Diesel Turbo-Compound Technology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Harman Motor Works Fluid Drive Bus Mk1 #6683 OPERATOR's MANUAL
Harman Motor Works Fluid Drive Bus Mk1 #6683 OPERATOR’S MANUAL Version 1.0 – July 2014 harmanmotorworks.com Contents 1. Purpose of this Manual ..................................................................................................... 4 2. Notes about this Manual ................................................................................................... 5 3. Components of the Bus ..................................................................................................... 6 Drive Motor .......................................................................................................................... 6 Type and Specification ..................................................................................................... 6 Fluid Coupling ...................................................................................................................... 7 Transmission ......................................................................................................................... 8 Type ................................................................................................................................... 8 Components ....................................................................................................................... 9 Transmission Modes ......................................................................................................... 9 Gear lever ......................................................................................................................... -
Bentley Mulsanne Turbo and Turbo R Turbocharging System
Bentley Mulsanne Turbo and Turbo R Turbocharging System Extracts from Workshop Manuals TSD4400, TSD 4700, TSD4737 Basic Principles of Operation – Systems with Solex 4A-1 Carburettor The turbocharger is fitted to increase the power, and especially the low engine speed torque, of the engine. This it achieved by utilising the exhaust gas flow to pump pressurised air into the engine at wide throttle openings. Whenever this occurs, the turbocharger applies boost to the induction system. Under most conditions, the motor runs under naturally-aspirated principles. The inlet manifold may be under partial vacuum but the pressure chest partially pressurised under conditions of moderate power demand. The size of the turbocharger has been carefully chosen to give a substantial increase in torque at low engine speeds. The turbocharger is especially effective from 800rpm, with the engine achieving full torque at less than 1800RPM. Thus, maximum engine torque is available constantly between 1800RPM and 3800 RPM. By comparison to most turbocharging systems, the turbocharger capacity may appear decidedly oversized. This selection is intentional, and is fundamental to the achievement of full engine torque at low engine speeds and the absence of any noticeable delay when boost is demanded. It also minimises heating of exhaust gases by ensuring minimal resistance to gas flow under boost conditions. Furthermore, the design has been carefully chosen to avoid the need for the turbocharger to accelerate on demand, a feature commonly referred to as spool-up. By using a large turbocharger running but unloaded when not under demand, spool-up is not a phenomenon in the system. -
COMPANY PROFILE.Pdf
p r o f i l e 1 2 3 4 5 6 7 company quality application products products industry testimonials systems & clients Company profile Fluidomat Limited an ISO 9001:2008 certified Company manufactures a wide range of fixed speed and variable speed fluid couplings for industrial and automotive drives upto 3800 KW since 1971. Management of the Company is lead by Mr. Ashok Jain, Chairman & Managing Director, an electrical engineer with all round experience since 1971. Mr. Jain pioneered technology development and manufacture of fluid couplings indigenously in India with launch of Fluidomat Fluid Couplings in the year 1971. The employees of the Company are highly experienced professional experts in their respective field. The total strength of 2200 employees have long association of many years with the Company. Modern in-house Non Ferrous and Cast Iron Foundries produce high quality intricate castings required for Fluid Couplings. The fluidomat factory at Dewas, near Indore in Central India, is equipped with sophisticated manufacturing, research and development, quality control and testing facilities to ensure quality and consistency. Driving lean, delivering quality. h t t p : / / w w w . f l u i d o m a t . c o m Quality System: The Company is an ISO 9001:2008 Certified Company with strong Quality System. The ISO Certification Covers: Design, Manufacture, Supply, Installation and Commissioning of - Fluid Couplings (including Constant Fill/Constant Speed and Scoop Control Variable Speed). Technology and Application Engineering: Fluidomat fluid couplings are manufactured with own technology developed in the year 1971. The technology, product design and performance is continuously upgraded by continuous R & D. -
Design and Mathematical Modeling of Fluid Coupling for Efficient Transmission Systems
ISSN 2278-3091 International Journal of Advanced Trends in Computer Science and Engineering, Vol.2 , No.1, Pages : 340 – 345 (2013) Special Issue of ICACSE 2013 - Held on 7-8 January, 2013 in Lords Institute of Engineering and Technology, Hyderabad Design and Mathematical Modeling of Fluid Coupling for Efficient Transmission Systems SYED DANISH MEHDI1 G.M.SAYEED AHMED2 V.NARASIMHA REDDY3 1. Research scholar, Muffakham Jah College of engineering and technology, Banjara Hills Hyderabad.500034, [email protected]. 9912780960. 2. Senior Assistant professor, Muffakham Jah College of engineering and technology, Banjara Hills, Hyderabad. 500034, [email protected]. 9701574596. 3. Head & Associate Professor, Malla Reddy Engineering College, Maisammaguda, Dhulapally, Kom-Pally - 500014. [email protected]. 9490806007. ABSTRACT the case of Two-Wheeler automobiles especially the In the present day scenario, there is an increased Gear-less Scooters. Presently these vehicles are using a attention towards the development of Gear-less two- Centrifugal-clutch which has maximum wear and tear wheeler automobiles [scooters] which have automatic- frequently. The objective of this research work is to transmission systems, using centrifugal-clutch systems. highlight the study conducted on the torque These clutch systems have high wear and tear and transmission efficiency of a basic-fluid coupling without hence the present research work is taken up to replace vanes and a modified-fluid coupling [with vanes]. This the said clutch system with a fluid coupling which may is followed by fabricating and then experimentally be more effective in wear-free transmission and it will testing a fluid coupling design based on the provide a smooth & controlled acceleration with recommendations extracted from this computational effective damping of shocks, load fluctuations and study. -
Torque Converter. Human Engineering Institute, Cleveland, Ohio Report Number Am-2-5 Pub Date 15 May 67 Edrs Price Mf-$0.25 Hc-$2.04 49P
REPORT RESUMES ED 021 106 VT 005 689 AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT V, AUTOMATIC TRANSMISSIONS--TORQUE CONVERTER. HUMAN ENGINEERING INSTITUTE, CLEVELAND, OHIO REPORT NUMBER AM-2-5 PUB DATE 15 MAY 67 EDRS PRICE MF-$0.25 HC-$2.04 49P. DESCRIPTORS- *STUDY GUIDES, *TEACHING GUIDES, TRADE AND INDUSTRIAL EDUCATION, *AUTO MECHANICS (CCUPATION), *EQUIPMENT MAINTENANCE, DIESEL MATERIALS, INDIVIDUAL INSTRUCTION, INSTRUCTIONAL FILMS, PROGRAMED INSTRUCTON, KINETICS, MOTOR VEHICLES, THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF TORQUE CONVERTERS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) FLUID COUPLINGS (LOCATION AND PURPOSE),(2) PRINCIPLES OF OPERATION,(3) TORQUE CONVERRS,(4) TORQMATIC CONVERTER, (5) THREE STAGE, THREE ELEMENT TORQUE CONVERTER, AND (6) TORQUE CONVERTER MAINTENANCE AND TROUBLESHOOTING. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAM TRAINING FILM "LEARNING ABOUT TORQUE CONVERTERS" AND OTHER MATERIALS. SEE VT 005 685 FOR FURTHER INFORMATION. MODULES IN THIS SERIES ARE AVAILABLE AS VT 005 685- VT 005 709. MODULES FOR "AUTOMOTIVE DIESEL MAINTENANCE 1" ARE AVAILABLE AS VT 005 655 VT 005 684. THE 2-YEAR PROGRAM OUTLINE FOR "AUTOMOTIVE DIESEL MAINTENANCE 1 AND 2" IS AVAILABLE AS VT 006 006. THE TEXT MATERIAL, TRANSPARENCIES, PROGRAMED TRAINING FILM, AND THE ELECTRONIC TUTOR MAY BE RENTED (FOR $1.75 PER WEEK) OR PURCHASED FROM THE HUMAN ENGINEERING INSTITUTE HEADQUARTERS AND DEVELOPMENT CETER, 2341 CARNEGIE AVENUE: CLEVELAND, 'OHM 44115. (HC) STUDY AND READING MATERIALS AUTOMOTIVE MAINTENANCE L_____ AUTOMATIC TRANSMISSIONS- TORQUE CONVERTER UNIT V SECTION A FLUID COUPLINGS (LOCATION AND PURPOSE) SECTION B PRINCIPLE OF OPERATION SECTION C TORQUE CONVERTERS SECTION D TORQMATIC CONVERTER SECTION E THREE STAGE, THREE ELEMENT TORQUE CONVERTER. -
Intake Throttle and Pre-Swirl Device for LP EGR Systems
Intake Throttle and Pre-swirl Device for Low-pressure EGR Systems Knowledge Library Knowledge Library Intake Throttle and Pre-swirl Device for Low-pressure EGR Systems Low-pressure EGR systems to reduce emissions are state of the art for diesel engines. They offer efficiency benefits compared to high-pressure EGR systems and will gain further importance. BorgWarner shows the potential of a so-called Inlet Swirl Throttle to make use of the losses and turn them into a pre-swirl motion of the intake air entering the turbocharger to improve the aerodynamics of the compressor. By Urs Hanig, Program Manager for PassCar Systems at BorgWarner and a member of BorgWarner’s Corporate Advanced R&D Organisation Technology to meet future Emission the compressor. Obviously, pre-swirl will have a Standards positive impact on the compressor also in are- Low-pressure EGR systems (LP EGR sys- as where no throttling is required. So the IST tems), see Figure 1 , for gasoline engines yield can be used to improve engine efficiency and significant fuel consumption benefits, they are performance also in regions where no throttling also an important technology to meet future or EGR is required. emission standards (e.g. Real Driving Emissi- ons) [1 ]. To achieve the targeted EGR rates in Approach and Modes of Operation particular on diesel engines throttling the LP With IST the throttling effect is achieved by ad- EGR path is necessary in some areas of the justable inlet guide vanes in the fresh air duct. engine operating map. This can be done either In other words, IST is an intake throttle desi- on the exhaust or the intake side but to throttle gned as a compressor pre-swirl device. -
POWER TRANSMISSION SYSTEM Transmission Is a Speed Reducing Mechanism, Equipped with Several Gears (Fig
POWER TRANSMISSION SYSTEM Transmission is a speed reducing mechanism, equipped with several gears (Fig. 1). It may be called a sequence of gears and shafts, through which the engine power is transmitted to the tractor wheels. The system consists of various devices that cause forward and backward movement of tractor to suit different field condition. The complete path of power from the engine to the wheels is called power train. Fig 1 Power Transmission system of Tractor Function of power transmission system: (i) to transmit power from the engine to the rear wheels of the tractor, (ii) to make reduced speed available, to rear wheels of the tractor, (ii) to alter the ratio of wheel speed and engine speed in order to suit the field conditions and (iv) to transmit power through right angle drive, because the crankshaft and rear axle are normally at right angles to each other. The power transmission system consists of: (a) Clutch (b) Transmission gears (c) Differential (d) Final drive (e) Rear axle (f) Rear wheels. Combination of all these components is responsible for transmission of power. CLUTCH AND FLUID COUPLING CLUTCH: Clutch is a device, used to connect and disconnect the tractor engine from the transmission gears and drive wheels. Clutch transmits power by means of friction between driving members and driven members. Necessity of clutch in a tractor: Clutch in a tractor is essential for the following reasons: (i) Engine needs cranking by any suitable device. For easy cranking, the engine is disconnected from the rest of the transmission unit by a suitable clutch. -
Unit M 6-Transmission in Diesel Locomotive
UNIT M 6-TRANSMISSION IN DIESEL LOCOMOTIVE OBJECTIVE The objective of this unit is to make you understand about • the need for transmission in a diesel engine • the duties of an ideal transmission • the requirements of traction • the relation between HP and Tractive Effort • the factors related to transmission efficiency • various modes of transmission and their working principle • the application of hydraulic transmission in diesel locomotive STRUCTURE 1. Introduction 2. Duties of an ideal transmission 3. Engine HP and Locomotive Tractive Effort 4. Factors related to efficiency 5. Rail and wheel adhesion 6. Types of transmission system 7. Principles of Mechanical Transmission 8. Principles of Hydrodynamic Transmission 9. Application of Hydrodynamic Transmission ( Voith Transmission ) 10. Principles of Electrical Transmission 11. Summary 12. Self assessment 1 1. INTRODUCTION A diesel locomotive must fulfill the following essential requirements- 1. It should be able to start a heavy load and hence should exert a very high starting torque at the axles. 2. It should be able to cover a very wide speed range. 3. It should be able to run in either direction with ease. Further, the diesel engine has the following drawbacks: • It cannot start on its own. • To start the engine, it has to be cranked at a particular speed, known as a starting speed. • Once the engine is started, it cannot be kept running below a certain speed known as the lower critical speed (normally 35-40% of the rated speed). Low critical speed means that speed at which the engine can keep itself running along with its auxiliaries and accessories without smoke and vibrations. -
CHARACTERIZATION of TURBOCHARGER PERFORMANCE and SURGE in a NEW EXPERIMENTAL FACILITY
CHARACTERIZATION of TURBOCHARGER PERFORMANCE and SURGE in a NEW EXPERIMENTAL FACILITY Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Gregory David Uhlenhake, B.S. Graduate Program in Mechanical Engineering The Ohio State University 2010 Master‟s Examination Committee: Dr. Ahmet Selamet, Advisor Dr. Rajendra Singh Dr. Philip Keller Copyright by Gregory David Uhlenhake 2010 ABSTRACT The primary goal of the present study was to design, develop, and construct a cold turbocharger test facility at The Ohio State University in order to measure performance characteristics under steady state operating conditions and to investigate surge for a variety of automotive turbocharger compression systems. A specific turbocharger is used for a thermodynamic analysis to determine facility capabilities and limitations as well as for the design and construction of the screw compressor, flow control, oil, and compression systems. Two different compression system geometries were incorporated. One system allowed performance measurements left of the compressor surge line, while the second system allowed for a variable plenum volume to change surge frequencies. Temporal behavior, consisting of compressor inlet, outlet, and plenum pressures as well as the turbocharger speed, is analyzed with a full plenum volume and three impeller tip speeds to identify stable operating limits and surge phenomenon. A frequency domain analysis is performed for this temporal behavior as well as for multiple plenum volumes with a constant impeller tip speed. This analysis allows mild and deep surge frequencies to be compared with calculated Helmholtz frequencies as a function of impeller tip speed and plenum volume. -
Boosting Your Knowledge of Turbocharging
Reprinted with permission from Aircraft Maintenance Technology, July 1999 BoostingBoosting YourYour KnowledgeKnowledge ofof TurbochargingTurbocharging (Part 1 of a 2 part Series) By Randy Knuteson short 15 years after Orville fully boosted this 350 hp Liberty engine to a strength of blowers being tested during and Wilbur made their his- remarkable 356 hp (a normally aspirated engine WWII. The B-17 and B-29 bombers along toric flight at Kitty Hawk, would only develop about 62 percent power at with the P-38 and P-51 fighters were all fit- General Electric entered the this altitude). ted with turbochargers and controls. Aannals of aviation history. In 1918, GE strapped An astounding altitude record of 38,704 Turbocharging had brought a whirlwind of an exhaust-driven turbocharger to a Liberty feet was achieved three years later by Lt. J.A. change to the ever-broadening horizons of engine and carted it to the top of Pike’s Peak, Macready. flight. CO — elevation 14,000 feet. There, in the crys- This new technology began immediately Much of the early developments in recip talline air of the majestic Rockies, they success- experiencing a rapid evolution with the full turbocharging came as a result of demands Aircraft Maintenance Technology • OCTOBER 1999 2 Recip Technology from the commercial industrial diesel engine market. It wasn’t until the mid-1950s that this Percentage of HP Available At Altitude technology was seriously applied to general avi- 100% ation aircraft engines. It all started with the pro- totype testing of an AiResearch turbocharger for 90% Turbocharge the Model 47 Bell helicopter equipped with the Franklin 6VS-335 engine. -
Design and Analysis of a Low Production Cost Hybrid Electric High Mobility Multi-Purpose Wheeled Vehicle for Military Use
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2004 Design and Analysis of a Low Production Cost Hybrid Electric High Mobility Multi-Purpose Wheeled Vehicle for Military Use Craig Blake Rutherford University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Mechanical Engineering Commons Recommended Citation Rutherford, Craig Blake, "Design and Analysis of a Low Production Cost Hybrid Electric High Mobility Multi-Purpose Wheeled Vehicle for Military Use. " Master's Thesis, University of Tennessee, 2004. https://trace.tennessee.edu/utk_gradthes/2180 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Craig Blake Rutherford entitled "Design and Analysis of a Low Production Cost Hybrid Electric High Mobility Multi-Purpose Wheeled Vehicle for Military Use." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Mechanical Engineering. William R. Hamel, Major Professor We have read this thesis and recommend its acceptance: Jeffrey -
Installation and Operating Manual
Installation and Operating Manual (Translation of the original installation and operating manual) T… Turbo Coupling with Constant Fill including design as per ATEX directives: Directive 94/9/EC (valid until April 19, 2016), Directive 2014/34/EU (valid from April 20, 2016) Version 10 , 2016-01-11 3626-011000 en, Protection Class 0: public Serial No. 1) Coupling type 2) Year of manufacture Mass (weight) kg Power transmission kW Input speed rpm mineral oil Operating fluid water Filling volume dm3 (liters) Number of screws z 3) Nominal response temperature of °C fusible plugs Connecting coupling type Sound pressure level LPA,1m dB horizontal Installation position vertical outer wheel Drive via inner wheel 1) Please indicate the serial number in any correspondence ( Chapter 18). 2) T...: oil / TW...: water. 3) Determine and record the number of screws z ( Chapter 10.1). Please consult Voith Turbo in case that the data on the cover sheet are incomplete. Turbo Coupling with Constant Fill Contact Contact Voith Turbo GmbH & Co. KG Division Mining & Metals Voithstr. 1 74564 Crailsheim, GERMANY Tel. + 49 7951 32 409 Fax + 49 7951 32 480 [email protected] www.voith.com/fluid-coupling 3626-011000 en This document describes the state of 011000 design of the product at the time of the - editorial deadline on 2016-01-11. / 3626 / 10 Copyright © by 6-01-11 6-01-11 Voith Turbo GmbH & Co. KG. / 201 / This document is protected by copyright. public 0: It must not be translated, duplicated (mechanically or electronically) in whole or in part, nor passed on to third parties without the publisher's written approval.