Hurricane Andrew in Florida: Dynamics of a Disaster ^

Total Page:16

File Type:pdf, Size:1020Kb

Hurricane Andrew in Florida: Dynamics of a Disaster ^ Hurricane Andrew in Florida: Dynamics of a Disaster ^ H. E. Willoughby and P. G. Black Hurricane Research Division, AOML/NOAA, Miami, Florida ABSTRACT Four meteorological factors aggravated the devastation when Hurricane Andrew struck South Florida: completed replacement of the original eyewall by an outer, concentric eyewall while Andrew was still at sea; storm translation so fast that the eye crossed the populated coastline before the influence of land could weaken it appreciably; extreme wind speed, 82 m s_1 winds measured by aircraft flying at 2.5 km; and formation of an intense, but nontornadic, convective vortex in the eyewall at the time of landfall. Although Andrew weakened for 12 h during the eyewall replacement, it contained vigorous convection and was reintensifying rapidly as it passed onshore. The Gulf Stream just offshore was warm enough to support a sea level pressure 20-30 hPa lower than the 922 hPa attained, but Andrew hit land before it could reach this potential. The difficult-to-predict mesoscale and vortex-scale phenomena determined the course of events on that windy morning, not a long-term trend toward worse hurricanes. 1. Introduction might have been a harbinger of more devastating hur- ricanes on a warmer globe (e.g., Fisher 1994). Here When Hurricane Andrew smashed into South we interpret Andrew's progress to show that the ori- Florida on 24 August 1992, it was the third most in- gins of the disaster were too complicated to be ex- tense hurricane to cross the United States coastline in plained by thermodynamics alone. the 125-year quantitative climatology. It destroyed $25 billion in property and killed 15 people directly (Mayfield et al. 1994; Rappaport 1994). Andrew's 2. Hurricane intensification landfall coincided with a period of historically high global temperatures (Follard et al. 1992) and followed Hurricanes, by definition, sustain surface winds two other memorable hurricanes: Gilbert in 1988, greater than 33 m s_1. Their intensity is measured in which took 318 lives and established 888 hPa as a terms of maximum wind or minimum sea level pres- record for the lowest hurricane sea level pressure in sure at the storm center/^. The Saffir-Simpson scale the Atlantic basin (Lawrence and Gross 1989); and (Simpson 1974) ranks increasing intensity in catego- Hugo in 1989, which took 49 lives and destroyed ries 1-5. The threshold of category 5 is sustained (1- $7 billion in property, the largest total up to that time min average) surface wind stronger than 69 m s_1 or (Case and Mayfield 1990). These events, reinforced Pc below 920 hPa. At inland sites, the surface winds by thermodynamic arguments that relate the hurri- used to assign categories are typically 65% of the wind canes' maximum intensity to sea surface temperature measured at several kilometers altitude by aircraft. (Emanuel 1987), raised public concern that Andrew The weaker wind inland in the frictional boundary layer is caused by the greater aerodynamic roughness of the land surface. The reduction occurs over the first Corresponding author address: Dr. H. E. Willoughby, Hurricane Research Division, AOML/NOAA, 4301 Rickenbacker Cause- few kilometers inland. At sea or on the coast, the sur- way, Miami, FL 33149. face winds are stronger, 70%-80% of the flight-level E-mail: [email protected] wind, but the strongest gusts may approach the flight- In final form 15 September 1995. level wind (Powell 1982, 1987; Powell et al. 1991; Bulletin of the American Meteorological Society 543 Unauthenticated | Downloaded 10/08/21 06:01 AM UTC Black 1993). Thus, the sustained surface wind equiva- fall, the smaller effective heat capacity of the solid lent to the 82 m s_1 flight-level wind observed in An- surface leads to boundary layer cooling, reduced drew would be 53 m s_1 ashore and 57-66 m s-1 at sea. evaporation, and weakening of the storm as a whole Independent estimates of Andrew's strongest winds (Miller 1964; Tuleya 1994). This thermodynamically agree generally with these figures (Rappaport 1994), induced spin-down of the vortex is more gradual than but debris patterns at some inland sites are consis- the frictional reduction of the surface wind at the coast. tent with surface winds near the flight-level value A hurricane that has achieved the greatest intensity (Wakimoto and Black 1994). possible at sea may be modeled as a heat engine oper- Category 5 hurricanes are rare in the Atlantic. The ating between a warm reservoir at the sea surface tem- historical record shows U.S. landfall by only two, perature TS and a cold reservoir at the tropopause Camille in 1969 and the Labor Day Hurricane in 1935. temperature Tr Figure 1 shows that Ps, the lowest pos- Category 4 hurricanes cross the U.S. coastline more sible/^, becomes lower as the thermodynamic efficiency often, every 6-7 years on average. No hurricane with (TS - TT)/TS increases (Emanuel 1988). An independent Pc < 900 hPa has reached the U.S. mainland since empirical estimate of Ps can be made by tabulating the 1 1900, although three have occurred in the Atlantic greatest intensity ever observed as a function of Ts basin (Hebert et al. 1992). Northwestern-Pacific ty- (DeMaria and Kaplan 1994). An example of this es- phoons reach category 4 and 5 intensities more fre- timate also appears in Fig. 1. The thermodynamic es- quently. Rapid deepening, defined as a rate of pressure timate of Ps falls 10 hPa for a 1°C increase in Ts near fall > 42 hPa in 24 h, is the mode of intensifica- 30°C, but the empirical estimate falls 17 hPa per de- tion in three quarters of the typhoons that reach Pc gree. The more rapid fall of empirical Ps stems from < 920 hPa and in all that reach Pc < 900 hPa (Holliday a climatological correlation between TS and TT\ the and Thompson 1979). The most intense recent Atlan- tropopause is higher and colder in low latitudes where tic hurricanes (Camille, Allen, Gloria, Gilbert, and the sea is warmer. Figure 1 conveys an illusory impres- Hugo) reached their lowest surface pressures after a sion of precision. Sea surface temperature is typically day or two of rapid deepening. Rapid deepening of- known to ±1°C, and its range in the Tropics is 4-5°C. ten follows interactions between tropical cyclones and The high-intensity ends of the curves are supported midlatitude troughs or subtropical lows. The mecha- by only a handful of cases. Indeed, one interpretation nism involves secondary circulations forced by upper- of the observations is that Ts is not the controlling fac- tropospheric eddy convergence of angular momentum tor in intensity of most hurricanes (Evans 1993). On (Pfeffer 1958; Pfeffer and Challa 1981,1992; Holland any given day during hurricane season, much of the and Merrill 1984; Molinari and Vollaro 1989; DeMaria et al. 1993). The dynamics of the eddies are not well understood, but it is clear that the momen- tum convergence forces axisymmetric outflow just below the tropopause with deep compensating inflow in the lower troposphere joined to the outflow by broad ascent around the hurricane's center. The as- cent causes intensification by destabilizing the column and enhancing convective heat release. Hurricanes' low pressures are driven by thermody- namic disequilibrium between the ocean and the at- mosphere. Evaporation from the sea supplies latent heat to the surface boundary layer that, in turn, feeds cumulonimbus convection around the eye. Entrain- ment into the convection forces a midlevel flow that concentrates angular momentum and spins up the FIG. 1. Minimum sea level pressure attainable in hurricanes vortex (Ooyama 1969, 1982). After hurricane land- as a function of sea surface temperature for tropopause temperatures -65°, -70°, and -75°C based upon Emanuel's (1988) argument (dotted curves) and derived form DeMaria and Kaplan's (1994) observational study (solid curve). Actual 1 The Labor Day Storm, 892 hPa; Allen of 1980, 899 hPa; and minimum sea level pressures at greatest intensity for Hurricanes Gilbert. Gilbert, Hugo, and Andrew are designated G, H, and A. 544 Vol. 77, No. 3, March 7 996 Unauthenticated | Downloaded 10/08/21 06:01 AM UTC tropical Atlantic is warm enough to produce a cat- Ps for the prevailing Ts, 30°C. Over the Bahamas at egory 4 or 5 hurricane, but few occur. 2045 UTC on 23 August, a reconnaissance aircraft The most important factor that limits both inten- reported a second eyewall at 20-km radius concen- sity of individual hurricanes and total activity on a sea- tric with the original eye, a double flight-level wind sonal basis is vertical shear of the environmental wind maximum (Fig. 3c), and a rise of Pc to 927 hPa. The (Gray 1968, 1984). Shear raises Pc by "ventilating" Miami radar, operating at extreme range, confirmed the warm vortex core that supports lowered hydro- the concentric eyewalls. By 0410 UTC on 24 August, static surface pressure (Simpson and Riehl 1958). when only the outer eyewall remained (Fig. 3d), Pc Another factor that limits intensity in low-shear situa- had risen to 941 hPa. Andrew then tracked due west tions is weakening due to replacement of a preexis- toward landfall over Homestead, Florida; the new eye tent eyewall by a newly formed outer concentric contracted to 13 km; and Pc fell to 936 hPa. Sea level eyewall. Both inner and outer eyewalls are contract- pressure at the storm center continued to fall, reach- ing rings of deep cumulonimbus that coincide with ing 922 hPa again after landfall. The aircraft encoun- local maxima of the swirling wind. Convergence in tered graupel, severe turbulence, and spectacular the frictional boundary layer localizes convection near electrical displays—both meteorological and from the the wind maximum.
Recommended publications
  • Wind Speed-Damage Correlation in Hurricane Katrina
    JP 1.36 WIND SPEED-DAMAGE CORRELATION IN HURRICANE KATRINA Timothy P. Marshall* Haag Engineering Co. Dallas, Texas 1. INTRODUCTION According to Knabb et al. (2006), Hurricane Katrina Mehta et al. (1983) and Kareem (1984) utilized the was the costliest hurricane disaster in the United States to concept of wind speed-damage correlation after date. The hurricane caused widespread devastation from Hurricanes Frederic and Alicia, respectively. In essence, Florida to Louisiana to Mississippi making a total of three each building acts like an anemometer that records the landfalls before dissipating over the Ohio River Valley. wind speed. A range of failure wind speeds can be The storm damaged or destroyed many properties, determined by analyzing building damage whereas especially near the coasts. undamaged buildings can provide upper bounds to the Since the hurricane, various agencies have conducted wind speeds. In 2006, WSEC developed a wind speed- building damage assessments to estimate the wind fields damage scale entitled the EF-scale, named after the late that occurred during the storm. The National Oceanic Dr. Ted Fujita. The author served on this committee. and Atmospheric Administration (NOAA, 2005a) Wind speed-damage correlation is useful especially conducted aerial and ground surveys and published a when few ground-based wind speed measurements are wind speed map. Likewise, the Federal Emergency available. Such was the case in Hurricane Katrina when Management Agency (FEMA, 2006) conducted a similar most of the automated stations failed before the eye study and produced another wind speed map. Both reached the coast. However, mobile towers were studies used a combination of wind speed-damage deployed by Texas Tech University (TTU) at Slidell, LA correlation, actual wind measurements, as well as and Bay St.
    [Show full text]
  • Hurricane Outer Rainband Mesovortices
    Presented at the 24th Conference on Hurricanes and Tropical Meteorology, Ft. Lauderdale, FL, May 31 2000 EXAMINING THE PRE-LANDFALL ENVIRONMENT OF MESOVORTICES WITHIN A HURRICANE BONNIE (1998) OUTER RAINBAND 1 2 2 1 Scott M. Spratt , Frank D. Marks , Peter P. Dodge , and David W. Sharp 1 NOAA/National Weather Service Forecast Office, Melbourne, FL 2 NOAA/AOML Hurricane Research Division, Miami, FL 1. INTRODUCTION Tropical Cyclone (TC) tornado environments have been studied for many decades through composite analyses of proximity soundings (e.g. Novlan and Gray 1974; McCaul 1986). More recently, airborne and ground-based Doppler radar investigations of TC rainband-embedded mesocyclones have advanced the understanding of tornadic cell lifecycles (Black and Marks 1991; Spratt et al. 1997). This paper will document the first known dropwindsonde deployments immediately adjacent to a family of TC outer rainband mesocyclones, and will examine the thermodynamic and wind profiles retrieved from the marine environment. A companion paper (Dodge et al. 2000) discusses dual-Doppler analyses of these mesovortices. On 26 August 1998, TC Bonnie made landfall as a category two hurricane along the North Carolina coast. Prior to landfall, two National Oceanographic and Atmospheric Administration (NOAA) Hurricane Research Division (HRD) aircraft conducted surveillance missions offshore the Carolina coast. While performing these missions near altitudes of 3.5 and 2.1 km, both aircraft were required to deviate around intense cells within a dominant outer rainband, 165 to 195 km northeast of the TC center. On-board radars detected apparent mini-supercell signatures associated with several of the convective cells along the band.
    [Show full text]
  • Texas Hurricane History
    Texas Hurricane History David Roth National Weather Service Camp Springs, MD Table of Contents Preface 3 Climatology of Texas Tropical Cyclones 4 List of Texas Hurricanes 8 Tropical Cyclone Records in Texas 11 Hurricanes of the Sixteenth and Seventeenth Centuries 12 Hurricanes of the Eighteenth and Early Nineteenth Centuries 13 Hurricanes of the Late Nineteenth Century 16 The First Indianola Hurricane - 1875 21 Last Indianola Hurricane (1886)- The Storm That Doomed Texas’ Major Port 24 The Great Galveston Hurricane (1900) 29 Hurricanes of the Early Twentieth Century 31 Corpus Christi’s Devastating Hurricane (1919) 38 San Antonio’s Great Flood – 1921 39 Hurricanes of the Late Twentieth Century 48 Hurricanes of the Early Twenty-First Century 68 Acknowledgments 74 Bibliography 75 Preface Every year, about one hundred tropical disturbances roam the open Atlantic Ocean, Caribbean Sea, and Gulf of Mexico. About fifteen of these become tropical depressions, areas of low pressure with closed wind patterns. Of the fifteen, ten become tropical storms, and six become hurricanes. Every five years, one of the hurricanes will become reach category five status, normally in the western Atlantic or western Caribbean. About every fifty years, one of these extremely intense hurricanes will strike the United States, with disastrous consequences. Texas has seen its share of hurricane activity over the many years it has been inhabited. Nearly five hundred years ago, unlucky Spanish explorers learned firsthand what storms along the coast of the Lone Star State were capable of. Despite these setbacks, Spaniards set down roots across Mexico and Texas and started colonies. Galleons filled with gold and other treasures sank to the bottom of the Gulf, off such locations as Padre and Galveston Islands.
    [Show full text]
  • Intense Hurricane Activity Over the Past 1500 Years at South Andros
    RESEARCH ARTICLE Intense Hurricane Activity Over the Past 1500 Years 10.1029/2019PA003665 at South Andros Island, The Bahamas Key Points: E. J. Wallace1 , J. P. Donnelly2 , P. J. van Hengstum3,4, C. Wiman5, R. M. Sullivan4,2, • Sediment cores from blue holes on 4 2 6 7 Andros Island record intense T. S. Winkler , N. E. d'Entremont , M. Toomey , and N. Albury hurricane activity over the past 1 millennium and a half Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program in Oceanography, Woods • Multi‐decadal shifts in Intertropical Hole, Massachusetts, USA, 2Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Convergence Zone position and Hole, Massachusetts, USA, 3Department of Marine Sciences, Texas A&M University at Galveston, Galveston, Texas, USA, volcanic activity modulate the 4Department of Oceanography, Texas A&M University, College Station, Texas, USA, 5School of Earth and Sustainability, hurricane patterns observed on 6 Andros Northern Arizona University, Flagstaff, Arizona, USA, U.S. Geological Survey, Florence Bascom Geoscience Center, • Hurricane patterns on Andros Reston, Virginia, USA, 7National Museum of The Bahamas, Nassau, The Bahamas match patterns from the northeastern Gulf of Mexico but are anti‐phased with patterns from New Abstract Hurricanes cause substantial loss of life and resources in coastal areas. Unfortunately, England historical hurricane records are too short and incomplete to capture hurricane‐climate interactions on ‐ ‐ ‐ Supporting Information: multi decadal and longer timescales. Coarse grained, hurricane induced deposits preserved in blue holes • Supporting Information S1 in the Caribbean can provide records of past hurricane activity extending back thousands of years. Here we present a high resolution record of intense hurricane events over the past 1500 years from a blue hole on South Andros Island on the Great Bahama Bank.
    [Show full text]
  • AFTER the STORM: WHY ART STILL MATTERS Amanda Coulson Executive Director, NAGB
    Refuge. Contents An open call exhibition of Bahamian art following Hurricane Dorian. Publication Design: Ivanna Gaitor Photography: Jackson Petit Copyright: The National Art Gallery of The Bahamas (NAGB) 8. Director’s Foreword by Amanda Coulson © 2020 The National Art Gallery of The Bahamas 16. Curator’s Note by Holly Bynoe West and West Hill Streets Nassau, N.P. 23. Writers: Essays/Poems The Bahamas Tel: (242) 328-5800 75. Artists: Works/Plates Email: [email protected] Website: nagb.org.bs 216. Acknowledgements ISBN: 978-976-8221-16-2 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system, without prior permission in writing from the publisher. The views and opinions expressed in this publication are those of the authors and do not necessarily reflect the official policy or position of the National Art Gallery of The Bahamas. Cover: Mystery in da Mangroves, 2019 (New Providence) Lemero Wright Acrylic on canvas 48” x 60” Collection of the artist Pages 6–7: Visitor viewing the artwork “Specimen” by Cydne Coleby. 6 7 AFTER THE STORM: WHY ART STILL MATTERS Amanda Coulson Executive Director, NAGB Like everybody on New Providence and across the other islands of our archipelago, all of the there, who watched and imagined their own future within these new climatic landscapes. team members at the National Art Gallery of The Bahamas (NAGB) watched and waited with a rock in their bellies and their hearts already broken, as the storm ground slowly past the islands In addition to conceiving this particular show “Refuge,” in order to create space for artists to of Abaco and Grand Bahama.
    [Show full text]
  • Squall Lines: Meteorology, Skywarn Spotting, & a Brief Look at the 18
    Squall Lines: Meteorology, Skywarn Spotting, & A Brief Look At The 18 June 2010 Derecho Gino Izzi National Weather Service, Chicago IL Outline • Meteorology 301: Squall lines – Brief review of thunderstorm basics – Squall lines – Squall line tornadoes – Mesovorticies • Storm spotting for squall lines • Brief Case Study of 18 June 2010 Event Thunderstorm Ingredients • Moisture – Gulf of Mexico most common source locally Thunderstorm Ingredients • Lifting Mechanism(s) – Fronts – Jet Streams – “other” boundaries – topography Thunderstorm Ingredients • Instability – Measure of potential for air to accelerate upward – CAPE: common variable used to quantify magnitude of instability < 1000: weak 1000-2000: moderate 2000-4000: strong 4000+: extreme Thunderstorms Thunderstorms • Moisture + Instability + Lift = Thunderstorms • What kind of thunderstorms? – Single Cell – Multicell/Squall Line – Supercells Thunderstorm Types • What determines T-storm Type? – Short/simplistic answer: CAPE vs Shear Thunderstorm Types • What determines T-storm Type? (Longer/more complex answer) – Lot we don’t know, other factors (besides CAPE/shear) include • Strength of forcing • Strength of CAP • Shear WRT to boundary • Other stuff Thunderstorm Types • Multi-cell squall lines most common type of severe thunderstorm type locally • Most common type of severe weather is damaging winds • Hail and brief tornadoes can occur with most the intense squall lines Squall Lines & Spotting Squall Line Terminology • Squall Line : a relatively narrow line of thunderstorms, often
    [Show full text]
  • J5J.1 1. Introduction the Bow Echo and Mesoscale Convective Vortex
    J5J.1 Keynote Talk: BAMEX Observations of Mesoscale Convective Vortices Christopher A. Davis and Stanley B. Trier National Center for Atmospheric Research Boulder, Colorado 80307 1. Introduction and a Lear jet leased from Weather Modification Inc. (WMI). Mobile Ground- The Bow Echo and Mesoscale based facilities included the Mobile Convective Vortex (MCV) Experiment Integrated Profiling System (MIPS) from (BAMEX) is a study of life cycles of the University of Alabama (Huntsville) mesoscale convective systems using three and three Mobile GPS-Loran Atmospheric aircraft and multiple, mobile ground-based Sounding Systems (MGLASS) from instruments. It represents a combination of NCAR. The MIPS and MGLASS were two related programs to investigate (a) referred to as the ground based observing bow echoes (Fujita, 1978), principally system (GBOS). The two P-3s were each those which produce damaging surface equipped with tail Doppler radars, the winds and last at least 4 hours and (b) Electra Doppler Radar (ELDORA) being larger convective systems which produce on the NRL P-3. The WMI Lear jet long lived mesoscale convective vortices deployed dropsondes from roughly 12 km (MCVs) (Bartels and Maddox, 1991). The AGL. project was conducted from 20 May to 6 For MCSs, the objective was to sample July, 2003, based at MidAmerica Airport mesoscale wind and temperature fields in Mascoutah, Illinois. A detailed while obtaining high-resolution snapshots overview of the project, including of convection structures, especially those preliminary results appears in Davis et al. (2004). The reader wishing to view processed BAMEX data should visit http://www.joss.ucar.edu/bamex/catalog/. In this keynote address, I will focus on the study of MCVs, based particularly observations from airborne Doppler radar and dropsondes and wind profilers.
    [Show full text]
  • Hurricane Irma Storm Review
    Hurricane Irma Storm Review November 11, 2018 At Duke Energy Florida, we power more than 4 million lives Service territory includes: . Service to 1.8 million retail customers in 35 counties . 13,000 square miles . More than 5,100 miles of transmission lines and 32,000 miles of distribution lines . Owns and operates nearly 9,500 MWs of generating capacity . 76.2% gas, 21% coal, 3% renewable, 0.2%oil, 2,400 MWs Purchased Power. 2 Storm Preparedness Activities Operational preparation is a year-round activity Coordination with County EOC Officials . Transmission & Distribution Systems Inspected and . Structured Engagement and Information Maintained Sharing Before, During and After Hurricane . Storm Organizations Drilled & Prepared . Coordination with county EOC priorities . Internal and External Resource Needs Secured . Public Communications and Outreach . Response Plan Tested and Continuously Improved Storm Restoration Organization Transmission Hurricane Distribution System Preparedness System Local Governmental Coordination 3 Hurricane Irma – Resources & Logistics Resources . 12,528 Total Resources . 1,553 pre-staged in Perry, Georgia . 91 line and vegetation vendors from 25 states . Duke Energy Carolinas and Midwest crews as well as resources from Texas, New York, Louisiana, Colorado, Illinois, Oklahoma, Minnesota, Maine and Canada . 26 independent basecamps, parking/staging sites Mutual Assistance . Largest mobilization in DEF history . Mutual Assistance Agreements, executed between DEF and other utilities, ensure that resources can be timely dispatched and fairly apportioned. Southeastern Electric Exchange coordinates Mutual Assistance 4 5. Individual homes RESTORATION 3. Critical Infrastructure 2. Substations 1. Transmission Lines 4. High-density neighborhoods 5 Hurricane Irma- Restoration Irma’s track northward up the Florida peninsula Restoration Summary resulted in a broad swath of hurricane and tropical Customers Peak Customers Outage storm force winds.
    [Show full text]
  • Hurricane Sandy Rebuilding Strategy
    Hurricane Sandy Rebuilding Task Force HURRICANE SANDY REBUILDING STRATEGY Stronger Communities, A Resilient Region August 2013 HURRICANE SANDY REBUILDING STRATEGY Stronger Communities, A Resilient Region Presented to the President of the United States August 2013 Front and Back Cover (Background Photo) Credits: (Front Cover) Hurricane Sandy Approach - NOAA/NASA (Back Cover) Hurricane Sandy Approach - NOAA/NASA Cover (4-Photo Banner) Credits - Left to Right: Atlantic Highlands, New Jersey - FEMA/ Rosanna Arias Liberty Island, New York - FEMA/Kenneth Wilsey Seaside Heights, New Jersey - FEMA/Sharon Karr Seaside Park, New Jersey - FEMA/Rosanna Arias Hurricane Sandy Letter from the Chair Rebuilding Strategy LETTER FROM THE CHAIR Last October, Hurricane Sandy struck the East Coast with incredible power and fury, wreaking havoc in communities across the region. Entire neighborhoods were flooded. Families lost their homes. Businesses were destroyed. Infrastructure was torn apart. After all the damage was done, it was clear that the region faced a long, hard road back. That is why President Obama pledged to work with local partners every step of the way to help affected communities rebuild and recover. In recent years, the Federal Government has made great strides in preparing for and responding to natural disasters. In the case of Sandy, we had vast resources in place before the storm struck, allowing us to quickly organize a massive, multi-agency, multi-state, coordinated response. To ensure a full recovery, the President joined with State and local leaders to fight for a $50 billion relief package. The Task Force and the entire Obama Administration has worked tirelessly to ensure that these funds are getting to those who need them most – and quickly.
    [Show full text]
  • HAITI COUNTRY READER TABLE of CONTENTS Merritt N. Cootes 1932
    HAITI COUNTRY READER TABLE OF CONTENTS Merritt N. Cootes 1932 Junior Officer, Port-au-Prince 1937-1940 Vice Consul, Port-au-Prince Henry L. T. Koren 1948-1951 Administrative Officer, Port-au-Prince Slator Clay Blackiston, Jr. 1950-1952 Economic Officer, Port-au-Prince Milton Barall 1954-1956 Deputy Chief of Mission, Port-au-Prince Raymond E. Chambers 1955-1957 Deputy Director of Binational Center, USIA, Port-au-Prince Edmund Murphy 1961-1963 Public Affairs Office, USIA, Port-au-Prince Jack Mendelsohn 1964-1966 Consular/Political Officer, Port-au-Prince Claude G. Ross 1967-1969 Ambassador, Haiti John R. Burke 1970-1972 Deputy Chief of Mission, Port-au-Prince Harry E. Mattox 1970-1973 Economic Officer, Port-au-Prince Robert S. Steven 1971-1973 Special Assistant to Under Secretary of Management, Department of State, Washington, DC Jon G. Edensword 1972-1973 Visa Officer, Port-au-Prince Michael Norton 1972-1980 Radio News Reporter, Haiti Keith L. Wauchope 1973-1974 State Department Haiti Desk Officer, Washington, DC Scott Behoteguy 1973-1977 Mission Director, USAID, Haiti Wayne White 1976-1978 Consular Officer, Port-au-Prince Lawrence E. Harrison 1977-1979 USAID Mission Director, Port-au-Prince William B. Jones 1977-1980 Ambassador, Haiti Anne O. Cary 1978-1980 Economic/Commercial Officer, Port-au- Prince Ints M. Silins 1978-1980 Political Officer, Port-au-Prince Scott E. Smith 1979-1981 Head of Project Development Office, USAID, Port-au-Prince Henry L. Kimelman 1980-1981 Ambassador, Haiti David R. Adams 1981-1984 Mission Director, USAID, Haiti Clayton E. McManaway, Jr. 1983-1986 Ambassador, Haiti Jon G.
    [Show full text]
  • 1989 Hurricane Hugo - September 1989
    1989 Hurricane Hugo - September 1989. Category 4 hurricane devastates SC and NC with ~ 20 foot storm surge and severe wind damage after hitting PR and the U.S. Virgin Islands; over $9.0 (13.9) billion (about $7.1 (10.9) billion in Carolinas); 86 deaths (57--U.S. mainland, 29--U.S. Islands). Hurricane Hugo was a powerful Cape Verde hurricane that caused widespread damage and loss of life in Guadeloupe, Saint Croix, Puerto Rico, and the Southeast United States. It formed over the eastern Atlantic near the Cape Verde Islands on September 9, 1989. Hugo moved thousands of miles across the Atlantic, rapidly strengthening to briefly attain category 5 hurricane strength on its journey. It later crossed over Guadeloupe and St. Croix on September 17 and 18 as a category 4 hurricane. Weakening slightly more, it passed over Puerto Rico as a strong category 3 hurricane. Further weakening occurred several hours after re-emerging into the Atlantic, becoming downgraded to a category 2 hurricane. However, it re-strengthened into a category 4 hurricane before making landfall just slightly north of Charleston, on Isle of Palms on September 22 with 140 mph sustained winds (gusts to more than 160 mph). It had devolved to a remnant low near Lake Erie by the next day. As of 2016, Hurricane Hugo is the most intense tropical cyclone to strike the East Coast north of Florida since 1898. Hurricane Hugo caused 34 fatalities (most by electrocution or drowning) in the Caribbean and 27 in South Carolina, left nearly 100,000 homeless, and resulted in $9.47 billion (1989 USD) in damage overall, making it the most damaging hurricane ever recorded at the time.
    [Show full text]
  • Storm Tide Simulations for Hurricane Hugo (1989): on the Significance of Including Inland Flooding Areas
    STORM TIDE SIMULATIONS FOR HURRICANE HUGO (1989): ON THE SIGNIFICANCE OF INCLUDING INLAND FLOODING AREAS by DANIEL DIETSCHE B.S. Basle Institute of Technology, Switzerland, 1993 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Civil and Environmental Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Summer Term 2004 ABSTRACT In this study, storm tides are simulated by performing a hindcast of water surface levels produced by Hurricane Hugo (1989). The region of interest incorporates inundation areas between Charleston and Shallotte Inlet (120 miles northeast of Charleston) and includes Bulls Bay where the highest storm surge of about 20 feet occurred. The study domain also contains an important riverine system which is connected to the Winyah Bay: the Waccamaw River up to Conway including all pertinent tributaries (Sampit River, Black River, and Pee Dee River), and the Atlantic Intracoastal Waterway (AIW) within the Grand Strand (Myrtle Beach). Five different two-dimensional finite element models with triangular elements are applied in order to simulate the storm tides, allow for inundation, and provide a basis of comparison to assess the significance of including inundation areas and two extents of spatial discretization. Four computational regions comprise a semicircular mesh encompassing the South Carolina coast including all relevant estuaries and bays as well as the continental shelf. Two of these four computational regions include inland topography allowing the model to simulate inland flooding. One of the floodplain meshes is then incorporated into the Western North Atlantic Tidal (WNAT) model domain to produce a fifth computational region.
    [Show full text]