Unit M 6-Transmission in Diesel Locomotive
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Harman Motor Works Fluid Drive Bus Mk1 #6683 OPERATOR's MANUAL
Harman Motor Works Fluid Drive Bus Mk1 #6683 OPERATOR’S MANUAL Version 1.0 – July 2014 harmanmotorworks.com Contents 1. Purpose of this Manual ..................................................................................................... 4 2. Notes about this Manual ................................................................................................... 5 3. Components of the Bus ..................................................................................................... 6 Drive Motor .......................................................................................................................... 6 Type and Specification ..................................................................................................... 6 Fluid Coupling ...................................................................................................................... 7 Transmission ......................................................................................................................... 8 Type ................................................................................................................................... 8 Components ....................................................................................................................... 9 Transmission Modes ......................................................................................................... 9 Gear lever ......................................................................................................................... -
COMPANY PROFILE.Pdf
p r o f i l e 1 2 3 4 5 6 7 company quality application products products industry testimonials systems & clients Company profile Fluidomat Limited an ISO 9001:2008 certified Company manufactures a wide range of fixed speed and variable speed fluid couplings for industrial and automotive drives upto 3800 KW since 1971. Management of the Company is lead by Mr. Ashok Jain, Chairman & Managing Director, an electrical engineer with all round experience since 1971. Mr. Jain pioneered technology development and manufacture of fluid couplings indigenously in India with launch of Fluidomat Fluid Couplings in the year 1971. The employees of the Company are highly experienced professional experts in their respective field. The total strength of 2200 employees have long association of many years with the Company. Modern in-house Non Ferrous and Cast Iron Foundries produce high quality intricate castings required for Fluid Couplings. The fluidomat factory at Dewas, near Indore in Central India, is equipped with sophisticated manufacturing, research and development, quality control and testing facilities to ensure quality and consistency. Driving lean, delivering quality. h t t p : / / w w w . f l u i d o m a t . c o m Quality System: The Company is an ISO 9001:2008 Certified Company with strong Quality System. The ISO Certification Covers: Design, Manufacture, Supply, Installation and Commissioning of - Fluid Couplings (including Constant Fill/Constant Speed and Scoop Control Variable Speed). Technology and Application Engineering: Fluidomat fluid couplings are manufactured with own technology developed in the year 1971. The technology, product design and performance is continuously upgraded by continuous R & D. -
Modern Design and Control of Automatic Transmission and The
Review Paper doi:10.5937/jaes13-7727 Paper number: 13(2015)1, 313, 51 - 59 MODERN DESIGN AND CONTROL OF AUTOMATIC TRANSMISSION AND THE PROSPECTS OF DEVELOPMENT Dejan Matijević The School of Electrical and Computer Engineering of Applied Studies, Belgrade, Serbia Ivan Ivanković* University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia Dr Vladimir Popović University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia The paper provides an overview of modern technical solutions of automatic transmissions in auto- motive industry with their influence on sustainable development. The objective of the first section is a structural view of specific constructions and control systems of presently used automatic transmis- sions, with emphasis on mechatronics implementation. The second section is based on perspectives of development, by integrating some branches of soft computing, such as fuzzy logic and artificial neural networks in order to create an optimal control algorithm for obtaining a contribution to fuel economy, exhaust emission, comfort and vehicle performance. Key words: Automatic transmission, Mechatronics, Automotive industry, Soft Computing INTRODUCTION which is depended by coefficient of friction and normal load on the drive axle. Lower limitation Almost all automobiles in use today are driven by is defined by maximal speed that vehicle can internal combustion engines, which are charac- reach. Shaded areas between traction forces terized by many advantages, such as relatively through gears are power losses. To decrease good efficiency, relatively compact energy stor- power losses and to be as closely as possible age and high power – to – weight ratio [07]. to the ideal traction hyperbola, the gearbox with But, fundamental disadvantages are: enough gear ratios is needed. -
Design and Mathematical Modeling of Fluid Coupling for Efficient Transmission Systems
ISSN 2278-3091 International Journal of Advanced Trends in Computer Science and Engineering, Vol.2 , No.1, Pages : 340 – 345 (2013) Special Issue of ICACSE 2013 - Held on 7-8 January, 2013 in Lords Institute of Engineering and Technology, Hyderabad Design and Mathematical Modeling of Fluid Coupling for Efficient Transmission Systems SYED DANISH MEHDI1 G.M.SAYEED AHMED2 V.NARASIMHA REDDY3 1. Research scholar, Muffakham Jah College of engineering and technology, Banjara Hills Hyderabad.500034, [email protected]. 9912780960. 2. Senior Assistant professor, Muffakham Jah College of engineering and technology, Banjara Hills, Hyderabad. 500034, [email protected]. 9701574596. 3. Head & Associate Professor, Malla Reddy Engineering College, Maisammaguda, Dhulapally, Kom-Pally - 500014. [email protected]. 9490806007. ABSTRACT the case of Two-Wheeler automobiles especially the In the present day scenario, there is an increased Gear-less Scooters. Presently these vehicles are using a attention towards the development of Gear-less two- Centrifugal-clutch which has maximum wear and tear wheeler automobiles [scooters] which have automatic- frequently. The objective of this research work is to transmission systems, using centrifugal-clutch systems. highlight the study conducted on the torque These clutch systems have high wear and tear and transmission efficiency of a basic-fluid coupling without hence the present research work is taken up to replace vanes and a modified-fluid coupling [with vanes]. This the said clutch system with a fluid coupling which may is followed by fabricating and then experimentally be more effective in wear-free transmission and it will testing a fluid coupling design based on the provide a smooth & controlled acceleration with recommendations extracted from this computational effective damping of shocks, load fluctuations and study. -
General Motor Diesel Locomotive
(Govt. of India) (Ministry of Railways) INTRODUCTION HAND BOOK ON GENERAL MOTOR DIESEL LOCOMOTIVE (For official use only) IRCAMTECH/2006/M/D/GM loco/1.0 FEBRUARY-2006 Centre for Advanced Maintenance TECHnology Excellence in Maintenance MAHARAJPUR, GWALIOR – 474020 INTRODUCTION HAND BOOK ON GENERAL MOTOR DIESEL LOCOMOTIVE i PREFACE The GM Locomotives have been included in the Diesel Locomotive fleet of Indian railway. Production of GM locomotive has already started in DLW, Varanasi. The 4000 HP, computer controlled GM locomotive has a large number of special and improved features vis-a-vis the Alco design diesel locomotive presently running in Indian railway. All those in the field of diesel locomotive need to get acquainted with the GM locomotive. This book “Introduction hand book on GM locomotive” prepared by the CAMTECH has been prepared with the purpose of disseminating the introductory information to all those in diesel loco maintenance field. The suggestions are invited from the readers to improve and make the book more useful. Any such suggestion shell be included in next publication. Date: - 28.02.2006 KUNDAN KUMAR Director (Mech) ii CONTENTS S No. Description Page No. 1. Preface i 2. Contents ii 3. Book details iii 4. Correction slips iv 5. Introduction of the GM Locomotive 1 to 2 6. General information data 3 to6 7. Various parts and its location 7 to 21 8. Fuel Oil System 22 to 25 9. Cooling Water System 26 to 30 10. Lube Oil System 31 to 37 11. Air Intake System 38 to 41 12. Compressed air system 42 to 43 13. -
The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility
The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility Andreas Hoffrichter, PhD Nick Little Shanelle Foster, PhD Raphael Isaac, PhD Orwell Madovi Darren Tascillo Center for Railway Research and Education Michigan State University Henry Center for Executive Development 3535 Forest Road, Lansing, MI 48910 NCDOT Project 2019-43 FHWA/NC/2019-43 October 2020 -i- FEASIBILITY REPORT The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility October 2020 Prepared by Center for Railway Research and Education Eli Broad College of Business Michigan State University 3535 Forest Road Lansing, MI 48910 USA Prepared for North Carolina Department of Transportation – Rail Division 860 Capital Boulevard Raleigh, NC 27603 -ii- Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA/NC/2019-43 4. Title and Subtitle 5. Report Date The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility October 2020 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Andreas Hoffrichter, PhD, https://orcid.org/0000-0002-2384-4463 Nick Little Shanelle N. Foster, PhD, https://orcid.org/0000-0001-9630-5500 Raphael Isaac, PhD Orwell Madovi Darren M. Tascillo 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Center for Railway Research and Education 11. Contract or Grant No. Michigan State University Henry Center for Executive Development 3535 Forest Road Lansing, MI 48910 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report Research and Development Unit 104 Fayetteville Street December 2018 – October 2020 Raleigh, North Carolina 27601 14. Sponsoring Agency Code RP2019-43 Supplementary Notes: 16. -
Torque Converter. Human Engineering Institute, Cleveland, Ohio Report Number Am-2-5 Pub Date 15 May 67 Edrs Price Mf-$0.25 Hc-$2.04 49P
REPORT RESUMES ED 021 106 VT 005 689 AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT V, AUTOMATIC TRANSMISSIONS--TORQUE CONVERTER. HUMAN ENGINEERING INSTITUTE, CLEVELAND, OHIO REPORT NUMBER AM-2-5 PUB DATE 15 MAY 67 EDRS PRICE MF-$0.25 HC-$2.04 49P. DESCRIPTORS- *STUDY GUIDES, *TEACHING GUIDES, TRADE AND INDUSTRIAL EDUCATION, *AUTO MECHANICS (CCUPATION), *EQUIPMENT MAINTENANCE, DIESEL MATERIALS, INDIVIDUAL INSTRUCTION, INSTRUCTIONAL FILMS, PROGRAMED INSTRUCTON, KINETICS, MOTOR VEHICLES, THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF TORQUE CONVERTERS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) FLUID COUPLINGS (LOCATION AND PURPOSE),(2) PRINCIPLES OF OPERATION,(3) TORQUE CONVERRS,(4) TORQMATIC CONVERTER, (5) THREE STAGE, THREE ELEMENT TORQUE CONVERTER, AND (6) TORQUE CONVERTER MAINTENANCE AND TROUBLESHOOTING. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAM TRAINING FILM "LEARNING ABOUT TORQUE CONVERTERS" AND OTHER MATERIALS. SEE VT 005 685 FOR FURTHER INFORMATION. MODULES IN THIS SERIES ARE AVAILABLE AS VT 005 685- VT 005 709. MODULES FOR "AUTOMOTIVE DIESEL MAINTENANCE 1" ARE AVAILABLE AS VT 005 655 VT 005 684. THE 2-YEAR PROGRAM OUTLINE FOR "AUTOMOTIVE DIESEL MAINTENANCE 1 AND 2" IS AVAILABLE AS VT 006 006. THE TEXT MATERIAL, TRANSPARENCIES, PROGRAMED TRAINING FILM, AND THE ELECTRONIC TUTOR MAY BE RENTED (FOR $1.75 PER WEEK) OR PURCHASED FROM THE HUMAN ENGINEERING INSTITUTE HEADQUARTERS AND DEVELOPMENT CETER, 2341 CARNEGIE AVENUE: CLEVELAND, 'OHM 44115. (HC) STUDY AND READING MATERIALS AUTOMOTIVE MAINTENANCE L_____ AUTOMATIC TRANSMISSIONS- TORQUE CONVERTER UNIT V SECTION A FLUID COUPLINGS (LOCATION AND PURPOSE) SECTION B PRINCIPLE OF OPERATION SECTION C TORQUE CONVERTERS SECTION D TORQMATIC CONVERTER SECTION E THREE STAGE, THREE ELEMENT TORQUE CONVERTER. -
Diesel Turbo-Compound Technology
Diesel Turbo-compound Technology ICCT/NESCCAF Workshop Improving the Fuel Economy of Heavy-Duty Fleets II February 20, 2008 Volvo Powertrain Corporation Anthony Greszler Conventional Turbocharger What is t us Compressor ha Turbocompound? Ex Key Components of a Mechanical Turbocompound t us ha System Ex Conventional Turbocharger Turbine Axial Flow Final Gear Power reduction to Turbine crankshaft Speed Reduction Gears Fluid Coupling Volvo D12 500TC Volvo Powertrain Corporation Anthony Greszler How Turbocompound Works • 20-25% of Fuel energy in a modern heavy duty diesel is exhausted • By adding a power turbine in the exhaust flow, up to 20% of exhaust energy recovery is possible (20% of 25% = 5% of total fuel energy) • Power turbine can actually add approximately 10% to engine peak power output • A 400 HP engine can increase output to ~440 HP via turbocompounding • However, due to added exhaust back pressure, gas pumping losses increase within the diesel, so efficiency improvement is less than T-C power output • Maximum total efficiency improvement is 3-5% • Turbine output shaft is connected to crankshaft through a gear train for speed reduction • Typical maximum turbine speed = 70,000 RPM; crankshaft maximum = 1800 RPM • An isolation coupling is required to prevent crankshaft torsional vibration from damaging the high speed gears and turbine Volvo Powertrain Corporation Anthony Greszler Turbocompound Thermodynamics • When exhaust gas passes through the turbine, the pressure and temperature drops as energy is extracted and due to losses • The power taken from the exhaust gases is about double compared to a typical turbocharged diesel engine • To make this possible the pressure in the exhaust manifold has to be higher • This increases the pump work that the pistons have to do • The net power increase with a turbo-compound system is therefore about half the power from the second turbine • E.G. -
ECM Will Have Two (2) Options for Pure Street Class. Option 1: ECM Track Rules Option 2: Magnolia Track Rules
ECM Speedway 2020 Pure Street Rules Revised 02/20/2020 ***Raceceivers Are Mandatory in ALL Classes The Statement: Unless it came on a stock, mass produced vehicle, it is NOT LEGAL UNLESS SPECIFIED HERE! IF it came on a stock, mass produced vehicle and it is prohibited here, it is NOT LEGAL! All dimensions are reFerenced as the car is raced. Your tire pressures, spring settings, ect. May put your car out oF limits. No variances are allowed when / iF the cars are checked / weighed going onto the track. Following the race, decisions on variances For accident is at the discretion oF the Tech Inspector(s). RELATIONSHIP TO OTHER CLASSES: These cars are primarily For NEWER drivers to V8 cars. There are a large number oF stock parts. IF you have won a Feature in a late model style car in the last 10 years, you can NOT drive in this class. ELIGIBLE MAKES/MODELS: Any Chrysler, Ford or GM model car that was / is mass- produced For the United States Market. Check with track beFore you build. ECM will have two (2) Options for Pure Street Class. Option 1: ECM Track Rules Option 2: Magnolia Track Rules. NO MIX and Match in these two options, ALL or NONE Will be Strictly Enforced Option 1: MATERIALS: No ceramic or carbon Fiber parts allowed. RADIATOR: One, mounted in Front oF the engine For the purpose oF cooling water and, optionally, to cool an automatic transmission. ENGINE: Location: Stock location For Make / Model / Year. Engine Option 1: GM cap seals or GEN-4 Green Crate Seals. -
POWER TRANSMISSION SYSTEM Transmission Is a Speed Reducing Mechanism, Equipped with Several Gears (Fig
POWER TRANSMISSION SYSTEM Transmission is a speed reducing mechanism, equipped with several gears (Fig. 1). It may be called a sequence of gears and shafts, through which the engine power is transmitted to the tractor wheels. The system consists of various devices that cause forward and backward movement of tractor to suit different field condition. The complete path of power from the engine to the wheels is called power train. Fig 1 Power Transmission system of Tractor Function of power transmission system: (i) to transmit power from the engine to the rear wheels of the tractor, (ii) to make reduced speed available, to rear wheels of the tractor, (ii) to alter the ratio of wheel speed and engine speed in order to suit the field conditions and (iv) to transmit power through right angle drive, because the crankshaft and rear axle are normally at right angles to each other. The power transmission system consists of: (a) Clutch (b) Transmission gears (c) Differential (d) Final drive (e) Rear axle (f) Rear wheels. Combination of all these components is responsible for transmission of power. CLUTCH AND FLUID COUPLING CLUTCH: Clutch is a device, used to connect and disconnect the tractor engine from the transmission gears and drive wheels. Clutch transmits power by means of friction between driving members and driven members. Necessity of clutch in a tractor: Clutch in a tractor is essential for the following reasons: (i) Engine needs cranking by any suitable device. For easy cranking, the engine is disconnected from the rest of the transmission unit by a suitable clutch. -
Torque Converter Clutch Systems
Torque Converter Clutch Systems Dr. techn Robert Fischer Dipl.-Ing. Dieter Otto Introduction Modern vehicle drive-train engineering must exhaust all potential drive-train options in order to provide maximum acceleration and fuel efficiency with high overall efficiency and optimum comfort. At the same time, attention must be paid to ever stricter emission standards. These requirements often work at cross-purposes with each other, which means that improving emissions often entails increasing weight, fuel consumption and decreasing acceleration, not to mention incurring constantly increasing costs [1]. Despite this trend, LuK has developed a torque controlled clutch system - called the TorCon System - that increases driver comfort, reduces fuel consumption and emissions, improves acceleration and even results in a 4- speed automatic transmission that is superior to a conventional 5-speed automatic. This means that wherever an expensive 5-speed automatic transmission is used due to fuel consumption and acceleration requirements, the same results can be achieved with a 4-speed automatic transmission. LuK's design philosophy is centered on holistic system design, and the automatic transmission area is no exception. This approach meets the demands that automotive industry have come to expect of it's system suppliers. Given the parameters it is not possible to fall back on large test facilities and a fleet of test vehicles. Yet LuK is confident that it is a competent development partner and can ensure the introduction of new transmission systems into production with the shortest possible development lead times. The following demonstration of LuK's development philosophy shows why this is possible. LuK, as a component supplier, has given special thought to the total system, not just to the parts supplied by LuK. -
Hybrid Electric Vehicle Torque Split Algorithm for Reduction of Engine Torque Transients
Graduate Theses, Dissertations, and Problem Reports 2018 HYBRID ELECTRIC VEHICLE TORQUE SPLIT ALGORITHM FOR REDUCTION OF ENGINE TORQUE TRANSIENTS Derek George Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation George, Derek, "HYBRID ELECTRIC VEHICLE TORQUE SPLIT ALGORITHM FOR REDUCTION OF ENGINE TORQUE TRANSIENTS" (2018). Graduate Theses, Dissertations, and Problem Reports. 7179. https://researchrepository.wvu.edu/etd/7179 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. HYBRID ELECTRIC VEHICLE TORQUE SPLIT ALGORITHM FOR REDUCTION OF ENGINE TORQUE TRANSIENTS Derek George Thesis submitted to the Statler College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Scott Wayne,Ph.D., Committee Chairperson Andrew Nix,Ph.D. Mario Perhinschi,Ph.D. Department of Mechanical Engineering Morgantown, West Virginia 2018 Keywords: Hybrid Electric Vehicle Torque Split Algorithm Copyright 2018 Derek George Abstract HYBRID ELECTRIC VEHICLE TORQUE SPLIT ALGORITHM FOR REDUCTION OF ENGINE TORQUE TRANSIENTS Derek George The increased concern over energy efficiency and emissions in recent years has led to the deployment of cleaner alternatives for vehicle powertrains, including electrified vehicles.