A Model for the Origin of Rhyolites from South Mountain, Pennsylvania: Implications for Rhyolites Associated with Large Igneous Provinces

Total Page:16

File Type:pdf, Size:1020Kb

A Model for the Origin of Rhyolites from South Mountain, Pennsylvania: Implications for Rhyolites Associated with Large Igneous Provinces RESEARCH A model for the origin of rhyolites from South Mountain, Pennsylvania: Implications for rhyolites associated with large igneous provinces Tyrone O. Rooney1,*, A. Krishna Sinha2, Chad Deering3, and Christian Briggs1,† 1DEPARTMENT OF GEOLOGICAL SCIENCES, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48824, USA 2DEPARTMENT OF GEOLOGICAL SCIENCES, VIRGINIA TECH, BLACKSBURG, VIRGINIA 24061, USA 3DEPARTMENT OF EARTH AND SPACE SCIENCES, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON 98195-1310, USA ABSTRACT High-silica rhyolites, ubiquitous features of continental volcanism, continue to evoke controversy as to their petrogenesis and evolution. We utilized the geochemical characteristics of late Vendian high-silica rhyolites erupted in the Catoctin Volcanic Province at South Mountain in Pennsylvania to probe the origin of the parental magmas and assess heterogeneities in the subsequent fractionation paths. We identifi ed high- and low-Ti signatures within the South Mountain rhyolites, a common feature in many large igneous provinces, and these signatures are suggestive of a genetic link between basalts and rhyolites erupted in the Catoctin Volcanic Province. Two evolutionary trends are super- imposed on the Ti-based subdivisions that refl ect variable control of plagioclase and amphibole in the fractionating assemblage of the South Mountain rhyolites. Such distinctive evolutionary trends are evident in rhyolites from other tectonic settings (e.g., arcs), where they have been interpreted in terms of cold-wet and hot-dry conditions within the differentiating magmas. We interpret the amphibole-dominated frac- tionation path of the South Mountain rhyolites as following a cold-wet fractionation path compared to the hot-dry plagioclase-dominated trends. This study, which examines the geochemical implications of cryptic amphibole fractionation, has implications for assessing the role of amphibole and volatile content in the development of rhyolites in other large igneous provinces. LITHOSPHERE; v. 2; no. 4; p. 211–220; Data Repository 2010100. doi: 10.1130/L89.1 INTRODUCTION Continental fl ood basalts are frequently used to 2000b; Riley et al., 2001; Bryan et al., 2002). assess processes associated with large igneous Large igneous province–related silicic mag- The driving mechanisms responsible for province formation but are typically not primary matism, while geographically widespread, is large igneous province formation remain a topic in composition. Continental fl ood basalts expe- particularly focused along rifts and the rift mar- of considerable debate, although a mantle plume rience signifi cant fractionation and some assim- gins dissecting large igneous provinces such origin is now widely accepted (see Campbell, ilation prior to eruption (e.g., Pik et al., 1999; as Parana/Etendeka (Marsh et al., 2001), and 2007, and many references therein). Other mod- Kieffer et al., 2004), and, in some cases, these Patagonia/Antarctic Peninsula (Pankhurst et al., els for the genesis of large igneous provinces processes may dominate the geochemical vari- 2000b; Riley et al., 2001). Continental exten- invoke processes such as interaction between ability of the erupted products (Thompson et al., sion is therefore considered to be central to the asthenosphere-derived magma and subconti- 2007). While geochemical studies of continental generation of large volumes of silicic magmas nental lithosphere (Ellam and Cox, 1991), melt- fl ood basalt provinces therefore have typically (Bryan et al., 2002). The signifi cant volumes ing of an enriched subcontinental lithosphere focused on the least differentiated samples in of silicic magmatism typically associated with (Pegram, 1990; Hergt et al., 1991; Jourdan et al., order to probe mantle processes and heteroge- mafi c large igneous provinces (>104 km3) and 2009), upper-mantle water saturation through neity (e.g., Pik et al., 1999), the record of plume- silicic large igneous provinces (>106 km3) pres- subduction (Ivanov et al., 2008), lithosphere lithosphere interaction may be most effectively ent a particular challenge in explaining how dehydration (Gallagher and Hawkesworth, preserved in rocks with more evolved composi- large volumes of silicic magma can be rapidly 1992), lateral temperature gradients associated tions. Rhyolite magmas erupted in large igneous generated (Bryan et al., 2002). with convective transport of hot mantle (Mut- provinces preserve an important record of these The origin and evolution of large volumes of ter et al., 1988; Anderson, 1994), delamination lithospheric processes, and therefore they play silicic magmas remain among the most contro- of the subcontinental lithosphere (Camp and a key role in our understanding of the develop- versial topics in modern petrology (Bachmann Hanan, 2008), mixing of melts derived from dif- ment of large igneous provinces. and Bergantz, 2004, 2008; Glazner et al., 2008; ferent mantle reservoirs (Korenaga, 2004), and Increasing awareness of the widespread Brophy, 2009). Most models emphasize the role crustal contamination of mantle-derived melts occurrence of silicic magmas in large igneous of assimilation, fractional crystallization, partial (Lightfoot et al., 1990; Brandon et al., 1993). provinces and the discovery of some domi- melting, and various combinations of these pro- nantly silicic large igneous provinces (e.g., cesses in the petrogenesis of such silicic mag- Pankhurst et al., 1998; Bryan, 2007) have high- mas. Recent advances in numerical modeling *Corresponding author e-mail: [email protected]. †Present address: Department of Geological Sci- lighted the role of these magmas in probing (Dufek and Bergantz, 2005; Annen et al., 2006), ences, University of Nevada–Reno, Reno, Nevada plume-lithosphere interaction (e.g., Garland et and trace-element characterization (Bachmann 89577, USA. al., 1995; Baker et al., 2000; Pankhurst et al., and Bergantz, 2004; Davidson et al., 2007b; LITHOSPHEREFor permission to| Volumecopy, contact 2 | Number [email protected] 4 | www.gsapubs.org | © 2010 Geological Society of America 211 Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/2/4/211/3037578/211.pdf by guest on 01 October 2021 ROONEY ET AL. Bachmann and Bergantz, 2008; Glazner et al., 40.1°N Metarhyolite 2008) have illustrated the importance of frac- Metabasalt PENNSYLVANIA tionating phases in controlling trace-element pat- High-Al group expanded Low-Al group terns in high-silica rhyolites, regardless of how left the parental melt was generated (partial melting 40.0°N MARYLAND or crystal fractionation). In this contribution, we examine the trace-element characteristics South Mountain of high-silica rhyolites from South Mountain, Formation Washington 39.9°N Pennsylvania, in order to probe the conditions D.C. of magma evolution in the late Vendian (564 Ma ± 9 Ma: Aleinikoff et al., 1995) Catoctin Volca- nic Province, linked to the late Neoproterozoic 39.8°N eastern Laurentian superplume (Puffer, 2002). This study will examine parental magma hetero- geneity and evolutionary paths preserved within the South Mountain rhyolite suite. 77.5°W 77.4°W 77.3°W 77.2°W 77.1°W VIRGINIA GEOLOGIC SETTING AND BACKGROUND WEST The South Mountain rhyolites occur in VIRGINIA Lynchburg association with fl ood basalts of the Catoctin Roanoke Volcanic Province in the Central Appalachians, and they are exposed along the Blue Ridge anti- clinorium (Reed, 1955; Rankin, 1975; Badger Study and Sinha, 1988; Badger and Sinha, 2004). The Mt. Rogers Area Catoctin Volcanic Province had a signifi cant areal extent of at least 11,000 km2, and has been linked with other temporally synchronous vol- TENNESSEE NORTH CAROLINA Volcanic canic and plutonic rocks displaying an ocean- Plutonic island basalt signature along the eastern margin Basement of North America (from Newfoundland to Vir- Sediments ginia; Puffer, 2002). It has been well established that the Catoctin fl ood basalts are associated 50 km with the breakup of Rodinia and the opening of the Iapetus Ocean (Rankin, 1975; Cawood et al., Figure 1. Regional simplifi ed geological map of the Blue Ridge province between southern Pennsyl- vania and Tennessee (modifi ed after Novak and Rankin, 2004). Inset is a location map for the South 2001). The signifi cant areal extent and magni- Mountain rhyolites in Pennsylvania. The distribution of metarhyolite and metabasalt is derived tude of volcanism along this rifted margin, com- from the Pennsylvania Geological Survey digital geological map of Pennsylvania. Sample locations bined with the recognition of the role of mantle are given in Table DR1 (see text footnote one). plumes in assisting continental breakup globally (e.g., Hill, 1991), and also elsewhere in Rodinia (Li et al., 1999), prompted new models linking Mountain rhyolites) that become progressively alteration and then powdered in a ceramic Bico the rifting of Rodinia to the impingement of a less abundant southward (Reed, 1955; Badger fl at-plate grinder. The sample powders were superplume at the base of the continental litho- and Sinha, 1992; Aleinikoff et al., 1995). The fused into lithium tetraborate glass disks using sphere (Puffer, 2002; Li et al., 2008). South Mountain rhyolites are interpreted to be the procedures outlined elsewhere (Deering et Within the Blue Ridge Province, silicic vol- either metamorphosed glassy fl ows or welded al., 2008). Major elements, Zr, Sr, Rb, and Ni canism is most well developed at the southern tuffs (Fauth, 1968; Aleinikoff et al., 1995) that were analyzed by Brucker X-ray
Recommended publications
  • Volcanic Fire and Glacial
    For additional reading (technical) Miller, J.M.G., 1994, The Neoproterozoic Konnarock Formation, southwestern Virginia, USA; Glaciolacustrine facies in a continental rift, in Deynoux, M[ax], Miller, J.M.G., Donnack, E.W., Eyles, N., Fairchild, I.J., and Young, G.M., eds., Earth’s glacial record: New York, Cambridge Volcanic Fire University Press, p. 47–59. Rankin, D.W., 1993, The volcanogenic Mount Rogers Formation and the overlying glaciogenic Konnarock and Glacial Ice Formation—Two Late Proterozoic units in southwestern Virginia: U.S. Geological Survey Bulletin 2029, 26 p. Rankin, D.W., Miller, J.M.G., and Simpson, E.L., 1994, Geology of the Mt. Rogers area, southwestern Virginia Blue Ridge and Unaka belt, in Schultz, Art, and Henika, Bill, eds., Fieldguides to southern Appalachian structure, stratigraphy, and engineering geology: Virginia Polytechnic Institute and State University Department of Geological Sciences Guidebook no. 10, p. 127–176. Cover: Buzzard Rock, a shoulder of Whitetop Mountain, from near the peak of Whitetop Mountain; volcanic rocks are in the foreground. Photograph by Sandra H.B. Clark, U.S. Geological Survey. For more information online Visit the USGS at http://www.usgs.gov and the Forest Service at http://www.fs.fed.us/r8/gwj/ The United States Department of Agriculture (USDA) and Department of the Interior (DOI) prohibit discrimination in all their programs on the basis of race, color, national origin, sex, Geologic Wonders religion, age, disability, political beliefs, sexual orientation, or of the George Washington and marital or familial status. (Not all prohibited bases apply to all programs.) Jefferson National Forests Persons with disabilities who require alternative means for No.
    [Show full text]
  • Playing Jigsaw with Large Igneous Provinces a Plate Tectonic
    PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Playing jigsaw with Large Igneous Provinces—A plate tectonic 10.1002/2015GC006036 reconstruction of Ontong Java Nui, West Pacific Key Points: Katharina Hochmuth1, Karsten Gohl1, and Gabriele Uenzelmann-Neben1 New plate kinematic reconstruction of the western Pacific during the 1Alfred-Wegener-Institut Helmholtz-Zentrum fur€ Polar- und Meeresforschung, Bremerhaven, Germany Cretaceous Detailed breakup scenario of the ‘‘Super’’-Large Igneous Province Abstract The three largest Large Igneous Provinces (LIP) of the western Pacific—Ontong Java, Manihiki, Ontong Java Nui Ontong Java Nui ‘‘Super’’-Large and Hikurangi Plateaus—were emplaced during the Cretaceous Normal Superchron and show strong simi- Igneous Province as result of larities in their geochemistry and petrology. The plate tectonic relationship between those LIPs, herein plume-ridge interaction referred to as Ontong Java Nui, is uncertain, but a joined emplacement was proposed by Taylor (2006). Since this hypothesis is still highly debated and struggles to explain features such as the strong differences Correspondence to: in crustal thickness between the different plateaus, we revisited the joined emplacement of Ontong Java K. Hochmuth, [email protected] Nui in light of new data from the Manihiki Plateau. By evaluating seismic refraction/wide-angle reflection data along with seismic reflection records of the margins of the proposed ‘‘Super’’-LIP, a detailed scenario Citation: for the emplacement and the initial phase of breakup has been developed. The LIP is a result of an interac- Hochmuth, K., K. Gohl, and tion of the arriving plume head with the Phoenix-Pacific spreading ridge in the Early Cretaceous. The G.
    [Show full text]
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Midcontinent Rift
    VOL. 97 NO. 18 15 SEP 2016 NORTH AMERICA’S MIDCONTINENT RIFT Augmented Reality for Earth Science Quirky Geoscience Tunes Future of AGU Meetings NEW in Fall 2016 GeoHealth will foster the intersection of Earth science disciplines (Earth processes, climate change, atmospheric and ocean sciences, hydrology, among others), with those of the health sciences, defined broadly (environmental and ecosystem health and services, human and agricultural health, geomedicine, and the impact of natural hazards). Now Accepting Applications for Two Editors in Chief of GeoHealth AGU is launching GeoHealth under Founding Editor Rita R. Colwell. We are seeking applications for two dynamic, well-organized scientists with high editorial standards and strong leadership skills to serve 4-year terms as the editors in chief (EICs) to lead this exciting journal starting in 2017 and beyond. One editor’s main area of focus will be on the geosciences, while the other editor’s main area of focus will be on health. This is an important opportunity to help shape and lead this increasingly important, cross-cutting discipline. The EICs will be the principal architects of the scientific content of the journal. They are active scientists, well-known and well-regarded in their respective discipline. The EICs must be active in soliciting the best science from the best scientists to be published in the journal. Working with the other editors and AGU staff, EICs are the arbiter of the content of the journal. Among other functions, EICs will be responsible for: • Acting as an ambassador to the author/editor/reviewer/scientist community. • Setting the strategy for the journal.
    [Show full text]
  • Project Report: the Siberian Traps and the End-Permian Mass Extinction
    Project Report: The Siberian Traps and the end-Permian mass extinction During the summer of 2008, I spent a month and a half in the field in Arctic Siberia. The eruption of the Siberian Traps ca. 252 million years ago was one of the greatest volcanic cataclysms in the geologic record, and may have been associated with the most severe biotic crisis since the Cambrian radiation. The remnants of this volcanism are exposed along the remote Kotuy River in Siberia (Figure 1). The causes of the end-Permian mass extinction, during which > 90% of marine species vanished forever, remain poorly understood. The apparently coincident eruption of the Siberian Traps large igneous province—which is one of the most voluminous continental flood basalt provinces in Phanerozoic time—has been widely invoked as a potential trigger mechanism for the mass extinction (e.g. Campbell et al., 1992). By traveling to the scene of this ancient eruption in Siberia, I hoped to gather clues to the character and possible environmental consequences of the eruption. I accompanied a small team of scientists from Russia and MIT, including my doctoral advisor (Linda Elkins-Tanton). The Siberian Traps are difficult to reach, and logistics were complex. As shown in Figure Figure 1. White star marks the approximate location of field work in the summer of 2008, along the Kotuy River in Siberia (71°54 N, 102° 7’ E). Figure 2. We used small water craft to navigate the Kotuy River and reach the Siberian Traps volcanic stratigraphy. The cliffs shown here are limestones from the underlying sedimentary sequence.
    [Show full text]
  • New Constraints on the Age, Geochemistry
    New constraints on the age, geochemistry, and environmental impact of High Arctic Large Igneous Province magmatism: Tracing the extension of the Alpha Ridge onto Ellesmere Island, Canada T.V. Naber1,2, S.E. Grasby1,2, J.P. Cuthbertson2, N. Rayner3, and C. Tegner4,† 1 Geological Survey of Canada–Calgary, Natural Resources Canada, Calgary, Canada 2 Department of Geoscience, University of Calgary, Calgary, Canada 3 Geological Survey of Canada–Northern, Natural Resources Canada, Ottawa, Canada 4 Centre of Earth System Petrology, Department of Geoscience, Aarhus University, Aarhus, Denmark ABSTRACT Island, Nunavut, Canada. In contrast, a new Province (HALIP), is one of the least studied U-Pb age for an alkaline syenite at Audhild of all LIPs due to its remote geographic lo- The High Arctic Large Igneous Province Bay is significantly younger at 79.5 ± 0.5 Ma, cation, and with many exposures underlying (HALIP) represents extensive Cretaceous and correlative to alkaline basalts and rhyo- perennial arctic sea ice. Nevertheless, HALIP magmatism throughout the circum-Arctic lites from other locations of northern Elles- eruptions have been commonly invoked as a borderlands and within the Arctic Ocean mere Island (Audhild Bay, Philips Inlet, and potential driver of major Cretaceous Ocean (e.g., the Alpha-Mendeleev Ridge). Recent Yelverton Bay West; 83–73 Ma). We propose anoxic events (OAEs). Refining the age, geo- aeromagnetic data shows anomalies that ex- these volcanic occurrences be referred to col- chemistry, and nature of these volcanic rocks tend from the Alpha Ridge onto the northern lectively as the Audhild Bay alkaline suite becomes critical then to elucidate how they coast of Ellesmere Island, Nunavut, Canada.
    [Show full text]
  • Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
    Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P.
    [Show full text]
  • Feature of the Month - August 2006
    RECENT BACK ISSUES: http://www.zone-vx.com/tlo_back.html A PUBLICATION OF THE LUNAR SECTION OF THE A.L.P.O. EDITED BY: William M. Dembowski, F.R.A.S. - [email protected] Elton Moonshine Observatory - http://www.zone-vx.com 219 Old Bedford Pike (Elton) - Windber, PA 15963 FEATURE OF THE MONTH - AUGUST 2006 RHEITA E Sketch and text by Robert H. Hays, Jr. - Worth, Illinois, USA March 5, 200 - 01:15 to 01:45 UT 15cm Newtonian - 170x - Seeing 7-8/10 I sketched this crater and vicinity on the evening of March 4, 2006 after observing two occultations. This feature is located amid a jumble of craters south of Mare Fecunditatis. This is an elongated crater that appears to be the result of at least three impacts. The north and south lobes are about the same size, but the southern lobe is definitely deeper. The central portion is about the size of the north and south lobes combined. There are some bits of shadow on the floor, but I saw no obvious hills or craters there. I have drawn the shadowing within and around Rheita E as I saw it. There is an obvious ridge extending westward from the south lobe. The crater Rheita F is adjacent to the south lobe of Rheita E, and has a strip of shadow parallel to the ridge from Rheita E. Rheita M is the large, shallow crater east of Rheita E's south end, and Rheita N is the small, shallow pit between them. Stevinus D is the slightly smaller, but deeper crater north of Rheita M.
    [Show full text]
  • Environmental Effects of Large Igneous Province Magmatism: a Siberian Perspective Benjamin A
    20 Environmental effects of large igneous province magmatism: a Siberian perspective benjamin a. black, jean-franc¸ois lamarque, christine shields, linda t. elkins-tanton and jeffrey t. kiehl 20.1 Introduction Even relatively small volcanic eruptions can have significant impacts on global climate. The eruption of El Chichón in 1982 involved only 0.38 km3 of magma (Varekamp et al., 1984); the eruption of Mount Pinatubo in 1993 involved 3–5km3 of magma (Westrich and Gerlach, 1992). Both these eruptions produced statistically significant climate signals lasting months to years. Over Earth’s his- tory, magmatism has occurred on vastly larger scales than those of the Pinatubo and El Chichón eruptions. Super-eruptions often expel thousands of cubic kilo- metres of material; large igneous provinces (LIPs) can encompass millions of cubic kilometres of magma. The environmental impact of such extraordinarily large volcanic events is controversial. In this work, we explore the unique aspects of LIP eruptions (with particular attention to the Siberian Traps), and the significance of these traits for climate and atmospheric chemistry during eruptive episodes. As defined by Bryan and Ernst (2008), LIPs host voluminous (> 100,000 km3) intraplate magmatism where the majority of the magmas are emplaced during short igneous pulses. The close temporal correlation between some LIP eruptions and mass extinction events has been taken as evidence supporting a causal relationship (Courtillot, 1994; Rampino and Stothers, 1988; Wignall, 2001); as geochronological data become increasingly precise, they have continued to indicate that this temporal association may rise above the level of coincidence (Blackburn et al., 2013). Several obstacles obscure the mechanisms that might link LIP magmatism with the degree of global environmental change sufficient to trigger mass extinction.
    [Show full text]
  • Large Igneous Provinces: a Driver of Global Environmental and Biotic Changes, Geophysical Monograph 255, First Edition
    2 Radiometric Constraints on the Timing, Tempo, and Effects of Large Igneous Province Emplacement Jennifer Kasbohm1, Blair Schoene1, and Seth Burgess2 ABSTRACT There is an apparent temporal correlation between large igneous province (LIP) emplacement and global envi- ronmental crises, including mass extinctions. Advances in the precision and accuracy of geochronology in the past decade have significantly improved estimates of the timing and duration of LIP emplacement, mass extinc- tion events, and global climate perturbations, and in general have supported a temporal link between them. In this chapter, we review available geochronology of LIPs and of global extinction or climate events. We begin with an overview of the methodological advances permitting improved precision and accuracy in LIP geochro- nology. We then review the characteristics and geochronology of 12 LIP/event couplets from the past 700 Ma of Earth history, comparing the relative timing of magmatism and global change, and assessing the chronologic support for LIPs playing a causal role in Earth’s climatic and biotic crises. We find that (1) improved geochronol- ogy in the last decade has shown that nearly all well-dated LIPs erupted in < 1 Ma, irrespective of tectonic set- ting; (2) for well-dated LIPs with correspondingly well-dated mass extinctions, the LIPs began several hundred ka prior to a relatively short duration extinction event; and (3) for LIPs with a convincing temporal connection to mass extinctions, there seems to be no single characteristic that makes a LIP deadly. Despite much progress, higher precision geochronology of both eruptive and intrusive LIP events and better chronologies from extinc- tion and climate proxy records will be required to further understand how these catastrophic volcanic events have changed the course of our planet’s surface evolution.
    [Show full text]
  • By DWG Arthur, Alice P. Agnieray, Ruth H. Pellicori, CA Wood, and T
    No. 50 THE SYSTEM OF LUNAR CRATERS, QUADRANT III by D. W. G. Arthur, Alice P. Agnieray, Ruth H. Pellicori, C. A. Wood, and T. Weller February 25, 1965 ABSTRACT The designation, diameter, position, central peak information, and state of completeness are listed for each discernible crater with a diameter exceeding 3.5 km in the third lunar quadrant. The catalog contains about 5200 items and is illustrated by a map in 11 sections. on the averted lunar hemisphere, and therefore, these Thistem Communication of Lunar Craters, is the which third is part a catalog of The in Sys four are not listed in the catalog. parts of all craters recognizable with reasonable The approximate positions and diameters for certainty on photographs and having a diameter these craters are: greater than 3.5 km. It is thus a continuation of the work in Comm. LPL Nos. 30 and 40, and the same Long. Lat. Diam, (.00Ir) Hausen -91?5 - 6 5 ? 6 9 9 . 5 conventions and format are used. Boltzmann -96?0 - 7 5 ? 5 3 9 . 1 As in the earlier parts, it was found necessary S t e f a n - 9 4 ? 0 - 7 2 ? 0 7 8 . 0 to add names for large craters in the extreme limb regions. The new crater names for Quadrant III are: The above are mere additions to the Blagg and Miiller scheme. A more notable innovation, which Baade German-American astronomer has already been authorized by the International Boltzmann Austrian physicist Astronomical Union at its 1964 general meeting at Drygalski German geographer Hamburg, is the addition of the name Mare Cogni- Hartwig German selenodetist tum (the known sea) for the dark area between Krasnov Russian selenodetic observer Riphaeus and the crater Guerike.
    [Show full text]
  • Planetary Science : a Lunar Perspective
    APPENDICES APPENDIX I Reference Abbreviations AJS: American Journal of Science Ancient Sun: The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites (Eds. R. 0.Pepin, et al.), Pergamon Press (1980) Geochim. Cosmochim. Acta Suppl. 13 Ap. J.: Astrophysical Journal Apollo 15: The Apollo 1.5 Lunar Samples, Lunar Science Insti- tute, Houston, Texas (1972) Apollo 16 Workshop: Workshop on Apollo 16, LPI Technical Report 81- 01, Lunar and Planetary Institute, Houston (1981) Basaltic Volcanism: Basaltic Volcanism on the Terrestrial Planets, Per- gamon Press (1981) Bull. GSA: Bulletin of the Geological Society of America EOS: EOS, Transactions of the American Geophysical Union EPSL: Earth and Planetary Science Letters GCA: Geochimica et Cosmochimica Acta GRL: Geophysical Research Letters Impact Cratering: Impact and Explosion Cratering (Eds. D. J. Roddy, et al.), 1301 pp., Pergamon Press (1977) JGR: Journal of Geophysical Research LS 111: Lunar Science III (Lunar Science Institute) see extended abstract of Lunar Science Conferences Appendix I1 LS IV: Lunar Science IV (Lunar Science Institute) LS V: Lunar Science V (Lunar Science Institute) LS VI: Lunar Science VI (Lunar Science Institute) LS VII: Lunar Science VII (Lunar Science Institute) LS VIII: Lunar Science VIII (Lunar Science Institute LPS IX: Lunar and Planetary Science IX (Lunar and Plane- tary Institute LPS X: Lunar and Planetary Science X (Lunar and Plane- tary Institute) LPS XI: Lunar and Planetary Science XI (Lunar and Plane- tary Institute) LPS XII: Lunar and Planetary Science XII (Lunar and Planetary Institute) 444 Appendix I Lunar Highlands Crust: Proceedings of the Conference in the Lunar High- lands Crust, 505 pp., Pergamon Press (1980) Geo- chim.
    [Show full text]