Structural and Functional Characterization of the N-Terminal Acetyltransferase Natc

Total Page:16

File Type:pdf, Size:1020Kb

Structural and Functional Characterization of the N-Terminal Acetyltransferase Natc Structural and functional characterization of the N-terminal acetyltransferase NatC Inaugural-Dissertation to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) submitted to the Department of Biology, Chemistry, Pharmacy of Freie Universität Berlin by Stephan Grunwald Berlin October 01, 2019 Die vorliegende Arbeit wurde von April 2014 bis Oktober 2019 am Max-Delbrück-Centrum für Molekulare Medizin unter der Anleitung von PROF. DR. OLIVER DAUMKE angefertigt. Erster Gutachter: PROF. DR. OLIVER DAUMKE Zweite Gutachterin: PROF. DR. ANNETTE SCHÜRMANN Disputation am 26. November 2019 iii iv Erklärung Ich versichere, dass ich die von mir vorgelegte Dissertation selbstständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen – die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; und dass diese Dissertation keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat. Berlin, 9. November 2020 Stephan Grunwald v vi Acknowledgement I would like to thank Prof. Oliver Daumke for giving me the opportunity to do the research for this project in his laboratory and for the supervision of this thesis. I would also like to thank Prof. Dr. Annette Schürmann from the German Institute of Human Nutrition (DifE) in Potsdam-Rehbruecke for being my second supervisor. From the Daumke laboratory I would like to especially thank Dr. Manuel Hessenberger, Dr. Stephen Marino and Dr. Tobias Bock-Bierbaum, who gave me helpful advice. I also like to thank the rest of the lab members for helpful discussions. I deeply thank my wife Theresa Grunwald, who always had some helpful suggestions and kept me alive while writing this thesis. vii Abbreviations AcCoA / Acetyl-CoA (Acetyl-) coenzyme A ARFRP1 ADP-ribosylation factor-related protein 1 (a trans-Golgi-associated small GTPase) Cryo-EM Cryogenic electron microscopy EPR Electropositive Region ES Ribosomal RNA expansion segments Gag Major capsid protein of the Saccharomyces cerevisiae virus L-A GNAT GCN5-related N-acetyltransferase superfamily HAT Histone acetyl transferase HRV 3C Human rhinovirus 3C protease / recognition site IMAC Immobilized metal affinity chromatography KAT Lysine acetyl transferase MALDI-TOF MS Matrix-assisted laser desorption/ionization – time-of-flight – mass spectrometry MetAP Methionine aminopeptidase NAA/Naa Nα-acetyltransferase gene/protein, respectively. NAT N-terminal acetyltransferase (enzyme that the catalyzes the Nt-acetylation) Nt-acetylation N-terminal acetylation (also known as Nα-acetylation) pI Isoelectric point PE Ribosome nascent polypetide exit tunnel PTM Post-translational modification SEC Size-exclusion chromatography yArl3 ADP-ribosylation factor-like protein 3 from S. cerevisieae (the yeast ortholog of human ARFRP1) X-ray X-radiation, a form of high-energy electromagnetic radiation. The above list represents only frequently occurring abbreviations that are beneficial for text comprehension. Further abbreviations are found in the materials and methods sections or defined upon first use. viii Table of contents 1 Introduction ..............................................................................................................................1 1.1 The ‘missing’ genetic information in eukaryotic genomes ................................................................ 1 1.2 Post-translational modifications — a major source of protein diversity? .......................................... 2 1.3 Protein acetylation ............................................................................................................................. 3 1.4 Evolutionary development of N-terminal acetylation ........................................................................ 4 1.5 The eukaryotic NAT machinery ........................................................................................................ 5 1.6 Co-translational Nt-acetylation at the ribosome ................................................................................ 9 1.7 Diverse functions of N-terminal acetylation .................................................................................... 10 1.8 The structure of NAT enzymes ........................................................................................................ 11 1.9 General catalytic mechanism ........................................................................................................... 16 1.10 Objectives of this work ................................................................................................................ 17 2 Materials ..................................................................................................................................18 2.1 Instruments ...................................................................................................................................... 18 2.2 Consumables and Kits ..................................................................................................................... 18 2.3 Chemicals ........................................................................................................................................ 19 2.4 Antibodies ....................................................................................................................................... 20 2.5 Enzymes .......................................................................................................................................... 20 2.6 Bacterial strains ............................................................................................................................... 20 2.7 Plasmids and cDNA clones ............................................................................................................. 20 2.8 Peptides ........................................................................................................................................... 21 2.9 DNA oligonucleotides ..................................................................................................................... 22 2.10 Growth media .............................................................................................................................. 24 2.11 Software ....................................................................................................................................... 25 3 Methods ...................................................................................................................................26 3.1 Cloning of the NatC complex .......................................................................................................... 26 3.1.1 PCR reactions .......................................................................................................................... 26 3.1.2 Enzymatic assembly of DNA using restriction digestion and ligation .................................... 27 3.1.3 Cloning of NatC constructs ..................................................................................................... 27 3.2 Expression and purification of the NatC complex ........................................................................... 28 3.2.1 Preparation of chemically competent E. coli cells ................................................................... 28 3.2.2 Transformation of chemically competent E. coli BL21(DE3) ................................................. 28 3.2.3 Small-scale IPTG induction test .............................................................................................. 29 3.2.4 Expression of the native NatC complex .................................................................................. 29 3.2.5 Expression of the selenomethionine-labeled NatC complex ................................................... 30 3.2.6 Purification of the NatC complex ............................................................................................ 31 3.3 MALDI-TOF mass spectrometry .................................................................................................... 32 3.4 Purification of yeast 80S ribosomes ................................................................................................ 33 3.5 NatC-ribosome sedimentation assay ................................................................................................ 34 3.5.1 Silver staining .......................................................................................................................... 34 ix 3.5.2 Western Blot, Ponceau S- and immunostaining ....................................................................... 34 3.6 Acetyltransferase assay .................................................................................................................... 35 3.6.1 Assay adaptations for different peptide substrates ................................................................... 37 3.6.2 Determination of peptide concentrations.................................................................................. 38 3.6.3 Pathlength calculations for the acetyltransferase assay ............................................................ 38 3.7 Crystallization of NatC .................................................................................................................... 39 3.8 Data collection ................................................................................................................................
Recommended publications
  • 2009 Riboclub Program
    2019 RiboClub Program RNA: 20 Years of Discoveries In Association with the Gairdner Foundation September 22-27 - Hotel Chéribourg, Orford, Québec, Canada Organizing Committee: Allan Jacobson, Robert Singer, Adrian Krainer, Françoise Stutz, Yukihide Tomari, Sandra Wolin, Nehalkumar Thakor (ARRTI co-organizer for western Canada) and the RiboClub. Sunday, September 22, 2019 (Day1) 15:00 – 20:00 Registration / Coffee and cake 17:00 – 17:10 Welcome notes and Announcements Sherif Abou Elela RiboClub organizer and co-founder, Member of the Université de Sherbrooke RNA Group 17:15 – 17:45 Opening Lecture I: RNA Biology: Origins and Reflections Joan Steitz Sterling Professor of Molecular Biophysics and Biochemistry, Yale University First speakers of the RiboClub 1998 17:45 – 18:15 Opening Lecture II: RNA Biology: History of Discoveries Witold Filipowicz Professor of Biochemistry, Friedrich Miescher Institute for Biomedical Research 18:15 – 18:45 Special presentation by the recipient of the RiboClub 2009 life achievement award: Initiating the study of Initiation: Initiating translation initiation: a short history and perspective Nahum Sonenberg, Member of the RiboClub, Gilman Cheney Chair in Biochemistry, McGill University 18:45 – 19:45 Cocktail and social time 19:45 – 19:50 Introduction of members of the community and dignitaries Raymund Wellinger Master of ceremonies, Co-founder of the Université de Sherbrooke RNA group, 19:50 – 19:50 Welcome note Pierre Cossette President, Université de Sherbrooke 19:50 – 20:45 Networking Dinner 20:45 – 20:55
    [Show full text]
  • Sodium and Kidney Disease
    Sodium and Kidney Disease What is sodium? Sodium is a mineral found in food and all Did You Know? types of salt. We need a very small amount 1 teaspoon (5 mL) of of sodium for body water balance. However, table salt has 2325 mg of most people eat more sodium than they sodium. need. Where does sodium come from? How much sodium should I eat each day? • Processed foods: salt and other sodium additives are found in most packaged You should limit sodium to 2300 mg or less and prepared foods at the grocery store. each day. Aim for less than 600 mg for a Most of the sodium we eat comes from meal and less than 250 mg for a snack. processed foods. • The salt shaker: added in cooking and at Why do I need to limit sodium? the table. • Natural content: small amounts of sodium With kidney disease your kidneys do not is found naturally in most foods. balance sodium and water well. If you eat too much sodium you may have: How can I eat less sodium? • High blood pressure • Thirst • Do not add salt to your food. • Puffy hands, face and feet • Do not add salt during cooking. • Too much fluid around your heart and • Use fresh or frozen (without salt) meat, lungs, making it hard to breathe chicken, fish, seafood, eggs, vegetables • Cramps during hemodialysis and fruits. These are naturally low in sodium. By eating less sodium, you can help control • Make your meals with fresh ingredients. these problems. • Avoid high sodium foods such as: − Ham, bacon, salami and other deli Some medications used to protect the meats kidneys and lower blood pressure work − Pickles, olives, relish better when your diet is lower in sodium.
    [Show full text]
  • Watching Dynamics and Assembly of Spliceosomal
    WATCHING DYNAMICS AND ASSEMBLY OF SPLICEOSOMAL COMPLEXES AT SINGLE MOLECULE RESOLUTION A thesis submitted for the degree of DOCTOR OF PHILOSOPHY 2015 CHANDANI MANOJA WARNASOORIYA Section of Virology, Department of Medicine Imperial College London 1 Copyright Declaration The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 2 Declaration of Origin I hereby declare that this project was entirely my own work (except the gel images in figures 4.2-4.5 in the chapter 4) and that any additional sources of information have been properly cited. I hereby declare that any internet sources, published and unpublished works from which I have quoted or drawn reference have been referenced fully in the text and in the reference list. I understand that failure to do so will result in failure of this project due to plagiarism. Chapter 3 was in collaboration with Prof. Samuel Butcher and Prof. David Brow at University of Wisconsin-Madison, Wisconsin, USA. The Prp24 full length protein and the truncated protein (234C) were provided by them. Chapter 4 was in collaboration with Prof. Kiyoshi Nagai and his lab members Dr. John Hardin and Yasushi Kondo at LMB Cambridge University, Cambridge, UK.
    [Show full text]
  • Effect of Sodium Nitrite, Sodium Erythorbate and Organic Acid Salts on Germination and Outgrowth of Clostridium Perfringens Spores in Ham During Abusive Cooling
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations, Theses, & Student Research in Food Science and Technology Food Science and Technology Department Fall 9-19-2011 Effect of Sodium Nitrite, Sodium Erythorbate and Organic Acid Salts on Germination and Outgrowth of Clostridium perfringens Spores in Ham during Abusive Cooling Mauricio A. Redondo University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/foodscidiss Part of the Food Chemistry Commons, Food Microbiology Commons, and the Food Processing Commons Redondo, Mauricio A., "Effect of Sodium Nitrite, Sodium Erythorbate and Organic Acid Salts on Germination and Outgrowth of Clostridium perfringens Spores in Ham during Abusive Cooling" (2011). Dissertations, Theses, & Student Research in Food Science and Technology. 18. https://digitalcommons.unl.edu/foodscidiss/18 This Article is brought to you for free and open access by the Food Science and Technology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations, Theses, & Student Research in Food Science and Technology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. EFFECT OF SODIUM NITRITE, SODIUM ERYTHORBATE AND ORGANIC ACID SALTS ON GERMINATION AND OUTGROWTH OF CLOSTRIDIUM PERFRINGENS SPORES IN HAM DURING ABUSIVE COOLING By Mauricio Redondo-Solano A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Food Science and Technology Under the supervision of Professor Harshavardhan Thippareddi Lincoln, Nebraska September, 2011 EFFECT OF SODIUM NITRITE, SODIUM ERYTHORBATE AND ORGANIC ACID SALTS ON GERMINATION AND OUTGROWTH OF CLOSTRIDIUM PERFRINGENS SPORES IN HAM DURING ABUSIVE COOLING Mauricio Redondo-Solano, M.
    [Show full text]
  • Sensory Characteristics of Salt Substitute Containing L-Arginine
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2006 Sensory characteristics of salt substitute containing L-arginine Pamarin Waimaleongora-Ek Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Life Sciences Commons Recommended Citation Waimaleongora-Ek, Pamarin, "Sensory characteristics of salt substitute containing L-arginine" (2006). LSU Master's Theses. 762. https://digitalcommons.lsu.edu/gradschool_theses/762 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. SENSORY CHARACTERISTICS OF SALT SUBSTITUTE CONTAINING L-ARGININE A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science In The Department of Food Science by Pamarin Waimaleongora-Ek B.S., Food Science and Technology, Thammasat University, 2002 December 2006 ACKNOWLEDGEMENTS I would like to express my immense gratitude towards my major professor and advisor, Dr. Witoon Prinyawiwatkul, who has always been there for me with his help, guidance, patience and understanding throughout the years. I have enjoyed being his student and learned so much from him. Besides my advisor, I would like to thank Dr. Zhimin Xu who served as a co-chair, and Dr. Beilei Ge, who served as a committee for everything that they have done for me and their help with my research.
    [Show full text]
  • Intrinsic Disorder of the BAF Complex: Roles in Chromatin Remodeling and Disease Development
    International Journal of Molecular Sciences Article Intrinsic Disorder of the BAF Complex: Roles in Chromatin Remodeling and Disease Development Nashwa El Hadidy 1 and Vladimir N. Uversky 1,2,* 1 Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA; [email protected] 2 Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow Region, Russia * Correspondence: [email protected]; Tel.: +1-813-974-5816; Fax: +1-813-974-7357 Received: 20 September 2019; Accepted: 21 October 2019; Published: 23 October 2019 Abstract: The two-meter-long DNA is compressed into chromatin in the nucleus of every cell, which serves as a significant barrier to transcription. Therefore, for processes such as replication and transcription to occur, the highly compacted chromatin must be relaxed, and the processes required for chromatin reorganization for the aim of replication or transcription are controlled by ATP-dependent nucleosome remodelers. One of the most highly studied remodelers of this kind is the BRG1- or BRM-associated factor complex (BAF complex, also known as SWItch/sucrose non-fermentable (SWI/SNF) complex), which is crucial for the regulation of gene expression and differentiation in eukaryotes. Chromatin remodeling complex BAF is characterized by a highly polymorphic structure, containing from four to 17 subunits encoded by 29 genes. The aim of this paper is to provide an overview of the role of BAF complex in chromatin remodeling and also to use literature mining and a set of computational and bioinformatics tools to analyze structural properties, intrinsic disorder predisposition, and functionalities of its subunits, along with the description of the relations of different BAF complex subunits to the pathogenesis of various human diseases.
    [Show full text]
  • Title Low Sodium Salt of Botanic Origin
    (12) STANDARD PATENT (11) Application No. AU 2004318169 B2 (19) AUSTRALIAN PATENT OFFICE (54) Title Low sodium salt of botanic origin (51) International Patent Classification(s) A23L 1/237 (2006.01) C01D 3/04 (2006.01) (21) Application No: 2004318169 (22) Date of Filing: 2004.11.09 (87) WIPO No: W005/097681 (30) Priority Data (31) Number (32) Date (33) Country 10/819,001 2004.04.06 US (43) Publication Date: 2005.10.20 (44) Accepted Journal Date: 2010.12.09 (71) Applicant(s) Council of Scientific and Industrial Research (72) Inventor(s) Bhatt, Ajoy Muralidharbhai;Eswaran, Karuppanan;Patolia, Jinalal Shambhubhai;Reddy, Alamuru Venkata Rami;Shah, Rajul Ashvinbhai;Barot, Bhargav Kaushikbhai;Mehta, Aditya Shantibhai;Gandhi, Mahesh Ramniklal;Mody, Kalpana Haresh;Reddy, Muppala Parandhami;Ghosh, Pushpito Kumar (74) Agent / Attorney Cullens Patent and Trade Mark Attorneys, Level 32 239 George Street, Brisbane, QLD, 4000 (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization 11111|11| 1 111 |1 11111111 1111| 1111111|111 1111111 ||111 International Bureau 1111111 111111 111111111111111 1111 ii1111li iili (43) International Publication Date (10) International Publication Number 20 October 2005 (20.10.2005) PCT WO 2005/097681 Al (51) International Patent Classification7 : C01D 3/04, Marine Chemicals Research Institute, Bhavnagar, Gujarat A23L 1/237 364 002 (IN). BHATT, Ajoy, Muralidharbhai [IN/IN]; Central Salt and Marine Chemicals Research Institute, (21) International Application Number: Bhavnagar, Gujarat 364 002 (IN). REDDY, Alamuru, PCT/IB2004/003678 Venkata, Rami [IN/IN]; Central Salt and Marine Chemi cals Research Institute, Bhavnagar, Gujarat 364 002 (IN). (22) International Filing Date:9(74) Agents: BHOLA, Ravi et al.; K & S Partners, 84-C, C6 November 2004 (09.11.2004) Lane, Off Central Avenue, Sainik Farms, New Delhi 110 062 (IN).
    [Show full text]
  • NAT6 Acetylates the N‐Terminus of Different Forms of Actin
    NAT6 acetylates the N-terminus of different forms of actin Elsa Wiame1,2,Gaelle€ Tahay2, Donatienne Tyteca3, Didier Vertommen4, Vincent Stroobant5, Guido T. Bommer1,2 and Emile Van Schaftingen1,2 1 Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Brussels, Belgium 2 Laboratory of Biochemistry, de Duve Institute, Universite Catholique de Louvain, Brussels, Belgium 3 CELL Unit, de Duve Institute, Universite Catholique de Louvain, Brussels, Belgium 4 Mass Spectrometry Platform, de Duve Institute, Universite Catholique de Louvain, Brussels, Belgium 5 Ludwig Institute for Cancer Research, Universite Catholique de Louvain, Brussels, Belgium Keywords All forms of mammalian actin comprise at their N-terminus a negatively acetylation; actin; NAA10; N- charged region consisting of an N-acetylated aspartate or glutamate fol- acetyltransferase; NAT6 lowed by two or three acidic residues. This structural feature is unique to actins and important for their interaction with other proteins. The enzyme Correspondence E. Van Schaftingen, Laboratory of catalyzing the acetylation of the N-terminal acidic residue is thought to be Biochemistry, de Duve Institute, Universite NAA10, an enzyme that acetylates multiple intracellular proteins. We Catholique de Louvain, Avenue Hippocrate report here that this acetylation is essentially carried out by NAT6 (Fus2), 75, B1.75.08, B-1200 Brussels, Belgium a protein of unknown function. Tests of the activity of human recombinant Fax: +3227647598 NAT6 on a series of purified proteins showed that the best substrate had Tel: +3227647564 several acidic residues near its N-terminus. Accordingly NAT6 was particu- E-mail: [email protected] larly active on highly acidic peptides with sequences corresponding to the Elsa Wiame and Gaelle€ Tahay contributed N-terminus of different forms of mammalian actins.
    [Show full text]
  • Crystal Structures of Two Sm Protein Complexes and Their Implications for the Assembly of the Spliceosomal Snrnps
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell, Vol. 96, 375±387, February 5, 1999, Copyright 1999 by Cell Press Crystal Structures of Two Sm Protein Complexes and Their Implications for the Assembly of the Spliceosomal snRNPs Christian Kambach,* Stefan Walke,* Robert Young,*§ RNA±RNA interactions to allow the trans-esterification Johanna M. Avis,*k Eric de la Fortelle,* reactions to occur (Moore et al., 1993; Nilsen, 1994). Veronica A. Raker,² Reinhard LuÈ hrmann,² The snRNPs are named after their RNA components: Jade Li,* and Kiyoshi Nagai*³ the U1, U2, U4/U6, and U5 snRNPs contain U1, U2, U4/ *MRC Laboratory of Molecular Biology U6, and U5 small nuclear RNAs (snRNAs), respectively. Hills Road Their protein components are classified into two groups: Cambridge CB2 2QH specific proteins such as U1A, U1 70K, U2B99, and U2A9, England present only in a particular snRNP, and the core proteins ² Institut fuÈ r Molekularbiologie und Tumorforschung common to U1, U2, U4/U6, and U5 snRNPs (LuÈ hrmann Philipps-UniversitaÈ t Marburg et al., 1990; Nagai and Mattaj, 1994). In the spliceosomal Emil-Mannkopff Strabe2 snRNPs from HeLa cell nuclear extract, seven core pro- D-35037 Marburg teins, referred to as the B/B9,D1,D2,D3,E,F,andG Germany proteins, have been identified. The core proteins are also called the Sm proteins due to their reactivity with autoantibodies of the Sm serotype from patients with Summary systemic lupus erythematosus (Lerner and Steitz, 1979). The Sm proteins form a distinct family characterized The U1, U2, U4/U6, and U5 small nuclear ribonucleo- by a conserved Sm sequence motif in two segments, protein particles (snRNPs) involved in pre-mRNA splic- Sm1 and Sm2, separated by a linker of variable length ing contain seven Sm proteins (B/B9,D1,D2,D3,E,F, (Cooper et al., 1995; Hermann et al., 1995; Se raphin, and G) in common, which assemble around the Sm 1995) (Figure 1A).
    [Show full text]
  • SPICES and EXTRACTS 12 FT SECTION EUROPE Deca PLANOGRAM CLASS D STORES
    SPICES AND EXTRACTS 12 FT SECTION EUROPE DeCA PLANOGRAM CLASS D STORES Gravity Feed: 01 TOP Shelf: 09 TOP Mcc ormi ck Cum Gravity Feed: 02 in 521 000 Shelf: 10 Gravity Feed: 03 5.12 in Shelf: 04 Mccormick Mrs Dash Mrs Dash Molly Perf Pnch Fiesta Tomato McButter Garlic & 6 in Lime Basil n Sprinkles Bell Pepper 60502160 Garlic Original Seas 5210002686 Shelf: 05 K2/CHG Shelf: 11 7.24 in Shelf: 06 8 in Shelf: 07 13.24 in SUGAR Shelf: 08 BASE 5 in 4 ft 1 in 4 ft 1 in 4 ft 1 in Left-right HQ DeCA/MBU PLANOGRAM APPROVED BY BUSINESS MGR, BARBARA MERRIWEATHER. FACINGS MAY BE ADJUSTED TO ACCOMODATE LOCAL AND REGIONAL ITEMS (END OF FLOW). FACINGS MAY BE ADJUSTED TO MEET CUSTOMER 15 JUNE 2015 DEMAND-CAO MUST BE INVOLVED IN THE PROCESS ALONG WITH STORE MANAGEMENT APPROVAL. ITEM POSITIONS MUST NOT BE CHANGED AT ANY TIME. Europe Spices and Extracts Page: 1 of 6 SPICES AND EXTRACTS 12 FT SECTION EUROPE DeCA PLANOGRAM CLASS D STORES Mccor Mccormick Mccormi Old Bay mick Vanilla Asst.F ck Seafood ood Red Mccor Mccormick Mccormick Mccormick Mccor Mccormick Mccormick Mccormick Mccormick Mccormick 52100071 Food Chili Powder Cinnamon Seasoning Mccormick Colors mick Basil Whole Bay Celery Salt mick Chili Freeze Stick Cinnamon Ground Mc Mccormi Mccormi Mc Mc Mccormi McCorm Mc Mccormi Mccormi Mccormi Mccormi Mccormi Mccormi Mccormi Bakers Color 7032800523 03 Vanilla 521000 Groun Leaves Leaves 521000050 Whol Powder Dried Cinnamon Sugar Cloves cor ck ck cor cor ck ick cor ck ck ck ck ck ck ck 5210007 5210007108 Ground Extract Vanilla 7107 d 521000069 521000069 8
    [Show full text]
  • The Completion of John Bradfield Court and New Studentships: with Grateful Thanks to Darwinians Worldwide
    WINTER 2019/20 DarwinianTHE The completion of John Bradfield Court and new studentships: with grateful thanks to Darwinians worldwide A New Portrait John Bradfield Court Nobel Laureate Eric Maskin is interviewed by Andrew Prentice NewS FOR THE DArwin COLLEGE COMMUNITY A Message from Mary Fowler Master Above: even wonderful years ago I followed someone who makes the world better. A wonderful The College’s new portrait Willy Brown as Master of Darwin. As you man, Willy is deeply missed not just here in Darwin, of Mary Fowler at its unveiling, with that of her may know, he died very unexpectedly in in Cambridge and in the UK, but around the world. predecessor Willy Brown August. Much-loved as Master, Willy was He gave his skills and knowledge freely. Fortunate behind. distinguished in labour economics and were those who worked with him, or were taught or industrial relations and a founder of the tutored by him, who experienced his generosity and Low Pay Commission. His work, which friendship. A full tribute to him is on page 10. was characterised by the use of statistics, and careful research, centred around the concept of Now I’m myself in my last year as Master (but S“fairness”. That reflected his own nature, modest, fair, certainly not my last year in Cambridge). September generous, kind, a man of integrity. He was a mediator, saw a ritual – the unveiling of my portrait. Darwin DarwinianTHE 2 members and friends gathered in the Dining Hall where the portrait was waiting, covered. Portraits “A wonderful man, Willy Brown is can be a controversial matter.
    [Show full text]
  • Darwinianthe
    WINTER 2018/19 DarwinianTHE From the ends of chromosomes to the food of the future: outstanding research by Darwinians Nobel Laureate and Alumna Elizabeth Blackburn is interviewed by Ron Laskey Possibility of vaccine for Ebola Sustainable food of the future NewS FOR THE DArwin COLLEGE COMMUNITY A Message from Mary Fowler Master 2018 has been a year of espite this year’s intemperate weather, Darwin, our students and Fellows have extremes, February and benefitted from and flourished within March saw biting cold wind our strong community of scholars. and rain for many weeks – the Students and Fellows appreciate the diversity of disciplines and cultures so called ‘Beast from the East’. represented here in our friendly, But then came the summer welcoming and informal College. when the weeks of hot sun DReading through this newsletter what becomes searing down upon us meant apparent (and possibly surprising) is that a place the that the Darwin gardens were size of Darwin has, and is having, such an impact on parched, with grass like straw. the wider world. And what is documented here is Relax, it’s green again now. only the tip of the iceberg. Darwin over its short 54- year existence has produced alumni and Fellows who have, through their research and business acumen, DarwinianTHE 2 “Reading through this newsletter what becomes apparent (and possibly surprising) is that a place the size of Darwin has, and is having, such an impact on the wider world.” changed the world for the better. I am thrilled to be part of it. This term began with a real highlight: we were so pleased that Darwin alumna Elizabeth Blackburn, one of our eight Nobel laureates, visited College.
    [Show full text]