioengineering Department, Stanford University, Stanford, CA 94305, USA 3 Biomedical Informatics Department, Harvard University, Boston, MA 02115, USA 4 Chan Zuckerberg Biohub, San Francisco, CA 94158, USA ˚Corresponding author. Email: [email protected] 1 Most diseases disrupt multiple proteins, and drugs treat such diseases by restoring the func- 2 tions of the disrupted proteins. How drugs restore these functions, however, is often unknown 3 as a drug’s therapeutic effects are not limited only to the proteins that the drug directly tar- 4 gets. Here, we develop the multiscale interactome, a powerful approach to explain disease 5 treatment. We integrate disease-perturbed proteins, drug targets, and biological functions 6 into a multiscale interactome network, which contains 478,728 interactions between 1,661 7 drugs, 840 diseases, 17,660 human proteins, and 9,798 biological functions. We find that 8 a drug’s effectiveness can often be attributed to targeting proteins that are distinct from 9 disease-associated proteins but that affect the same biological functions. We develop a ran- 10 dom walk-based method that captures how drug effects propagate through a hierarchy of 11 biological functions and are coordinated by the protein-protein interaction network in which 12 drugs act.