Hurricane Harvey and Resilience in Houston's Economy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wind Speed-Damage Correlation in Hurricane Katrina
JP 1.36 WIND SPEED-DAMAGE CORRELATION IN HURRICANE KATRINA Timothy P. Marshall* Haag Engineering Co. Dallas, Texas 1. INTRODUCTION According to Knabb et al. (2006), Hurricane Katrina Mehta et al. (1983) and Kareem (1984) utilized the was the costliest hurricane disaster in the United States to concept of wind speed-damage correlation after date. The hurricane caused widespread devastation from Hurricanes Frederic and Alicia, respectively. In essence, Florida to Louisiana to Mississippi making a total of three each building acts like an anemometer that records the landfalls before dissipating over the Ohio River Valley. wind speed. A range of failure wind speeds can be The storm damaged or destroyed many properties, determined by analyzing building damage whereas especially near the coasts. undamaged buildings can provide upper bounds to the Since the hurricane, various agencies have conducted wind speeds. In 2006, WSEC developed a wind speed- building damage assessments to estimate the wind fields damage scale entitled the EF-scale, named after the late that occurred during the storm. The National Oceanic Dr. Ted Fujita. The author served on this committee. and Atmospheric Administration (NOAA, 2005a) Wind speed-damage correlation is useful especially conducted aerial and ground surveys and published a when few ground-based wind speed measurements are wind speed map. Likewise, the Federal Emergency available. Such was the case in Hurricane Katrina when Management Agency (FEMA, 2006) conducted a similar most of the automated stations failed before the eye study and produced another wind speed map. Both reached the coast. However, mobile towers were studies used a combination of wind speed-damage deployed by Texas Tech University (TTU) at Slidell, LA correlation, actual wind measurements, as well as and Bay St. -
Texas Hurricane History
Texas Hurricane History David Roth National Weather Service Camp Springs, MD Table of Contents Preface 3 Climatology of Texas Tropical Cyclones 4 List of Texas Hurricanes 8 Tropical Cyclone Records in Texas 11 Hurricanes of the Sixteenth and Seventeenth Centuries 12 Hurricanes of the Eighteenth and Early Nineteenth Centuries 13 Hurricanes of the Late Nineteenth Century 16 The First Indianola Hurricane - 1875 21 Last Indianola Hurricane (1886)- The Storm That Doomed Texas’ Major Port 24 The Great Galveston Hurricane (1900) 29 Hurricanes of the Early Twentieth Century 31 Corpus Christi’s Devastating Hurricane (1919) 38 San Antonio’s Great Flood – 1921 39 Hurricanes of the Late Twentieth Century 48 Hurricanes of the Early Twenty-First Century 68 Acknowledgments 74 Bibliography 75 Preface Every year, about one hundred tropical disturbances roam the open Atlantic Ocean, Caribbean Sea, and Gulf of Mexico. About fifteen of these become tropical depressions, areas of low pressure with closed wind patterns. Of the fifteen, ten become tropical storms, and six become hurricanes. Every five years, one of the hurricanes will become reach category five status, normally in the western Atlantic or western Caribbean. About every fifty years, one of these extremely intense hurricanes will strike the United States, with disastrous consequences. Texas has seen its share of hurricane activity over the many years it has been inhabited. Nearly five hundred years ago, unlucky Spanish explorers learned firsthand what storms along the coast of the Lone Star State were capable of. Despite these setbacks, Spaniards set down roots across Mexico and Texas and started colonies. Galleons filled with gold and other treasures sank to the bottom of the Gulf, off such locations as Padre and Galveston Islands. -
Hurricane Ike: Do We Need to Change Our Thinking?
AIRCURRENTS HURRICANE IKE: DO WE NEED TO CHANGE OUR THINKING? EDITor’s noTE: Of the three landfalling U.S. hurricanes in 2008, Hurricane Ike was by far the costliest. Perhaps because it was the largest loss in the last three seasons, it seemed to have captured the imagination of many in the industry, with estimates of as much as $20 billion or more being bandied about in the storm’s early aftermath. In this article, AIR’s Dr. Peter Dailey 12.2008 takes a hard look at the reality of Hurricane Ike. By Dr. Peter S. Dailey, Director of Atmospheric Science INTRODUCTION neither catastrophe modelers—nor the industry—should Hurricane Ike made landfall at Galveston, Texas in the early have been taken by surprise by Ike. While the storm morning hours of September 13, 2008. It was the third displayed some interesting characteristics, and managed and final hurricane to make landfall in the U.S. this year, to cause damage well inland (long after it had been preceded by Hurricane Dolly in late July and Gustav just two downgraded to a tropical depression and was no longer weeks prior to Ike. tracked by the NHC, the AIR model in fact performed very well in capturing the effects of this storm. All three landfalling hurricanes arrived on U.S. shores as Category 2 storms on the Saffir-Simpson scale. Yet according This article traces the history of Hurricane Ike’s brief but to the latest estimates by ISO’s Property Claims Services unit, costly assault on the U.S. It also looks at how the AIR U.S. -
2021 Rio Grande Valley/Deep S. Texas Hurricane Guide
The Official Rio Grande Valley/Deep South Texas HURRICANE GUIDE 2021 IT ONLY TAKES ONE STORM! weather.gov/rgv A Letter to Residents After more than a decade of near-misses, 2020 reminded the Rio Grande Valley and Deep South Texas that hurricanes are still a force to be reckoned with. Hurricane Hanna cut a swath from Padre Island National Seashore in Kenedy County through much of the Rio Grande Valley in late July, leaving nearly $1 billion in agricultural and property damage it its wake. While many may now think that we’ve paid our dues, that sentiment couldn’t be further from the truth! The combination of atmospheric and oceanic patterns favorable for a landfalling hurricane in the Rio Grande Valley/Deep South Texas region can occur in any season, including this one. Residents can use the experience of Hurricane Hanna in 2020 as a great reminder to be prepared in 2021. Hurricanes bring a multitude of hazards including flooding rain, damaging winds, deadly storm surge, and tornadoes. These destructive forces can displace you from your home for months or years, and there are many recent cases in the United States and territories where this has occurred. Hurricane Harvey (2017), Michael (2018, Florida Panhandle), and Laura (2020, southwest Louisiana) are just three such devastating events. This guide can help you and your family get prepared. Learn what to do before, during and after a storm. Your plan should include preparations for your home or business, gathering supplies, ensuring your insurance is up to date, and planning with your family for an evacuation. -
Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific Ab Sins Nicholas S
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School March 2019 Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific aB sins Nicholas S. Grondin Louisiana State University, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Climate Commons, Meteorology Commons, and the Physical and Environmental Geography Commons Recommended Citation Grondin, Nicholas S., "Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific asinB s" (2019). LSU Master's Theses. 4864. https://digitalcommons.lsu.edu/gradschool_theses/4864 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CLIMATOLOGY, VARIABILITY, AND RETURN PERIODS OF TROPICAL CYCLONE STRIKES IN THE NORTHEASTERN AND CENTRAL PACIFIC BASINS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geography and Anthropology by Nicholas S. Grondin B.S. Meteorology, University of South Alabama, 2016 May 2019 Dedication This thesis is dedicated to my family, especially mom, Mim and Pop, for their love and encouragement every step of the way. This thesis is dedicated to my friends and fraternity brothers, especially Dillon, Sarah, Clay, and Courtney, for their friendship and support. This thesis is dedicated to all of my teachers and college professors, especially Mrs. -
Report of the Governor's Commission to Rebuild Texas
EYE OF THE STORM Report of the Governor’s Commission to Rebuild Texas John Sharp, Commissioner BOARD OF REGENTS Charles W. Schwartz, Chairman Elaine Mendoza, Vice Chairman Phil Adams Robert Albritton Anthony G. Buzbee Morris E. Foster Tim Leach William “Bill” Mahomes Cliff Thomas Ervin Bryant, Student Regent John Sharp, Chancellor NOVEMBER 2018 FOREWORD On September 1 of last year, as Hurricane Harvey began to break up, I traveled from College Station to Austin at the request of Governor Greg Abbott. The Governor asked me to become Commissioner of something he called the Governor’s Commission to Rebuild Texas. The Governor was direct about what he wanted from me and the new commission: “I want you to advocate for our communities, and make sure things get done without delay,” he said. I agreed to undertake this important assignment and set to work immediately. On September 7, the Governor issued a proclamation formally creating the commission, and soon after, the Governor and I began traveling throughout the affected areas seeing for ourselves the incredible destruction the storm inflicted Before the difficulties our communities faced on a swath of Texas larger than New Jersey. because of Harvey fade from memory, it is critical that Since then, my staff and I have worked alongside we examine what happened and how our preparation other state agencies, federal agencies and local for and response to future disasters can be improved. communities across the counties affected by Hurricane In this report, we try to create as clear a picture of Harvey to carry out the difficult process of recovery and Hurricane Harvey as possible. -
Urbanization Exacerbated the Rainfall and Flooding Caused by Hurricane Harvey and Tropical Storm Allison
Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey and tropical storm Allison Wei Zhang IIHR-Hydroscience & Engineering, University of Iowa, Iowa City Hurricanes are formed in the warm ocean and make landfall over coastal regions occasionally. NASA 2 Hurricanes are warm-core low-pressure systems with destructive winds and torrential rainfall. Harvey in 2017 Katrina in 2005 100+ casualties 1,800+ casualties $125+ billion in damage $160+ billion in damage National Weather Service 3 Harvey stayed in Texas for several days. The reason for its stalling movement is still under investigation. 4 Record-breaking hurricane Harvey poured more than 1 meter rainfall over some parts of Houston. 休斯顿 Houston Stage IV Radar Products 5 Extreme precipitation and flash flooding caused by hurricane Harvey have led to major damages to Houston and surrounding areas. Associated Press CNN 6 Research on Harvey Rainfall (Impacts of anthropogenic forcing) • Assessing the present and future probability of Hurricane Harvey's rainfall (Emanuel 2018) • Quantitative attribution of climate effects on Hurricane Harvey's extreme rainfall in Texas (Wang et al. 2018) • Attribution of extreme rainfall from Hurricane Harvey, August 2017 (Van Oldenborgh et al. 2018) • Hurricane Harvey links to ocean heat content and climate change adaptation (Trenberth et al. 2018) 7 Climate change increased the probability of Harvey rainfall events. (Van Oldenborgh et al. 2018) 8 Again, climate change increased the probability of Harvey rainfall events. Emanuel, 2017, PNAS But, I examined Harvey rainfall from a different perspective … 9 What was the role played by buildings in Houston in changing the rainfall associated with hurricane Harvey? Before Hurricane Harvey After Hurricane Harvey 10 Oke et al. -
1989 Hurricane Hugo - September 1989
1989 Hurricane Hugo - September 1989. Category 4 hurricane devastates SC and NC with ~ 20 foot storm surge and severe wind damage after hitting PR and the U.S. Virgin Islands; over $9.0 (13.9) billion (about $7.1 (10.9) billion in Carolinas); 86 deaths (57--U.S. mainland, 29--U.S. Islands). Hurricane Hugo was a powerful Cape Verde hurricane that caused widespread damage and loss of life in Guadeloupe, Saint Croix, Puerto Rico, and the Southeast United States. It formed over the eastern Atlantic near the Cape Verde Islands on September 9, 1989. Hugo moved thousands of miles across the Atlantic, rapidly strengthening to briefly attain category 5 hurricane strength on its journey. It later crossed over Guadeloupe and St. Croix on September 17 and 18 as a category 4 hurricane. Weakening slightly more, it passed over Puerto Rico as a strong category 3 hurricane. Further weakening occurred several hours after re-emerging into the Atlantic, becoming downgraded to a category 2 hurricane. However, it re-strengthened into a category 4 hurricane before making landfall just slightly north of Charleston, on Isle of Palms on September 22 with 140 mph sustained winds (gusts to more than 160 mph). It had devolved to a remnant low near Lake Erie by the next day. As of 2016, Hurricane Hugo is the most intense tropical cyclone to strike the East Coast north of Florida since 1898. Hurricane Hugo caused 34 fatalities (most by electrocution or drowning) in the Caribbean and 27 in South Carolina, left nearly 100,000 homeless, and resulted in $9.47 billion (1989 USD) in damage overall, making it the most damaging hurricane ever recorded at the time. -
Monitoring Hurricane Rita Inland Storm Surge
Monitoring Hurricane Rita Inland Storm Surge 27 ARKANSAS 96 49 165 MISSISSIPPI LOUISIANA LC2b LA3 TEXAS LC3 (8.0) 10 LC4 LOUISIANA LC2a (10.8) LA2 Lafayette ALABAMA Lake Charles 90 Beaumont Orange (8.9) (4.5) TEXAS B1 10 B19b LA8 LA7 LC6b 14 167 LC5 (5.3) (4.2) Study Area B20 Abbeville B19a LC6a LF3 (5.0) (6.9) 27 B10 Port 27 (9.5) Arthur LC7 LC8b Grand LF5 B12 Sabine Calcasieu Lake Lake (11.2) Lake (10.1) LC12 LC9 (7.4) Gulf of Mexico (7.5) LC8a B15b LC11 (13.8)LC10 LA12 LA11 LA9b Sabine LC13 82 (13.3) LA9 82 White Lake (10.7) Pass (9.4) (10.6) (14.9) (14.8) (14.7) LA10 (6.6) (8.7) Vermilion Gulf of Mexico - Barometric-pressure sensors Lake - Water-level sensors 0 5 10 20 Miles - Co-located barometric and water-level sensor A B 0 5 10 20 Kilometers (9.4) C Hurricane Rita storm track obtained from the NOAA National Hurricane Center - Maximum surge elevation (feet above NAVD88) Map showing path of Hurricane Rita and study area. Map showing locations of storm-surge sensors in southwestern Louisiana and southeastern Texas. Water-level and barometric-pressure sensor. A Mobile Network of Storm-Surge Sensors Recovering the Sensors As Hurricane Rita approached the Texas and Louisiana coasts (A), Hurricane Rita made landfall early on the U.S. Geological Survey deployed an experimental water-level and the morning of September 24, 2005. Of barometric-pressure gage network to record the magnitude, extent, the 34 water-level sensors, significant and timing of inland hurricane storm surge and coastal flooding. -
Storm Tide Simulations for Hurricane Hugo (1989): on the Significance of Including Inland Flooding Areas
STORM TIDE SIMULATIONS FOR HURRICANE HUGO (1989): ON THE SIGNIFICANCE OF INCLUDING INLAND FLOODING AREAS by DANIEL DIETSCHE B.S. Basle Institute of Technology, Switzerland, 1993 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Civil and Environmental Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Summer Term 2004 ABSTRACT In this study, storm tides are simulated by performing a hindcast of water surface levels produced by Hurricane Hugo (1989). The region of interest incorporates inundation areas between Charleston and Shallotte Inlet (120 miles northeast of Charleston) and includes Bulls Bay where the highest storm surge of about 20 feet occurred. The study domain also contains an important riverine system which is connected to the Winyah Bay: the Waccamaw River up to Conway including all pertinent tributaries (Sampit River, Black River, and Pee Dee River), and the Atlantic Intracoastal Waterway (AIW) within the Grand Strand (Myrtle Beach). Five different two-dimensional finite element models with triangular elements are applied in order to simulate the storm tides, allow for inundation, and provide a basis of comparison to assess the significance of including inundation areas and two extents of spatial discretization. Four computational regions comprise a semicircular mesh encompassing the South Carolina coast including all relevant estuaries and bays as well as the continental shelf. Two of these four computational regions include inland topography allowing the model to simulate inland flooding. One of the floodplain meshes is then incorporated into the Western North Atlantic Tidal (WNAT) model domain to produce a fifth computational region. -
Federal Disaster Assistance After Hurricanes Katrina, Rita, Wilma, Gustav, and Ike
Federal Disaster Assistance After Hurricanes Katrina, Rita, Wilma, Gustav, and Ike Updated February 26, 2019 Congressional Research Service https://crsreports.congress.gov R43139 Federal Disaster Assistance After Hurricanes Katrina, Rita, Wilma, Gustav, and Ike Summary This report provides information on federal financial assistance provided to the Gulf States after major disasters were declared in Alabama, Florida, Louisiana, Mississippi, and Texas in response to the widespread destruction that resulted from Hurricanes Katrina, Rita, and Wilma in 2005 and Hurricanes Gustav and Ike in 2008. Though the storms happened over a decade ago, Congress has remained interested in the types and amounts of federal assistance that were provided to the Gulf Coast for several reasons. This includes how the money has been spent, what resources have been provided to the region, and whether the money has reached the intended people and entities. The financial information is also useful for congressional oversight of the federal programs provided in response to the storms. It gives Congress a general idea of the federal assets that are needed and can be brought to bear when catastrophic disasters take place in the United States. Finally, the financial information from the storms can help frame the congressional debate concerning federal assistance for current and future disasters. The financial information for the 2005 and 2008 Gulf Coast storms is provided in two sections of this report: 1. Table 1 of Section I summarizes disaster assistance supplemental appropriations enacted into public law primarily for the needs associated with the five hurricanes, with the information categorized by federal department and agency; and 2. -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.