Multi-Physics Modeling of the Intake Line of an Internal Combustion Engine Mohamad Yassine
Total Page:16
File Type:pdf, Size:1020Kb
Multi-physics modeling of the intake line of an internal combustion engine Mohamad Yassine To cite this version: Mohamad Yassine. Multi-physics modeling of the intake line of an internal combustion engine. Mechanical engineering [physics.class-ph]. École centrale de Nantes, 2019. English. NNT : 2019ECDN0005. tel-02460015v2 HAL Id: tel-02460015 https://hal.archives-ouvertes.fr/tel-02460015v2 Submitted on 4 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L'ÉCOLE CENTRALE DE NANTES COMUE UNIVERSITE BRETAGNE LOIRE ECOLE DOCTORALE N° 602 Sciences pour l'Ingénieur Spécialité : « Energétique, Thermique, Combustion» Par « Mohamad YASSINE » « Multi -physics modeling of the intake line of an internal combustion engine » Thèse présentée et soutenue à « Nantes », le « 28 janvier 2019 » Unité de recherche : Laboratoire de recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique Rapporteurs avant soutenance : Antoine Dazin Professeur des Universités, ENSAM Lille Yannick Bailly Professeur des Universités, Université de Franche-Comté Composition du Jury : Président : Antoine Dazin Professeur des Universités, ENSAM Lille Examinateurs : Yannick Bailly Professeur des Universités, Université de Franche-Comté Christelle Périlhon Maître de Conférences HDR, CNAM Paris Dir. de thèse : David Chalet Professeur des Universités, Ecole Centrale de Nantes Co-enc. de thèse Haitham Mezher Ingénieur de Recherche, Ecole Centrale de Nantes Invité Jérôme Migaud Ingénieur Mann+Hummel Acknowledgment 1 | P a g e The work in this PhD Thesis is done in a joined International Teaching and Research Chair entitled “Innovative Intake and Thermo-management Systems” between Ecole Centrale de Nantes and MANN+HUMMEL. Firstly, I would like to express my sincere gratitude to my advisor Mr. David CHALET, Full Professor in the LHEEA laboratory of Ecole Centrale de Nantes, for the continuous support of my PhD study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my PhD study. I would also like to thank to Mr. Jerome MIGAUD, Director Innovation Transportation in MANN+HUMMEL Group, for his scientific contribution and his technical expertise. I cannot forget to thank Mr. Haitham MEZHER, Doctor and Application/Business Development Engineer in Gamma Technologies, for the technical support it has given me. I have learned a lot from the fruitful discussions we had during my research study. Besides my advisors, I would like to thank the rest of my thesis committee: Prof. Antoine DAZIN, Prof. Bailly YANNICK, and Dr. Christelle PERILHON , for their insightful comments and encouragement, but also for the hard question which incented me to widen my research from various perspective. I would also like to take this opportunity to thank Mr. Quentin MONTAIGNE and Mr. Antoine BOUEDEC for their contribution to ensure the good functioning of the experimental test benches during my research study. And finally, last but not the least; I would like to thank my family and my friends for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you. 2 | P a g e Table of Contents 3 | P a g e Table of Contents Table of contents Acknowledgment....................................................................................................................1 Table of Contents ...................................................................................................................3 Table of contents ....................................................................................................................4 Nomenclature .........................................................................................................................7 Introduction .......................................................................................................................... 15 I. Bibliography ................................................................................................................. 21 I.1. Numerical Simulation ............................................................................................. 23 I.2. Models History ....................................................................................................... 24 I.2.1 Three Dimensional Approach .......................................................................... 25 I.2.2 Two Dimensional approach ............................................................................. 27 I.2.3 One Dimensional approach .............................................................................. 27 I.2.4 Zero Dimensional Approach ............................................................................ 42 I.2.5 Neural Network Black-Box Model .................................................................. 43 I.3. Modeling of different parts of an IC Engine ............................................................ 44 I.3.1 Solid wall: ....................................................................................................... 44 I.3.2 Section change: ............................................................................................... 45 I.3.3 Bends .............................................................................................................. 47 I.3.4 Open end pipe ................................................................................................. 47 I.3.5 Junction ........................................................................................................... 49 I.3.6 Valves ............................................................................................................. 50 I.3.7 Throttle valve .................................................................................................. 50 I.3.8 Other types of intake system parts ................................................................... 52 II. Experimental and Numerical Tools ............................................................................... 55 II.1. Dynamic Flow Bench ............................................................................................. 57 II.1.1 Bench Architecture .......................................................................................... 57 II.1.2 Bench Sensitivity Control ................................................................................ 59 II.1.3 Bench Calibration and Repeatability ................................................................ 62 II.2. GT-Suite Software .................................................................................................. 64 II.3. MATLAB/Simulink ............................................................................................... 68 II.4. Computer Hardware Characteristics ....................................................................... 70 II.5. Hot-Film Air-Flow Sensor Calibration ................................................................... 71 II.6. Engine Descriptions: .............................................................................................. 72 II.6.1 Single Cylinder Engine .................................................................................... 72 4 | P a g e Table of Contents II.6.2 Three Cylinder Engines ................................................................................... 75 II.7. Uncertainty Calculation: ......................................................................................... 78 III. Transfer Function Model............................................................................................ 83 III.1. Introduction ........................................................................................................ 85 III.2. Model History: .................................................................................................... 86 III.2.1 General description of the model ..................................................................... 86 III.2.2 Pressure losses calculation: .............................................................................. 93 III.2.3 Conclusion ...................................................................................................... 94 III.3. Transfer Function Model Optimization ............................................................... 96 III.3.1 Transfer Function Identification Procedure ...................................................... 97 III.3.2 Transfer Function Implementation ................................................................... 99 III.3.3 Transfer Function Model Calibration ............................................................. 102 III.3.4 Pressure losses............................................................................................... 108 IV. Acoustic Transfer