Intercooler Information Sheet English

Total Page:16

File Type:pdf, Size:1020Kb

Intercooler Information Sheet English Intercooler EXPERIENCE THE DIFFERENCE: Heat exchanger boosting Range & Availability Mechanical and Thermal Stress Resistance air-charged engines Competitive range of intercoolers covering the most popular car, van and truck models. Plastic tanks designed with special Program of more than 520 items covering reinforcing inner crossbars and specially 1,700 OE numbers and more than 88% of the strengthened inlets and outlets, to European car park. Role & Operation protect the tank against stress caused by high temperatures and mechanical Thermal Stress Efficient, Reliable & Safe tensions. Resistance The intercooler significantly improves the Reinforced with at least 30-35% combustion process in turbo-charged systems, Designed and manufactured towards the Specially designed side panels with aftermarket, while thoroughly tested to match fiberglass. No recycled plastics are thus increasing the engine power effect. cuts to lower the influence of thermal OE quality - Nissens intercoolers are submitted used in the mixture. All Nissens’ expansion on the core construction. to corrosion, vibration, pressure impulse, thermal truck intercoolers are custom-welded, The main role of the intercooler is to reduce the expansion and thermal performance tests. ensuring an exceptionally strong and temperature of the hot air compressed by the durable welding seam. turbocharger, before it reaches the engine’s Easy-handling packaging and excellent protection against transport damages. combustion chamber. This has a significant impact Optimized on the charge effect, as the cooled air has a much Supreme thermal performance and extended Design higher density in terms of air molecules per cubic lifespan thanks to a number of special features Specially designed core centimeter. This increases the volume of intake air, applied to Nissens intercoolers. end plates to minimize resulting in a far better engine output. influence of the mechanical stress and breakdown. Possible Designs Excellent Cooling Performance • Plastic tanks, aluminum core Tubes equipped with turbulators, • Full aluminum construction ensuring better airflow and larger surface to exchange the heat. Compact • Water-cooled charge-air cooler fin construction with louvres increasing the heat exchange. Important to know • A malfunctioning intercooler causes an engine efficiency drop and can lead to serious damage of the turbocharger, exhaust filters (DPF/FAP) or the entire engine. • Pay attention to symptoms of a defective or leaking intercooler, such as noticeable drop of engine power, increased fuel consumption or unnatural smoke from the exhaust system. • Intercoolers must always be replaced after the vehicle’s turbocharger has failed and whenever a new turbo is installed. Carbonized oil and metal chips from the damaged turbo may clog the Perfect Finish intercooler channels, causing the newly Connections and mounting points are installed turbo to fail. designed with a complete fit for the vehicle layout, enabling a firm and easy installation. PROGRAM FOR CARS + VANS.
Recommended publications
  • Bentley Mulsanne Turbo and Turbo R Turbocharging System
    Bentley Mulsanne Turbo and Turbo R Turbocharging System Extracts from Workshop Manuals TSD4400, TSD 4700, TSD4737 Basic Principles of Operation – Systems with Solex 4A-1 Carburettor The turbocharger is fitted to increase the power, and especially the low engine speed torque, of the engine. This it achieved by utilising the exhaust gas flow to pump pressurised air into the engine at wide throttle openings. Whenever this occurs, the turbocharger applies boost to the induction system. Under most conditions, the motor runs under naturally-aspirated principles. The inlet manifold may be under partial vacuum but the pressure chest partially pressurised under conditions of moderate power demand. The size of the turbocharger has been carefully chosen to give a substantial increase in torque at low engine speeds. The turbocharger is especially effective from 800rpm, with the engine achieving full torque at less than 1800RPM. Thus, maximum engine torque is available constantly between 1800RPM and 3800 RPM. By comparison to most turbocharging systems, the turbocharger capacity may appear decidedly oversized. This selection is intentional, and is fundamental to the achievement of full engine torque at low engine speeds and the absence of any noticeable delay when boost is demanded. It also minimises heating of exhaust gases by ensuring minimal resistance to gas flow under boost conditions. Furthermore, the design has been carefully chosen to avoid the need for the turbocharger to accelerate on demand, a feature commonly referred to as spool-up. By using a large turbocharger running but unloaded when not under demand, spool-up is not a phenomenon in the system.
    [Show full text]
  • Small Engine Parts and Operation
    1 Small Engine Parts and Operation INTRODUCTION The small engines used in lawn mowers, garden tractors, chain saws, and other such machines are called internal combustion engines. In an internal combustion engine, fuel is burned inside the engine to produce power. The internal combustion engine produces mechanical energy directly by burning fuel. In contrast, in an external combustion engine, fuel is burned outside the engine. A steam engine and boiler is an example of an external combustion engine. The boiler burns fuel to produce steam, and the steam is used to power the engine. An external combustion engine, therefore, gets its power indirectly from a burning fuel. In this course, you’ll only be learning about small internal combustion engines. A “small engine” is generally defined as an engine that pro- duces less than 25 horsepower. In this study unit, we’ll look at the parts of a small gasoline engine and learn how these parts contribute to overall engine operation. A small engine is a lot simpler in design and function than the larger automobile engine. However, there are still a number of parts and systems that you must know about in order to understand how a small engine works. The most important things to remember are the four stages of engine operation. Memorize these four stages well, and everything else we talk about will fall right into place. Therefore, because the four stages of operation are so important, we’ll start our discussion with a quick review of them. We’ll also talk about the parts of an engine and how they fit into the four stages of operation.
    [Show full text]
  • Diesel Turbo-Compound Technology
    Diesel Turbo-compound Technology ICCT/NESCCAF Workshop Improving the Fuel Economy of Heavy-Duty Fleets II February 20, 2008 Volvo Powertrain Corporation Anthony Greszler Conventional Turbocharger What is t us Compressor ha Turbocompound? Ex Key Components of a Mechanical Turbocompound t us ha System Ex Conventional Turbocharger Turbine Axial Flow Final Gear Power reduction to Turbine crankshaft Speed Reduction Gears Fluid Coupling Volvo D12 500TC Volvo Powertrain Corporation Anthony Greszler How Turbocompound Works • 20-25% of Fuel energy in a modern heavy duty diesel is exhausted • By adding a power turbine in the exhaust flow, up to 20% of exhaust energy recovery is possible (20% of 25% = 5% of total fuel energy) • Power turbine can actually add approximately 10% to engine peak power output • A 400 HP engine can increase output to ~440 HP via turbocompounding • However, due to added exhaust back pressure, gas pumping losses increase within the diesel, so efficiency improvement is less than T-C power output • Maximum total efficiency improvement is 3-5% • Turbine output shaft is connected to crankshaft through a gear train for speed reduction • Typical maximum turbine speed = 70,000 RPM; crankshaft maximum = 1800 RPM • An isolation coupling is required to prevent crankshaft torsional vibration from damaging the high speed gears and turbine Volvo Powertrain Corporation Anthony Greszler Turbocompound Thermodynamics • When exhaust gas passes through the turbine, the pressure and temperature drops as energy is extracted and due to losses • The power taken from the exhaust gases is about double compared to a typical turbocharged diesel engine • To make this possible the pressure in the exhaust manifold has to be higher • This increases the pump work that the pistons have to do • The net power increase with a turbo-compound system is therefore about half the power from the second turbine • E.G.
    [Show full text]
  • Intake Throttle and Pre-Swirl Device for LP EGR Systems
    Intake Throttle and Pre-swirl Device for Low-pressure EGR Systems Knowledge Library Knowledge Library Intake Throttle and Pre-swirl Device for Low-pressure EGR Systems Low-pressure EGR systems to reduce emissions are state of the art for diesel engines. They offer efficiency benefits compared to high-pressure EGR systems and will gain further importance. BorgWarner shows the potential of a so-called Inlet Swirl Throttle to make use of the losses and turn them into a pre-swirl motion of the intake air entering the turbocharger to improve the aerodynamics of the compressor. By Urs Hanig, Program Manager for PassCar Systems at BorgWarner and a member of BorgWarner’s Corporate Advanced R&D Organisation Technology to meet future Emission the compressor. Obviously, pre-swirl will have a Standards positive impact on the compressor also in are- Low-pressure EGR systems (LP EGR sys- as where no throttling is required. So the IST tems), see Figure 1 , for gasoline engines yield can be used to improve engine efficiency and significant fuel consumption benefits, they are performance also in regions where no throttling also an important technology to meet future or EGR is required. emission standards (e.g. Real Driving Emissi- ons) [1 ]. To achieve the targeted EGR rates in Approach and Modes of Operation particular on diesel engines throttling the LP With IST the throttling effect is achieved by ad- EGR path is necessary in some areas of the justable inlet guide vanes in the fresh air duct. engine operating map. This can be done either In other words, IST is an intake throttle desi- on the exhaust or the intake side but to throttle gned as a compressor pre-swirl device.
    [Show full text]
  • DEUTZ Pose Also Implies Compliance with the Con- Original Parts Is Prescribed
    Operation Manual 914 Safety guidelines / Accident prevention ● Please read and observe the information given in this Operation Manual. This will ● Unauthorized engine modifications will in- enable you to avoid accidents, preserve the validate any liability claims against the manu- manufacturer’s warranty and maintain the facturer for resultant damage. engine in peak operating condition. Manipulations of the injection and regulating system may also influence the performance ● This engine has been built exclusively for of the engine, and its emissions. Adherence the application specified in the scope of to legislation on pollution cannot be guaran- supply, as described by the equipment manu- teed under such conditions. facturer and is to be used only for the intended purpose. Any use exceeding that ● Do not change, convert or adjust the cooling scope is considered to be contrary to the air intake area to the blower. intended purpose. The manufacturer will The manufacturer shall not be held respon- not assume responsibility for any damage sible for any damage which results from resulting therefrom. The risks involved are such work. to be borne solely by the user. ● When carrying out maintenance/repair op- ● Use in accordance with the intended pur- erations on the engine, the use of DEUTZ pose also implies compliance with the con- original parts is prescribed. These are spe- ditions laid down by the manufacturer for cially designed for your engine and guaran- operation, maintenance and servicing. The tee perfect operation. engine should only be operated by person- Non-compliance results in the expiry of the nel trained in its use and the hazards in- warranty! volved.
    [Show full text]
  • High Pressure Ratio Intercooled Turboprop Study
    E AMEICA SOCIEY O MECAICA EGIEES 92-GT-405 4 E. 4 S., ew Yok, .Y. 00 h St hll nt b rpnbl fr ttnt r pnn dvnd In ppr r n d n t tn f th St r f t vn r Stn, r prntd In t pbltn. n rnt nl f th ppr pblhd n n ASME rnl. pr r vlbl fr ASME fr fftn nth ftr th tn. rntd n USA Copyright © 1992 by ASME ig essue aio Iecooe uoo Suy C. OGES Downloaded from http://asmedigitalcollection.asme.org/GT/proceedings-pdf/GT1992/78941/V002T02A028/2401669/v002t02a028-92-gt-405.pdf by guest on 23 September 2021 Sundstrand Power Systems San Diego, CA ASAC NOMENCLATURE High altitude long endurance unmanned aircraft impose KFT Altitude Thousands Feet unique contraints on candidate engine propulsion systems and HP Horsepower types. Piston, rotary and gas turbine engines have been proposed for such special applications. Of prime importance is the HIPIT High Pressure Intercooled Turbine requirement for maximum thermal efficiency (minimum specific Mn Flight Mach Number fuel consumption) with minimum waste heat rejection. Engine weight, although secondary to fuel economy, must be evaluated Mls Inducer Mach Number when comparing various engine candidates. Weight can be Specific Speed (Dimensionless) minimized by either high degrees of turbocharging with the Ns piston and rotary engines, or by the high power density Exponent capabilities of the gas turbine. pps Airflow The design characteristics and features of a conceptual high SFC Specific Fuel Consumption pressure ratio intercooled turboprop are discussed. The intended application would be for long endurance aircraft flying TIT Turbine Inlet Temperature °F at an altitude of 60,000 ft.(18,300 m).
    [Show full text]
  • Not for Reproduction
    use back code C BRIGGS & STRATTON CORPORATION 1 2 16 3 718 46 615 Illustrated Parts List 404 VERTICAL CRANKSHAFT SHORT BLOCK ASSEMBLIES 616 792738, 792739, 792740, 792741, 792742, 792743 22 51 For use on Engine Model Series 120K00, 121K00, 122K00, 122L00, 146 163 9 123J00, 123K00, 124K00, 124L00, 741 125K00,126L00, 127H00, 128H00, 617 128L00, 129H00 7 668 842 INSTRUCTIONS 883 To obtain the correct part numbers for an engine 869 45 40 4 which has been rebuilt with a Short Block Assem- 870 36 524 bly, follow these instructions: 871 868 45 684 12 A. For all parts shown in the illustrated view to the 40 28 33 left, use this Parts List. 35 584 B. For all other parts, refer to the Illustrated Parts 34 List which is appropriate for your engine by 27 Model, Type and Code (Serial) Number. 585 TO INSTALLER: GIVE THIS PARTS LIST TO 25 27 CUSTOMER AFTER SHORT BLOCK INSTALLATION. 43 51A 15 20 THIS IPL IS SPECIFIC TO THE SHORT 29 BLOCK(S) LISTED. RETAIN FOR FUTURE PARTS REFERENCE. 26 32 32A REF. PART REF. PART REF. PART NO. NO. DESCRIPTION NO. NO. DESCRIPTION NO. NO. DESCRIPTION 1 697322 Cylinder Assembly 25 797302 Piston Assembly 524 692296 Seal−Dipstick Tube 2 399269 Kit−Bushing/Seal (Mag- (Standard) 585 691879 Gasket−Breather Passage neto Side) for 797303 Piston Assembly 615 690340 Retainer−Governor Shaft 3 299819s Seal−Oil (.020” Oversize) 616 698801 Crank−Governor (Magneto Side) 26 797304 Ring Set (Standard) 617 270344s Seal−O Ring 4 493279 Sump−Engine 797305 Ring Set (Intake Manifold) −−−−−−− Note −−−−− (.020” Oversize) 668 493823 Spacer 696294
    [Show full text]
  • Flow Through a Throttle Body a Comparative Study of Heat Transfer, Wall Surface Roughness and Discharge Coefficient
    Flow Through a Throttle Body A Comparative Study of Heat Transfer, Wall Surface Roughness and Discharge Coefficient LIU-IEI-TEK-A–07/0071-SE Per Carlsson, Linköping February 23, 2007 Copyright The publishers will keep this document online on the Internet – or its possible replace- ment – for a period of 25 years starting from the date of publication barring exceptional circumstances. The online availability of the document implies permanent permission for anyone to read, to download, or to print out single copies for his/her own use and to use it unchanged for non-commercial research and educational purposes. Subsequent transfers of copyright cannot revoke this permission. All other uses of the document are conditional upon the consent of the copyright owner. The publisher has taken technical and administrative measures to assure authenticity, security and accessibility. Accord- ing to intellectual property law, the author has the right to be mentioned when his/her work is accessed as described above and to be protected against infringement. For additional information about Linköping University Electronic Press and its procedures for publication and for assurance of document integrity, please refer to its www home page: http://www.ep.liu.se/. c 2007 Per Carlsson. Abstract When designing a new fuel management system for a spark ignition engine the amount of air that is fed to the cylinders is highly important. A tool that is being used to improve the performance and reduce emission levels is engine modeling were a fuel management system can be tested and designed in a computer environment thus saving valuable setup time in an engine test cell.
    [Show full text]
  • CHARACTERIZATION of TURBOCHARGER PERFORMANCE and SURGE in a NEW EXPERIMENTAL FACILITY
    CHARACTERIZATION of TURBOCHARGER PERFORMANCE and SURGE in a NEW EXPERIMENTAL FACILITY Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Gregory David Uhlenhake, B.S. Graduate Program in Mechanical Engineering The Ohio State University 2010 Master‟s Examination Committee: Dr. Ahmet Selamet, Advisor Dr. Rajendra Singh Dr. Philip Keller Copyright by Gregory David Uhlenhake 2010 ABSTRACT The primary goal of the present study was to design, develop, and construct a cold turbocharger test facility at The Ohio State University in order to measure performance characteristics under steady state operating conditions and to investigate surge for a variety of automotive turbocharger compression systems. A specific turbocharger is used for a thermodynamic analysis to determine facility capabilities and limitations as well as for the design and construction of the screw compressor, flow control, oil, and compression systems. Two different compression system geometries were incorporated. One system allowed performance measurements left of the compressor surge line, while the second system allowed for a variable plenum volume to change surge frequencies. Temporal behavior, consisting of compressor inlet, outlet, and plenum pressures as well as the turbocharger speed, is analyzed with a full plenum volume and three impeller tip speeds to identify stable operating limits and surge phenomenon. A frequency domain analysis is performed for this temporal behavior as well as for multiple plenum volumes with a constant impeller tip speed. This analysis allows mild and deep surge frequencies to be compared with calculated Helmholtz frequencies as a function of impeller tip speed and plenum volume.
    [Show full text]
  • Boosting Your Knowledge of Turbocharging
    Reprinted with permission from Aircraft Maintenance Technology, July 1999 BoostingBoosting YourYour KnowledgeKnowledge ofof TurbochargingTurbocharging (Part 1 of a 2 part Series) By Randy Knuteson short 15 years after Orville fully boosted this 350 hp Liberty engine to a strength of blowers being tested during and Wilbur made their his- remarkable 356 hp (a normally aspirated engine WWII. The B-17 and B-29 bombers along toric flight at Kitty Hawk, would only develop about 62 percent power at with the P-38 and P-51 fighters were all fit- General Electric entered the this altitude). ted with turbochargers and controls. Aannals of aviation history. In 1918, GE strapped An astounding altitude record of 38,704 Turbocharging had brought a whirlwind of an exhaust-driven turbocharger to a Liberty feet was achieved three years later by Lt. J.A. change to the ever-broadening horizons of engine and carted it to the top of Pike’s Peak, Macready. flight. CO — elevation 14,000 feet. There, in the crys- This new technology began immediately Much of the early developments in recip talline air of the majestic Rockies, they success- experiencing a rapid evolution with the full turbocharging came as a result of demands Aircraft Maintenance Technology • OCTOBER 1999 2 Recip Technology from the commercial industrial diesel engine market. It wasn’t until the mid-1950s that this Percentage of HP Available At Altitude technology was seriously applied to general avi- 100% ation aircraft engines. It all started with the pro- totype testing of an AiResearch turbocharger for 90% Turbocharge the Model 47 Bell helicopter equipped with the Franklin 6VS-335 engine.
    [Show full text]
  • Development of an Improve Turbocharger Dynamic Seal
    Development of an Improved Turbocharger Dynamic Seal Matthew J Purdeya,1 a) Cummins Turbo Technologies St Andrews Road, Huddersfield, HD1 6RA Abstract: Emissions regulation continually drives the automotive industry to innovate and develop. The industry must push the limits of engine/ turbocharger interaction to meet this changing regulation. Changes to the way a turbocharger is used, to help meet emission regulation, can impact the pressure balance over the compressor and turbine end seals. Seal capability can place constraints on the acceptable operating conditions. Market trends indicate that, in the near future, turbocharger operating conditions will be challenging for today’s compressor side seal systems. The need for improved compressor end sealing is greater than ever. This market intelligence drove Cummins Turbo Technologies to develop a robust seal system that meets the future demands of our customers. There are many benefits to the slinger/ collector seals systems used today and cutting-edge analysis has helped us generate the next level of understanding required to unleash further performance. This report gives insight to the market requirements and the approach to developing a seal to meet this need. Key Words: Turbocharger Seal, Multiphase Computational Fluid Dynamics, CFD, Compressor Oil Leakage 1E-mail: [email protected] 1 Introduction The majority of the turbocharger market uses a similar approach to sealing with piston rings to control gas leakage and a slinger/collector seal system to handle oil. The slinger/collector seal system is used to keep oil away from these piston rings. In normal operation the pressure in the end housings is higher than the bearing housing and gas flows into the bearing housing, through the oil drain to the crankcase.
    [Show full text]
  • Banks Ram-Air® Intake System
    Banks Ram-Air® Intake System 1997-2006 Jeep 4.0L THIS MANUAL IS FOR USE WITH KITS 41816 Gale Banks Engineering 546 Duggan Avenue • Azusa, CA 91702 (626) 969-9600 • Fax (626) 334-1743 Product Information & Sales: (888) 635-4565 bankspower.com ©2009 Gale Banks Engineering 02/17/09 PN 96575 v.3.0 General Installation Practices 5. Route and tie wires and hoses Dear Customer, a minimum of 6 inches away from If you have any questions exhaust heat, moving parts and sharp concerning the installation of edges. Clearance of 8 inches or more your Banks Ram-Air System, is recommended where possible. please call our Technical Service 6. During installation, keep the Hotline at (888) 839-2700 work area clean. If foreign debris between 7:00 am and 5:00 pm is transferred to any Banks system (PT). If you have any questions component, clean it thoroughly before relating to shipping or billing, installing. please contact our Customer Service Department at 7. When raising the vehicle, support (888) 839-5600. it on properly weight-rated safety stands, ramps or a commercial hoist. Thank you.1 Follow the manufacturer’s safety precautions. Take care to balance the vehicle to prevent it from slipping or 1. For ease of installation of your falling. When using ramps, be sure the Banks Ram-air intake system, front wheels are centered squarely on familiarize yourself with the procedure the topsides; put the transmission in by reading the entire manual before park; set the parking brake; and place starting work. This manual contains blocks behind the rear wheels.
    [Show full text]