<<

1,3 -Dipolar Cycloadditions: Click Chemistry for a New Synthesis of 5-Substituted and Applications in Organocatalysis

ThèseprésentéeàlaFacultédesSciences InstitutdeChimie UniversitédeNeuchâtel Pourl’obtentiondugradedeDocteurèsSciences Par

Valentina Aureggi

Chimistediplôméedel’Universitédel’Insubria(Italie) Acceptéesurpropositiondujury: Prof.ReinhardNeier,directeurdethèse Prof.GottfriedSedelmeier(NovartisPharmaAG,Bâle),directeurdethèse Prof.ThomasWard,rapporteur Prof.DieterSeebach(ETH,Zőrich),rapporteur Soutenuele3Juillet2007 UniversitédeNeuchâtel 2007

Acknowledgments ThisworkwassupportedbyNovartisPharmaAG(Basel, Switzerland, Process ResearchDevelopment).Firstandforemost,IwouldliketothankmysupervisorProf. GottfriedSedelmeierforgivingmethechancetoconductmyPh.D.workwithhim.He has always generously supported me and his wise guidanceandhisstrongpassionfor sciencehelpedmetogrowpersonallyandprofessionally.Throughoutmystay,hisbelief andtrustinmyabilitiesallowedmetogrowasachemistandstrengthenmyconfidence. The project we developed together for the synthesis of rings is a strong contributiontothescientificcommunityandIreallybelievethatitwillfindinthefuture awideindustrialapplication.Itwasapleasureworkingeverydaywithhimandhisteam, thesharedsuccessesanddifficultieswhicharealwayspartofresearch,andIamreally proudtohavegivenmypersonalcontributiontotheproject.

IalsowouldliketoexpressaspecialthankstoDr.GerhardPennforsupportingmeina administrativeandscientificwayandallowmetomakemythesisinPR&Ddepartment. Inaddition,Iwouldliketothankhimforhisexpertopinionconcerningmywork,his patience,andconstructiveadvise.

IwouldliketothankDr.RetoFischertoallowmetocompletemyPh.D.thesisinthe PR&DDepartmentandsupportingmeinthepublicationsofourscientificwork. I would like to address my special thanks to Prof. Reinhad Neier (University of Neuchatel) since the time I spent in Neuchatel for my Erasmus exchange, he always supportedmewithimportantadvices,interestingdiscussions,andheencouragedmeafter myuniversityworktocontinueconductingresearchbymakingaPh.Dthesis.Iwantto thankhimalsoforhishighlyefficientacademicassistanceandhisvaluableinterestinmy thesis.

IamgratefultoallpeopleinPR&DdepartmentatNovartisforthetimetheydedicatedto mefortechnicalandscientificadvice.SpecialthankstoBrigitteBerodandDominique Grimlerforthetechnicalsupport.Itwasapleasureformetoappreciatetheirexperience andforthetimetheyspenttoteachmetechniques. In addition I would like to thank Adnan Osmani, Alain Litzler and Joelle Fruh for technical,administrativesupportand friendship.

Iwouldliketothankallthepeoplewhoallowedmetoperformspecificexperiments:Dr. Christian Mathes, Dr. Walter Prikoszovich and Bernard Linder for the FTIR study concerning the formation; Dr. Bernhard Erb and Friedrich Schuerch for the preparationinkilolabof1.5Kgof( R)2(1 Htetrazol5yl)pyrrolidine1carboxylicacid benzyl ester 113 and confirm the high reproducibility of our new methodology; Paul Schultheiss(NIBR)forthehydrogenationstepof 112 and 113 ;Dr.KamalAzzaoui(MLI) for the modelling study of ortho alogenphenyltetrazoles formation; Dr. Jacques Wiss, Dr. Christoph Heuberger and Raphael Ruckstuhl for differential scanning calorimetry data;Dr.BeatrixWagnerandhercoworkerHansrudolfWalterforalltheXraystructure determinationsandfortheimportantdiscussionandproofreadingoftheChapter4ofmy thesis. I am grateful to all people from the Analytical Department for their valuable scientificinvestigations.SpecialthankstoSergeMossforspendingtimetoteachmethe importance of the informations from the IR spectroscopy; Monique Ponelle, Emine Sager,QuitterieMichonandDr.HaraldSchroederforNMRanalyses;ElodieLetotforIR and UVanalysis and Francis Roll for MSspectroscopy. Without their aid, this thesis wouldneverhaveattainedthepresentform.

IwouldliketothankDr.StuartJ.Mickel,Dr.WalterPrikoszovich,Dr.RudolfGiger,Dr. ChristophKrellandDr.ThierrySchlamaforallthescientificandpersonaladvicesduring mystayinPR&D.

Also within Novartis, I did not only find professional support but also found real friendshipthatIwilllookforwardtocontinueinthefuture.Aspecialthankstoallthose peoplewhoweremorethancolleaguesandwhowerepartofmylifeduringmytimein BaselandwhomademyPh.D.timeunforgettable:AurélienBigot,Dr.JarredT.Blank, Dr.ThomasRuchandCorneliaGasser,Dr.BenjaminMartin,Dr.KamalAzzaoui,Dr. NabilaSekkat,Dr.CarolePissot,Dr.CedricBerger,QuitterieMichon,VeronicaDenti, Dr. Francesca Frigerio, Dr. Deborah Gonzalez Mantero, Alessandro Marchesini, Dr. Marcella Ramelli, Valeria Botomei, and of course a special thanks to Aurélien who encouragedandemotionalsupportedmeeverydayduringthelastfouryears.

Aspecialthankstoallthefriendsofthe Young Swiss Chemical Society whogavemethe opportunitytobethetreasurerduringthelastthreeyears.

Aspecialthankstomyfamilyfordedicationandsupportingmeduringmyeducation.

Un ringraziamento speciale alla mia famiglia, specialmente a mio padre e mia madre per avermi insegnato i veri valori nella vita e avermi sostenuto economicamente e moralmente nel corso degli anni. Un ringraziamento speciale a mio padre per avermi trasmesso la curiosità e la passione per la scienza come filosofia di vita ed è loro a cui voglio dedicare questo mio lavoro con la promessa che cercherò sempre di mantenere il mio entusiasmo.

Abbreviations

Symbol Entity Abs. Absorbance Ac Acetyl AcOH Aceticacid Al. Aliphatic Ar. Aromatic Bn Benzyl Boc tert Butoxycarbonyl BOM 1Benzyloxymethyl br Broadsignal BuOH Butanol tBu tert Butyl calc. Calculated Cbz Benzyloxycarbonyl Cq Quaternary 1D,2D,3D One,two,threedimensional d Doublet(NMR) DBU 1,8Diazabicyclo[5.4.0]undec7ene DMF Dimethylformammide DMSO Dimethylsulfoxyde dr Diastomericratio ee Enantiomericexcess EtOAc Ethylacetate FTIR FourierTransformInfrared(Spectroscopy) HPLC HighPerformanceLiquidChromatography HRMS HighResolutionMassSpectroscopy IR Infrared(Spectroscopy) J Couplingconstant m Multiplet(NMR) Medium(IR)

MA Massoftheacid(MS)

MB Massofthebase(MS) mp Meltingpoint MS MassSpectroscopy NMR NuclearMagneticResonance Pd/C Palladiumoncharcoal Ph Phenyl PMB pMethoxybenzyl PTC PhaseTransfer

q Quartet(NMR)

Rf Retentionfactor r.t. Roomtemperature s Singlet(NMR) Strong(IR) sep Septet(NMR) t Triplet(NMR) TBAF Tetrabuthylammoniumfluoride TBDMS tButyldimethylsilyl TFA Trifluoroaceticacid THF Tetrahydrofurane TLC ThinLayerChromatography TMS Trimethylsilane Tr Trityl Ts Tosyl TS TransitionState UV UltravioletSpectroscopy vibr. Vibration(IR) w Weak(IR) Entity Symbol Unit 3 Calculateding/cm Dc Finalstructureagreementfactors R1,wR2 Length Å Angstrom MolecularWeigh MW g/mol Numberofmoleculesperunitcell Z Opticalrotation 25 ° [α ]D Pressure bar Bar Temperature T °C Time t min h Unitcellangles α, β, γ ° Unitcelllengths a,b,c Å Volume L Liter Unitcellvolume V Å3 1 Vibrationfrequency ν~ cm λ nm Wavenumber cm 1 Wavenumber

Keywords

Tetrazole,Sartans,,Dialkylaluminum,Cycloaddition,Alkylation, Methylation,Organocatalysis,Enamine Summary

Tetrazolesareaclassofheterocycleswithawiderangeofapplicationsinmedicinal chemistryandinmaterialsciences 1.Howeveraversatilemethodtosynthesizetetrazoles through safe protocols is still highly desirable. Indeed each of the general known procedures uses either toxic metals, expensive reagents, harsh reaction conditions and may lead to the formation of dangerous hydrazoic acid or sublimates. We reporthereinthediscoveryanddevelopmentofanovelefficientprocessfortransforming awidevarietyofnitrilesintothecorrespondingtetrazolesinhighyield,usingasimple and safe protocol. It has been found that the organoaluminum azides are effective reagentsforthedirectconversionofnitrilestotetrazoles(Scheme1) 141,142 . Toluene R2AlCl+NaN3 R2AlN3+NaCl 0°Ctor.t. 46h

N R2AlN3 NH R' C N R' Toluene N N 40to120°C Scheme 1. Novelsynthesisoftetrazolerings Theorganicsolubledialkylaluminumazidesarepreparedinashorttime(46 h, r.t.) from the corresponding cheap dialkylaluminum chlorides. The cycloadditionoccursundermildconditions,anditispossibletosynthesizea broadrangeoftetrazolederivativeswithahighselectivity.Thismethodology can be applied to the synthesis of the pyrrolidine tetrazole, a versatile alternativeofprolineinorganocatalysis.Avarietyofnewcatalystsbasedon pyrrolidinetetrazoleskeletonarethereforeefficientlypreparedandtested 142 .

Resumé

Les besoins récents en chimie organique de synthèse appliquée focalisent les effortsdeschercheursaudéveloppementdenouvellesvoiesefficacesetversatilespourla préparation de molécules bioactives, en prenant en comptes en particulier les critères économiques et environnementaux. Nous avons développé une méthode novatrice et écologique pour la préparation de tetrazoles 141,142 . Ce groupe fonctionnel trouve des applications dans des domaines variés allant des matériaux aux explosifs, et est d’un intérêttoutparticulierenchimiemédicinale 1 . Cetteimportanceaconduitaudéveloppementdediversesméthodesdepréparationdes tétrazoles,toutesprésentantcependantdesdésavantagesmajeurscommel’utilisationde réactifs toxiques ou explosifs, entre autres. La méthode alternative que nous avons développéepermetlaformationdetétrazolesàpartirdenitrilesenutilisantdesazidesde dialkylaluminium, qui possèdent l’avantage d’être des réactifs bon marché et non toxiques et permettent la préparation d’une large variété de tétrazoles de façon très efficace,adaptableàl’échelleindustrielle(Scheme1). Toluene R2AlCl+NaN3 R2AlN3+NaCl 0°Cà25°C 46h

R2AlN3 N NH R' C N R' Toluene N N 40à120°C Scheme 1. Nouvelleméthodologiedeformationdetétrazole Nousavonsensuiteappliquécetteméthodologieàl’organocatalyse 142 ,c'estàdireàla préparation et l’étude de molécules organiques ayant la faculté de catalyser des transformationschimiquestrèssélectives,procédéparticulièrementattractifd’unpointde vuenvironnementaletéconomiqueenconstantdéveloppement.

Table of Contents

Chapter1 5-Substituted tetrazoles 1.1. Introduction 2 1.1.1. Chemical&physicalproperties 3 1.1.1.1. 3 1.1.1.2. Tetrazolateanions:acidity 3 1.1.1.3. 3 1.1.2. Applicationoftetrazolederivatives 4 1.1.2.1. Applicationsinmedicinalchemistry 4 1.1.2.1.1. Cis Amidebondmimic 4 1.1.2.1.2. DNA,RNASynthesis 4 1.1.2.2. Pharmaceuticalproperties 5 1.1.2.2.1. Cardiovascularactivity 6 1.1.3. Synthesisoftetrazoles 7 1.1.3.1. Synthesisoftetrazolesfromnitrileswithazides 7 1.1.3.1.1. Hydrazoicacid 9 1.1.3.1.2. Metalsaltmethodsusingsodiumazide 10 1.1.3.1.2.1. Ammoniumandtrialkylammoniumazides 10 11 1.1.3.1.2.2. NaN 3inthepresenceofLewisacid 1.1.3.1.3. Sharplessmethodology:Theclickchemistryapproach 12 1.1.3.1.4. Tinandsiliconmediatedmethods 13 1.1.3.1.4.1 Trialkyltinazide 14 1.1.3.1.4.2. Trimethylsilylazide 15 1.1.3.1.5. Aluminumazide 17 1.1.3.1.6. Synthesisof5substitutedtetrazolesusingZn/Alhydrotalcitecatalyst 17 1.1.3.2. Synthesisoftetrazoleswithothermethods 18 1.1.3.2.1. From N(cyanoethyl)amides 18 1.1.3.2.2. Fromoximesalts 18 1.1.3.2.3. Fromimidatesaltandimidoylchlorides 19 1.1.4. Reactivityoftetrazoles 20 1.1.4.1. Reactionwithelectrophiles 20 1.1.4.1.1. Alkylationoftetrazolateanionsalts 20

1.1.4.1.2. Acylationandalkylationofneutraltetrazoles 21 1.1.5. Thechemistryofthecyanogroup 22 1.1.5.1. Introduction 22 1.1.5.1.1. History 22 1.1.5.2. Chemical&physicalproperties 22 1.1.5.3. Biologicalactivity 23 1.1.5.4. Preparationofnitriles 24 1.1.5.4.1. Preparationofnitrilesbyadditionofcyanide 24 1.1.5.4.2. Preparationofalkylnitrilesbysubstitution 24 1.1.5.4.3. Preparationofarylnitriles 25 1.1.5.4.3.1. Preparationofnitrilesbydehydration 26 1.1.5.4.4. Preparationofnitrilesfromnitroalkanes 26 1.1.5.4.5. Preparationofnitrilesfromhydrazones 27 1.1.5.5. Reactivityofnitriles 27 1.1.5.5.1. Hydrationofnitrilestoformprimaryamides 28 1.1.5.5.2. Hydrolysisofnitrilestocarboxylicacids 28 1.1.5.5.3. Reductionofnitrilestoprimaryamines 28 1.1.5.5.4. Pinnerreaction 28 1.1.5.5.5. Ritterreaction 29 1.2. Application of click chemistry for a new synthesis of 5-substituted 30 tetrazoles from organoaluminum azides and nitriles: results and discussion 1.2.1. Dialkylaluminumazide 32 1.2.1.1. Introduction 32 1.2.1.1.1. Thedialkylaluminumazide 32 1.2.1.1.2. Thereactionsofthediethylaluminumazide 32 1.2.1.2. Diethylaluminumazideformation 33 1.2.1.2.1. FTIRstudy 34 1.2.1.2.2. Differentialscanningcalorimetry 35 1.2.2. Synthesisofstartingmaterials 37 1.2.2.1. Alkylthiocyanates 37 1.2.2.2. Synthesisofderivativesfrommalononitrile 38 1.2.3. Synthesisoftetrazoleswithdialkylaluminumazides 39 1.2.3.1. Synthesisoftetrazolesinthepresenceofsulfonyl,thio,thiocyanogroups 40

1.2.3.2. Synthesisoftetrazolesinthepresenceofdoublebonds 41 1.2.3.3. Synthesisoftetrazolesfromalkylnitriles 43 1.2.3.4. Synthesisoftetrazolesfromaromaticnitrile 44 1.2.3.5. Synthesisoftetrazolesinthepresenceofhydroxygroup 47 1.2.3.6. Synthesisof5substitutedheteroaromatictetrazoles 48 1.2.3.7. Synthesisoftetrazolesinthepresenceofamides,amines,estersandethers 50 1.2.3.8. Synthesisoftetrazolesinthepresenceofcarbonylgroups 55 1.2.3.9. Synthesisoftriazoles 58 1.2.3.10. Synthesisofalternativeazides 58 1.2.3.10.1. [1,3,2]Benzodioxaborole2azido( 134 ) 58 1.2.3.10.2. Diisopropoxydealuminumazide( 139 ) 60 1.2.3.11. Tetrazolatesaltsandnucleophilicsubstitution 61 1.2.3.11.1. 5(4’Methylbiphenyl2yl)tetrazolepotassiumsalt( 140 ) 61 1.2.3.11.2. 5(4Chlorophenyl)tetrazolecesiumsalt(2) 61 1.2.3.11.3. Nucleophilicsubstitutionwithtetrazoles 62 1.3. 5-Substituted tetrazoles: conclusion 63 Chapter2 Alkylation of tetrazole ring 2.1. Introduction 65 2.1.1. Chemicalandphysicalpropertiesofdisubstitutedtetrazoles 66 2.1.1.1. Physicalproperties 66 2.1.1.2. Solubilityandchromatography 67 2.1.1.3. Nuclearmagneticresonancespectroscopy 67 2.1.2. Alkylationoftetrazoleringwithalkylhalides 68 2.1.2.1. Alkylationoftetrazoles 68 2.1.2.2. Alkylationoftetrazoleswithalcohols 68 2.1.2.3. AlkylationoftetrazolesbyadditionofCCmultiplebonds 69 2.1.3. Methylationoftetrazolering 71 2.1.3.1. Methylationwithdimethylsulphate 71 2.1.3.2. Methylationwithmethyl 71 2.1.3.3. Methylationwith 72 2.1.3.4. Methylationwithtrimethylsilyldiazomethane 73 2.1.3.5. OAlkylSpropargylxanthates(dithiocarbonates) 73 2.1.3.6. Synthesisofmethyltetrazolesfromimidates 74

2.2. Alkylation of tetrazole ring: results and discussion 75 2.2.1. Novelmethylationoftetrazoleringsusing1methy3ptolyltriazene 78 2.2.1.1. 1Methy3ptolyltriazene 79 2.2.1.1.1. Preparationof1methyl3ptolyltriazene 79 2.2.1.1.1.1. Preparation via Grignard 79 2.2.1.1.1.2. Preparation via diazoniumcoupling 80 2.2.1.1.2. Reactionof1alkylaryltriazenes 80 2.2.1.1.2.1. Reactionwithacids 80 2.2.1.1.2.2. Methylationofcarboxylicacids 80 2.2.1.1.2.3. Reductiontoanilinesandprimaryamines 81 2.2.1.1.2.4. Nucleophilicattack 81 2.2.1.1.2.5. Complexformation 82 2.2.1.2. Methylationoftetrazoleringswith1methyl3ptolyltriazene 83 2.3. Alkylation of tetrazole ring: conclusions 88

Chapter3 Organocatalysis 3.1. Introduction 91 3.1.1. Catalystsandmechanism:theenamineandtheiminiumcatalysis 92 3.1.1.1. Enaminecatalysis 92 3.1.1.2. Iminiumcatalysis 93 3.1.1.3. Organocatalysts 93 3.1.1.4. Proline 94 3.1.1.4.1. History 94 3.1.1.4.2. Reactivityofproline 95 3.1.1.5. Pyrrolidintetrazole 95 3.1.1.5.1. Historyandsynthesis 96 3.1.1.5.2. Reactions 96 3.1.1.5.2.1. AsymmetricMannichreaction 97 3.1.1.5.2.2. AsymmetricNitroMichaeladdition 98 3.1.1.5.2.3. Asymmetricadditionofmalonatestoenones 100 3.1.1.5.2.4. Asymmetricαaminationofaldehydes 101 3.1.1.5.2.5. Aldolreactions 101 3.1.1.5.2.6. ONitrosoaldolreaction 102 3.1.1.6. Homo prolinetetrazole 103

3.2. Organocatalysis: results and discussion 105 3.2.1. Synthesisofanovelclassoforganocatalysts 106 3.2.1.1. Synthesisof5pyrrolidin2yltetrazole( 114 ,115 ) 106 3.2.1.1.1. Onepotprocedureforthesynthesisof5pyrrolidine2yltetrazole 118 3.2.1.1.2. Preparationofpyrrolidinetetrazolemetalsalts 119 3.2.1.2. Synthesisof Nalkylatedpyrrolidinetetrazole 110 3.2.1.2.1. Synthesisof2tert butyl5yrolidin2yl2Htetrazole( 237 , 243 ) 110 3.2.1.2.2. 2(1Methyl1phenylethyl)5)pyrrolidine2yl2Htetrazole( 235 ) 111 3.2.1.2.3. Isopropyl5(R)pyrrolidine2yltetrazole( 237 , 238 ) 112 3.2.2. Enamine 115 3.2.2.1. Introduction 115 3.2.2.2. Enamineformation 117 3.2.2.3. Oxazolinesformation 122 3.2.3. Michaeladdition 124 3.2.3.1. Michaeladditionofisovaleraldehydeandnitrostyrene 124 3.2.3.2. Michaeladditionofcyclohexaneandnitrostyrene 137 3.3. Organocatalysis: conclusions 128

Chapter4 X-Ray structures of tetrazole derivatives 4.1. 5Thiophen1Htetrazole( 109 ) 130 4.2. 5(Benzylthio)1Htetrazole( 17 ) 132 4.3 (R)5(Tetahydro)1Htetrazole( 119 ) 135 4.4. 4[2sulphonyl2(2methyl2Htetrazol5yl)vinyl] benzoic acid 137 methylester( 177 ) 4.5. (R)5Pyrrolidine2yltetrazole( 115 ) 139 4.6. (R)5Pyrrolidine2yltetrazolepalladium(II)complex( 242 ) 141 4.7. 1Isopropyl5(R)pyrrolidine2yl1Htetrazole( 237 ) 143 4.8. 2(1Methyl1phenylethyl)5 -(R)pyrrolidine2yl2Htetrazole(235 ) 146 4.9 (S)2(2tert-Butyl2Htetrazol5yl)pyrrolidiniumtrifluoroacetate( 244 )148 4.10 2Isopropyl5(R)pyrrolidine2yl2Htetrazolesquaricacidsalt( 250 ) 150 4.11. 2[(1Methyl1phenylethyl)2Htetrazol5yl]pyrrolidinium 152 saccharinate( 248 )

Chapter5 Experimental part 5.1. Novel click chemistry for the synthesis of 5-substituted tetrazoles from 159 organoaluminum azides and nitriles 5.1.1. Reagentsandsolvents 159 5.1.2. Synthesisofthestartingmaterials 163 Benzylthiocyanate( 16 ) 4’Thiocyanatomethylbiphenyl2carbonitrile( 70 ) 4(2,2Dicyanoethenyl)benzoicacidmethylester(73 ) 2,2Dibenzylmalonitrile( 74 ) 5.1.3. Synthesisoftetrazolesandtriazoleswithdialkylaluminumazides 168 5.1.3.1. Typical procedures for the syntesis of 5substituted tetrazoles Typical 168 5.1.3.1.1. procedureforthepreparationofdialkylaluminumazide 168 5.1.3.1.2. TP1: Typical procedure for 13 dipolar cycloadditions between 168 dialkylaluminum azide and nitriles for the tetrazole ring formation TP2: 5.1.3.1.3. Typicalprocedurefortheprotectionofthehydroxylgroupforsynthesis 169 ofthecompounds 95 , 100 102 5.1.3.2. Synthesisoftetrazolesinthepresenceofsulfony,thio,thiocyanogroups 170 5Phenylsulfonylmethyl1Htetrazole( 75 ) 5(Benzylthio)1H tetrazole( 17 ) Phenylsulfanylmethyl1Htetrazole( 76 ) 4’(1 HTetrazol5ylsulfanylmethyl)biphenyl2carbonitrile( 77 ) 5{4'[(2 Htetrazol5ylthio)methyl]biphenyl}1Htetrazole (78 ) 5.1.3.3. Synthesisoftetrazolesinthepresenceofdoublebonds 174 (E)3Phenyl2(2 Htetrazol5yl)acetonitrile( 79 ) 5[( Z)2Phenyl1(2 Htetrazol5yl)vinyl]1Htetrazole (80 ) 5(1Cyclohexen1yl)1Htetrazole( 81 ) 5Styryl1Htetrazole( 82 ) Fumaryl2Htetrazole( 83 ) 5.1.3.4. Synthesisoftetrazolesfromalkylnitriles 178 trans Cyclobutane1,2di1Htetrazole( 84 ) 5Bicyclo[4.2.0]octa1,3,5trien7yl1Htetrazole( 85 ) 5(1Phenylethyl)2Htetrazole( 86 ) 5(1Adamantyl)1Htetrazole( 87 ) 5(2Trifluoromethyl)benzyl1Htetrazole( 88 )

5(1,1Diphenylethyl)1Htetrazole( 89 ) 1,3Diphenyl2,2bis(5tetrazoyl)propane( 90 ) 5.1.3.5. Synthesisoftetrazolesfromaromaticnitriles 184 5Phenyl1Htetrazole( 11) 5,5’(1,2Phenylene)bis1H tetrazole(91 ) 5(oMethylphenyl)tetrazole(92 ) 5[4(1 Htetrazol5ylmethyl)phenyl]1Htetrazole(93 ) 5(4Nitrophenyl)1Htetrazole( 94 ) 5(2Hydroxyphenyl)1Htetrazole( 95 ) 5(2Fluorophenyl)2Htetrazole( 96 ) 5(2Chlorophenyl)2Htetrazole( 97 ) 5(2Bromophenyl)1Htetrazole(26 ) 5(2Iodophenyl)2Htetrazole( 98 ) 5(4Chlorophenyl)1Htetrazole( 1) 5(4Fluorophenyl)1Htetrazole( 99 ) 5.1.3.6. Synthesisoftetrazolesinthepresenceofhydroxygroup 195 1HTetrazole5methanolαmethyl( 100 ) Phenyl(2 Htetrazole5yl)methanol( 101 , 102 ) 5.1.3.7. Synthesisof5substitutedheteroaromatictetrazoles 197 2(2 HTetrazol5yl)pyridine( 103 ) 3(2 HTetrazol5yl)pyridine( 104) 4(2 HTetrazol5yl)pyridine( 105) 2,6Bis(2 Htetrazol5yl)pyridine( 106) 2(1 Htetrazol5yl)( 107 ) 5Furan2yl2Htetrazole( 108 ) 5Thiophen2yl2Htetrazole( 109 ) 5(1 HPyrrol2yl)2Htetrazole( 110 ) 5.1.3.8 Synthesisoftetrazolesinthepresenceofamides,amines,estersandethers 204 2( S)(1 HTetrazol5yl)pyrrolidine1carboxylicacidtertbuthylester( 111 ) 2(1 HTetrazol5yl)pyrrolidine1carboxylicacidbenzylester (112 , 113 ) 2( S) (1 HTetrazol5yl)pyrrolidine( 114 , 115 ) N,N Dimethyl1HTetrazol5amine( 116 ) Ethyl1Htetrazole5carboxylate( 117 ) 4[(E)2Cyano2(2 Htetrazol5yl)vinyl]benzoicacidmethylester(118 )

(R)5(Tetrahydrofuran2yl)2Htetrazole( 119 ) 5.1.3.9. Synthesisoftetrazolesinthepresenceofcarbonylgroups 212 6Isopropyl3(1 Htetrazol5yl)chromen4one ( 122 ) and 2ethyl6 isopropyl3(1 Htetrazol5yl)chroman4one( 123 ) 1[4(2 HTetrazol5yl)phenyl]propan1ol(125 )and4(1 Htetrazol5yl) benzenemethanol(126 ) Phenyl[4(1 Htetrazol5yl)phenyl]methanol(128 ) 5.1.3.10 Synthesisoftriazoles 216 1H[1,2,3]Triazole4,5dicarboxylicacidmethylester( 130 ) 5Phenyl1H[1,2,3]triazole4carboxylicacidmethylester( 132 ) 5.1.3.11. Synthesisofalternative azides 218 [1,3,2]Benzodioxaborole2azido( 134 ) Disopropoxydealuminumazide( 139 ) 5.1.3.12. Synthesisoftetrazolatesalts 219 5(4’Methylbiphenyl2yl)1Htetrazolepotassiumsalt( 140 ) 5(4Chlorophenyl)1Htetrazolecesiumsalt(2) 5.1.3.13. Nucleophilicsubstitutionwithtetrazoles 221 (S)2[5(4Chlorophenyl)tetrazol]4phenylbuthyricacidethylester( 143 , 144 ) 5.2. Alkylation of tetrazole rings 223 5.2.1. Reagentsandsolvents 223 5.2.2. Synthesisofthestartingmaterial 225 4[2Benzensulfonyl2(1 Htetrazol5yl)vinyl]benzoic acid methyl ester (165 ) 5.2.3. Alkylationoftetrazolering 227 (R)-Isopropyltetrazole5yl)pyrrolidine1carboxylic acid benzyl ester (161 , 162 ) (R)2(2Trityl2Htetrazol5yl)pyrrolidine1carboxylicacidbenzylester (164 ) 5.2.3.1. Benzylationoftetrazolering 230 4[2Benzenesulfonyl2(benzyltetrazol5yl)vinyl]benzoic acid methyl ester( 166 , 167 ) (S)tert Butyl2(benzyltetrazol5yl)pyrrolidine1carboxylate (168 , 169 ) 5.2.4. Methylationofthetetrazolering 234

5.2.4.1. TP3:Typicalprocedureforthemethylationofthetetrazolering 234 5(2Fluorophenyl)methyltetrazole( 145 , 146 ) 5(4Chlorophenyl)methyltetrazole( 147 , 148 ) 4[2Benzenesulphonyl2(methyltetrazol5yl)vinyl]benzoicacidmethyl ester( 177 , 178 ) 4[1Ethylidene2(methylterazol5yl)penta2,4dienyl]benzoicacid methylester( 149 , 150 ) 5Benzenesulphonylmethyl)methyltetrazole( 179 , 180 ) Methyl5thiophen2yltetrazole( 181 , 182 ) 5Benzylsulfanylmethyltetrazole( 183 , 184 ) (S)2(Methyltetrazol5yl)pyrrolidine1carboxylicacidbenzylester(185 , 186 ) 5.3. Organocatalysis 247 5.3.1. Reagentsandsolvents 247 5.3.2. Synthesisofpyrrolinetetrazolederivatives 249 5.3.2.1. Synthesisof Nalkylatedpyrrolidinetetrazolesandtheirsalts 249 2tButyl5pyrrolidine2yl2Htetrazole( 243 , 236 ) (R)2(2tButyl2Htetrazol5yl)pyrrolidiniumtrifluoroacetate( 244 ) (R)2(2tButyl2Htetrazol5yl)pyrrolidiniumchloride( 245 ) 2(1Methyl1phenylethyl)5 -(R)pyrrolidine2yl2Htetrazole(235 ) 2[(1Methyl1phenylethyl)2Htetrazol5yl] pyrrolidinium saccharinate (248 ) 1Isopropyl5(R)pyrrolidine2yl1Htetrazol(237 ) 2Isopropyl5(R)pyrrolidine2yl2Htetrazole(238 ) 2Isopropyl5(R)pyrrolidine2yl2Htetrazolesquaricacidsalt( 250 ) 5.3.2.2. Synthesisofpyrrolidinetetrazolemetalsalts 258 (R)5Pyrrolidine2yl1Htetrazolesodiumsalt( 239 ) (R)5Pyrrolidine2yl1Htetrazolepotassiumsalt( 240 ) (R)5Pyrrolidine2yl1Htetrazolecesiumsalt( 241 ) (R)5Pyrrolidine2yl1Htetrazolepalladium(II)complex( 242 ) 5.3.3. Enaminesformation 262 5.3.3.1. Typicalproceduresfortheenamineformation 262 5.3.3.1.1. TP4:Typicalprocedurefortheenamineformation 262 5.3.3.1.2. TP5:Typicalprocedurefortheenamineformation:NMRtubeexperiment 262

5.3.3.2. Enamineformationfromaldehydes 263 5{1[2Phenylprop1en1yl]pyrrolidine2yl}2Htetrazole(259 ) 2tert Butyl5{1[2phenylprop1en1yl]pyrrolidine2yl}2Htetrazole (266 ) (R,E)NBenzyl3methylN(1phenylethyl)but1en1amine( 261 ) 5{1[(1 E)3Methylbut1en1yl]pyrrolidine2yl}2Htetrazole(262 ) 1[(1 E)3Methylbut1en1yl](S)proline(266 ) 2tert-Buyl5[( R)1(E)3methylbut1enyl)pyrrolidine2yl]2Htetrazole (264 ) 5[( R)1(E)3Methylbut1enyl)pyrrolidine2yl]2(1methyl1phenyl ethyl)2Htetrazole( 263 ) (R,E)1Isopropyl5[1(3methylbut1enyl)pyrrolidine2yl]1Htetrazole (265 ) 2Isopropyl5[( R)1(( E)emethylbut1enyl)pyrrolidine2yl]2H tetrazole( 266 ) 5.3.3.3. Oxazolinesformation 271 (3R,4S)3Isobutyl1,1diphenyltetrahydropyrrolo[1,2c]oxazole( 267 ) (7a'S)1',1'diphenyltetrahydro1' Hspiro[cyclohexane1,3'pyrrolo[1,2 c][1,3]oxazole]( 307 ) 5.3.4. Organocatalysis 273 5.3.4.1. TypicalproceduresforMichaeladditions 273 5.3.4.1.1. TP6:TypicalprocedurefortheMichaelAddition 273 5.3.4.1.2. TP6:TypicalprocedurefortheMichaelAdditionfollowedbyreductionto 273 primaryalcohol (2 S,3 R)2(1methylethyl)4nitro3phenylbutyraldehyde(214) (2 S,3 R)2Isopropyl4nitro3phenylbutan1ol( 268 ) 2[2Nitro1phenylethyl]cyclohexanone (212 ) Chapter6 References 278

Synthesis is the one in which the target molecule is prepared from readily available starting materials in one simple, safe environmentally acceptable, and resource-effective operation that proceeds quickly and in quantitative yields

P. A. Wender (1) (1)P.A.Wender,Introduction:FrontiersinOrganicSynthesis, Chem. Rev. 1996 , 96(1) ,12(editorial)

Chapter1Introduction

Chapter 1. The 5-Substituted Tetrazoles Tetrazolesareaclassofheterocycleswithawiderangeofapplicationswhichare currently receiving considerable attention 1, therefore the literature on tetrazole is expanding rapidly. This functional group has a role in coordination chemistry as a ligand, 2,3,4aswell asinvariousmaterialssciencesapplications including photography and specialty 5. Extensive work has also been carried out in the field of medicinal chemistry, where tetrazoles are frequently used as metabolically stable surrogatesforcarboxylicacids 6,7,8. Lessappreciated,butofenormouspotential,arethe many useful transformations that maketetrazolesversatileintermediatesenroutetosubstitutedtetrazolesandespeciallyto other 5ring heterocycles via Huisgen rearrangement 9,10 . The prime reason for the scarcityofpracticalapplicationsforthesesophisticated tetrazolebased reactions is the lackofappealingsyntheticroutestothekeyintermediates5substitutedtetrazoles. Tetrazolesreadilytolerateawiderangeofchemicalenvironments 1andnewusesforthis unique family of heterocycles continue to emerge in both materials science, and pharmaceuticalapplications.

1 Chapter1Introduction

1.1. The 5-Substituted Tetrazole 5Substituted tetrazolesthat contain a free NH bond are frequently referred to as tetrazolicacidsandexistintwotautomericforms(Figure1) 1,11,12 . O N N N N R R R NH OH N N N H 1H 2H Figure 1. Tetrazolicacidsarebioisosteresofcarboxylicacids The tautomerism is a rapid process in solution and individual can not be detectedevenatlowtemperature.Thecorrespondingdipolemomentsare5.63Dforthe 1Hand2.19Dforthe2 Hform 1.Inthegasphase,the2 Htautomertendstobe the dominant form, while in solution the 1 Htautomer is favored because of solvation effects. Tetrazolescanberegardedasanaloguesofcarboxylicacids.ThefreeNHbond of tetrazoles makes them acidic molecules and both the aliphatic and aromatic heterocycles have p Kavaluessimilartothecorrespondingcarboxylicacids (4.54.9 vs 4.24.4,respectively)duetotheabilityofthemoiety to stabilize a negative chargeby electrondelocalization 1. Tetrazole have a considerable amount of local electron density, which consequently leads to a wide range of stable metallic and molecular complexes 13 . Furthermore,thetetrazoleringpossessesastrongelectronwithdrawinginductiveeffect (I) which surpasses the weak mesomeric effect (+ M), therefore, the ring is a deactivatinggroup 1.

2 Chapter1Introduction

1.1.1. Chemical & Physical Properties 1.1.1.1. Aromaticity

The tetrazole ring is a 6πazapyrroletype system 1,11 . Reactivity of 5substituted tetrazolespermitsthemtobeclassifiedasaromaticcompounds1,14 .Intetrazoles,twoof the six πelectrons required by the Hückel rule are provided by the lone pair of one nitrogenwhiletheremainingfourπelectronsareprovidedbytheotherfouratomsofthe ring.

1.1.1.2. Tetrazolateanions:acidity

5Substituted tetrazoles display an acidity comparable with the corresponding carboxylicacids 1,15 .One differencebetweenthetetrazolering andthecarboxylicacid group is the annular tautomerism of the tetrazoles. Substituents at C5 have effects similartothoseforcarboxylicacids,whileingeneral,5aryltetrazolesarestrongeracids. The increased acidity is ascribed to an enhanced resonance stabilization in the 5 phenyltetrazoleanionrelativetobenzoate 1b.Thetetrazolateanionsareeasilygenerated withmetalhydroxidesandarestableinhotalcoholicandaqueoussolutions(Figure2) 16,1 N N NH CsOHH. O N Cs Cl 2 Cl N N MeOH N N r.t. 1 2 Figure 2. Exampleofametaltetrazolatesalt 1.1.1.3. Solubility

5Substitutedtetrazolesaregenerallysolubleinpolarorganicsolventssuchasethyl acetateandDMSO,butunderbasicconditionstheycanbeeasilyextractedintothewater phaseasasalt,likethecarboxylicacid.Verypolartetrazolederivativessuchaspyridine tetrazoles103, 104and 105 orpyrrolidinetetrazoles 113 aresolubleinwatertherefore theextractionfromwatercanbeproblematic.

3 Chapter1Introduction

1.1.2. Application of Tetrazole Derivatives Tetrazoles areanincreasinglypopularfunctionalitywithwiderangingapplication. Theyhavefounduseincoordinationchemistry 16,17 andinvariousmaterialssciences applications including photography 1,18 , specialty explosives 5, information recording 19 20 systems and agriculturalcomposition . Inadditionextensiveworkhasbeen carried outinthefieldofmedicinalchemistry1,9.

1.1.2.1. Applicationinmedicinalchemistry

1.1.2.1.1. cis Amidebondmimic Marshall etal. 21 haveproposedanewuseforthetetrazoleringasa cis amidebond mimicwithinapeptidechainandthisstructuralmotifcanbeusedtopreorganisethe amidebondsofpeptides,enzymesubstratesandinhibitorsintoa cis conformation 21,22,23 . Incorporationoftetrazoledipeptideanaloguesintobiologicallyactivepeptidessuchas somatostatinandbradykininhasbeendemonstrated(Figure3) 24 . cis amide tetrazole isostere O H N N N H NH N N O N O R' H O R2 O R' H R2 H HN H HN Figure 3. Thetetrazoleringasa cis-amidebondmimic 1.1.2.1.2. DNA,RNAsynthesis 5Alkylthiotetrazoles, specifically 5benzylthiotetrazole and 5ethylthiotetrazole, areapowerfulactivatorsforDNAandRNAsynthesis(Scheme1) 25,26,27 .Thepresence of the thio group makes the tetrazole ring more acidic than the corresponding 5 alkytetrazoles 28 ;thisimprovesitsabilitytoactasanactivator.Inaddition,thesolubility withbiologicallyactivecompounds,wherereactionsarecarriedoutinacetonitrile,isalso enhanced. Comparison of 5(benzylmercapto)tetrazole to other activators revealed the following order in coupling yield of 2’OTBDMS phosphoramidites: 5

4 Chapter1Introduction

(benzylmercapto)tetrazole>5(ethylmercapto)tetrazole>4,5dicyanoimidazole>1 H tetrazole 25 .

H DMTrO R DMTrO N O R HO R S N O O N + N CN O O O P Si CN O O O O CH3CN,3min,>99% O P Si Si O R N O

O O Si Scheme 1. RNAphosphoramiditecouplingreactionwith5(mercapto)1Htetrazoleactivation 1.1.2.2. Pharmaceuticalproperties

Tetrazoleitselfdoesnotexhibitpharmacologicalactivity ; however, many of its derivatives possess interesting biological activities and they are frequently used as metabolically stable surrogates for carboxylic acids, while tetrazoles generally offer a morefavourablepharmacokineticprofile 1,29,30,31,32 . Like their carboxylic acid analogues, tetrazoles exhibit a planar structure. However, Hanschhasshownthatanionictetrazolesarealmost10timesmorelipophilicthanthe corresponding carboxylate, 33 whichisanimportantfactorinallowingthemolecule to pass through cell membranes. Hydrogen bonding capability of tetrazolic anions with receptorrecognitionsitesisakeyinteractionforenhancedbindingaffinity34 .Inaddition, inthedesignofdrugmolecules,oneadvantageoftetrazolesovercarboxylicacidsisthat they are resistant to many biological metabolic degradation pathways 35 . Tetrazole derivativeshavebeeninvestigatedinareasasdiverse as antiarrhythmic agents ( 3) 36 , antidiabetic agents 32f,37 , anticholesterol agents 1b , antifungal agents 38 , antiallergic 29,39,40 1,29,41 8 agents( 5) ,neurodegenerativediseases( 69) amongothers .Someexamples aregiveninFigures47. N N N N n=0,1,2,3,4 R1=pMeO, pMe,pF 2 R 2 R1 n R =pCl,OMe 3 Figure 4.Antiarrhythmicagents 36

5 Chapter1Introduction

HN N N O HN N N N N N Et CH O CH 3 3 4 5 Figure 5. Muscarinicagonist42 Figure 6. Antiallergenics

N N N COOH N N HN N HO H H H H H N N NH2 COOH NH NH H N N N N NH N COOH O N COOH N N H H (+)cisLY233053 CH3 LY93558 LY300020 6 7 8 9 Figure 7. Tetrazolederivativeswithcentralnervoussystemactivity 1.1.2.2.1. Cardiovascularactivity The 5(4’methyl1,1’biphenyl2yl)tetrazole subunit has been used as a carboxylicacidmimicintheclassofsocalledsartanderivatives(Figure8). II(AII)istheoctapeptideresponsiblefortheperipheraleffectsoftherenninangiotensin system 43,44,45,46,47 which include the regulation of blood pressure and volume homeostasis.Lorsartanwasthefirstnonpeptideangiotensinreceptorantagonisttoappear onthemarket 41,42,44,48followedbyValsartan(Figure8).The5(4’methyl1,1’biphenyl 2yl)1Htetrazole subunit has become ubiquitous in the most potent and bioavailable antagonistsdisclosedtodate 31 .

Cl N O OH N NH N N O N NH OH N N N N

Losartan Valsartan (MSD) (Novartis) Figure 8. Sartans

6 Chapter1Introduction

1.1.3. Synthesis of Tetrazoles 5Substituted tetrazoles are usually obtained by the addition of azide to organicnitrilesandmanymethodsarereportedintheliterature 1,8,49 ,50,51 .Unfortunately, eachofthoseprotocolssuffersfromsomedisadvantages:theuseofbothtoxicmetalsand expensivereagents,drasticreactionconditions,watersensitivityandpossiblepresenceof dangeroushydrazoicacidorotherexplosivesublimates. TheHuisgen1,3dipolarcycloaddition TheHuisgen1,3dipolarcycloadditionisthereactionoftoazidestoform 1,4disubsituted1,2,3triazoles (Scheme 2)9. A notable variant of the Huisgen cycloadditionisthecopper(I) catalyzedvariant, in which organic azides and terminal alkynes are united to afford 1,4regioisomers of 1,2,3triazoles as sole products 52 . Huisgenwasthefirsttounderstandthescopeofthisorganicreaction.Thiscycloaddition isconsidered thecreamofthecrop of“clickchemistry”.Theazideandfunctional groupsarelargelyinerttowardsbiologicalmoleculesandaqueousenvironments,which allowstheuseoftheHuisgen1,3dipolarcycloadditionintargetguidedsynthesis 53 and activitybasedproteinprofiling 54 .Theresultingtriazolehassimilaritiestotheubiquitous amidemoietyfoundinnature,butunlikeamides,isnotsusceptibletocleavage.

R' N N Cu(I) R N + R' N N N R

Scheme 2. Huisgen1,3dipolarcycloadditionofalkynestoazides 1.1.3.1. Synthesisoftetrazolesfromnitrileswithazides

Tetrazolesaregenerallypreparedbythereactionofahydrazoicacidsourcewitha nitrile,inaninertsolventathightemperatures.Theyfallintothreemaincategories:those thatmakeuseoftinorsiliconazides,thosethatusestrongLewisacids 55,56 andthosethat areruninacidicmedia57 .Thefewmethodsthatseektoavoidhydrazoicacidliberation duringthereactionbyavoidingacidicconditions,requireaverylargeexcessofsodium azide58 .Inaddition,alloftheknownmethodsuseorganicsolvents,inparticular,dipolar

7 Chapter1Introduction aproticsolventssuchasDMF.Thisisoneofthesolventclassesthatprocesschemists wouldrathernotuse. Themechanismofthereactionofazidesaltstonitriles is different for different azide species 59,60,61 andseveralpossiblereactionpathwayscanbeenvisioned62,63,64 .

Neutralcycloaddition A [2+3]cycloadditionisthemostlikelypathwayforthebimolecularadditionof nonionic azides to nitriles 61 . In concerted cycloadditions, two different isomers of tetrazole, the 1,5 and the 2,5disubstituted, can be formed. Generally the TS1 is the preferredtransitionstateusingelectronwithdrawingsubstituentsR(Scheme3).

N = N N N N N 1,5tetrazole R N R N R' R' N N TS1 + N R' = R' R N R' N N N N N N 2,5tetrazole N R N R TS2 Scheme 3. Neutralcycloaddition Anionicmechanism InreactionswhereNaN 3 isaddedtonitrilesinaproticorganicsolvents,suchas dimethylformammide (DMF), it has been found that yields are generally lower and higher temperature are required 57,62 . In theses cases, there are two possible mechanisms, 61 either a direct [2+3] cycloaddition or a two stepmechanism sequence wherein the azide first nucleophilically attacks thenitrile,followedbyringclosure. In this context, Sharpless et al. havecalculatedthebarriersofcycloadditionofthe azide anion to nitrile 61 . As in the case of the neutral [2+3] cycloadditions, the barrier for anionic [2+3]cycloadditiondecreaseswithincreasingelectronwithdrawingpotentialof thesubstituentonthenitrile.Thegeometryofthetransitionstateofanionicreactionsis more asymmetric than for neutral reactions. The C nitrile Nazide distance is significantly shorter than the N nitrile Nazide distance. The difference grows with the electron withdrawingpotentialofthesubstituentandforverystrongelectronwithdrawinggroups likeRSO 2,anintermediatesuchasthatshowninFigure9couldbefound.Despitethe

8 Chapter1Introduction existenceofthisintermediateforthestronglyactivatednitriles,the G≠ofthetransition state for the ring closing turns out to be identical to the G≠ for concerted [2+3] transitionstate.Thetwopathwayshavethereforeessentiallythesamerate 61 . N N N+ R N Figure 9. Protoninvolvement Koldobskii et al .65 showed that protic ammonium salts of azide are competent dipoles;tetrabutylammoniumazidedoesnotwork.Whenaprotonisavailable,thenitrile isactivatedandthereactionissupposedtoproceedvia anintermediateinsteadofadirect [2+3]dipolarcycloaddition(Scheme4) 61 .

H N N N HN N N R'2NH N + N R N R N R N N H IntermediateP Scheme 4. 1.1.3.1.1. Hydrazoicacid The acid –catalysed cycloaddition between hydrazoic acid and nitriles has long beenoneofthemainroutesto5substitutedtetrazoles 8,66 .Thefirstmethodtoappearin 67 theliteraturewasthereactionofhydrazoicacid(HN 3)withorganiccyanidesin1932 . This process is generally thought to occur by a concerted 1,3dipolar cycloaddition mechanism,inwhichthenitrileactsasthedipolarophiletowardtheazide,whichserves asthe1,3dipolarspeciesinthecycloaddition.Protonationofthetetrazoliumanionupon workup provides the tetrazolic acid. In literature a twostep mechanism has also been reported 68 .Howeverthisstandardprocedureneedsthedirectadditionofalargeexcess ofdangerousandharmfulhydrazoicacid.Hydrazoicaciditselfispoisonous,extremely explosive,andhasalowboilingpoint(37°C).Notmanyorganicsolventsarestableat thehightemperaturesthatarenecessaryforthiscycloaddition(sometimesashighas130 °C),andforthisreasonDMFismostcommonlyusedforthispurpose1,29 .

9 Chapter1Introduction

1.1.3.1.2. Metalsaltmethodsusingsodiumazide 1.1.3.1.2.1.Ammoniumandtrialkylammoniumazides The reaction of nitriles with the ammonium and trialkyl ammonium azides in organic solvents such as dimethylformamide, has been found fifteen years ago by Lofquist and Finnegan 62 to be a general method to give good yields of 5substituted tetrazoles.Thereactiveazidespeciesispreparedinsitu byreactionofsodiumazideand the appropriate ammonium or trialkyl ammonium chloride (Scheme 5). The proposed mechanisminvolvesanucleophilicattackofazideiononthecarbonofthenitrilegroup, followedbyringclosureoftheiminoazidetoformthetetrazolering62 .Electronegative substitutiononthenitrileenhancestherateofthereaction.Thesolubilityoftheazidesalt also influences the rate of reaction. The ammonium azides are soluble in dimethylformamide.

N N N HN NH4N3 N DMF 100125°C,7h 75% 10 11 Scheme 5.Synthesisof5phenyltetrazolewithammoniumazide This methodology is not appropriate for the preparation of 5thiosubstituted tetrazoles becausetheyeasilyundergoirreversibledecompositiontohydrazoicacidandthiocyanate at or near their melting points, which are, in several cases, quite close to the reflux temperatureofDMF69 ;thereforeusinghightemperatureisnotadvisableinthesecases. In addition this protocol for the synthesis of tetrazole rings is accompanied by the 70 sublimation of explosive NH 4N3 . The sublimation of explosive NH 4N3 also occurs whenotheraproticsolventsinsteadoftheDMFareusedforthereaction. Bernstein and Vacek showed that a combination of sodium azide and triethylammonium chloride is an useful alternative to synthesize tetrazoles when N methylpyrrolidinone is used as a solvent instead of the DMF (shorter reaction times) (Scheme6)71 .DMFunderheatingandbasicconditionspartiallydecomposesandforms free nucleophilic amines which may react with starting nitriles which contain certain functionalgrups 71 .Analternativetoeliminatetheaminesourceswasfoundtobetheuse of1methyl2pyrrolidinoneassolvent.

10 Chapter1Introduction

CH3 H N O N . N Et3NHCl/ 150°C,34h N R N +NaN3 N R 4676% Scheme 6. Preparationof5substitutedtetrazoles Koguro etal .,reportedavariantbyusingtriethylaminehydrochlorideintoluene72 .

Inthisprocedure,theauthorsproposedthattheintermediatecomplex[Et 3NHN 3]isfirst + ionized as Et 3NH andN 3 ,then,eachofthesereactwiththetriplebondofthenitrile grouptoproduce 14 (Scheme7).Whenanaromaticsolventsuchastolueneisused,both thecationandtheanionarenotsolvated,andthereactionthusproceedssmoothly.

N N N toluene 3 N N N HCl N RC N +Et3NH N3 RC NH NEt3 80115°C N N R H R 130h NEt3 H 12 13 14 15 Scheme 7.Synthesisoftetrazoleswithtriethylammoniumazide

LeBlanc and Jursic recently reported a simple alternative for the method using sodium azide and ammonium chloride in DMF, by working under phase transfer conditions(PTC) (Scheme8) 73 .Hexadecyltrimethylammoniumbromidewasfoundtobe the most useful catalyst . The ratio of water and toluene as well as the reaction temperatureareimportantfactorstoobtainsatisfactoryyields.Thismethodologycanbea good alternative to the simple use of sodium azide and amonium chloride 69 for the preparation of 5alkylthio and 5arylthiotetrazoles, which are activators for RNA and DNAsynthesis.Howeverthisprocedurerequireslongreactiontimes,whichmakesan applicationinanindustrialscaleupimprobable.

1.2eqNaN3 NH N N 1.2eqNH4Cl N S 20mol%PTC S N Tol/Water1:2 65°C,86h 48% 16 17 Scheme 8.SynthesisoftetrazolesusingPTCconditions

1.1.3.1.2.2.NaN 3inthepresenceofLewisacid FinneganandLofquistreportedin1958thestudyofthetetrazoleformationinthe presenceofLewisacids62 .Theproposedmechanisminvolvesanucleophilicattackofthe 11 Chapter1Introduction azideiononthecarbonofnitrilegroup,followedbyringclosureoftheiminoazideto formthetetrazolering.Conditionswhichenhanceor favour a δ + charge on the nitrile carbon,suchasthecordinationofaLewisacid,increasetherateofthereaction(Scheme 9). H

: N N3 N R N: +BF3 R N:BF R 3 N N Scheme 9. TetrazoleformationinthepresenceofLewisacid NearlyfourdecadeslaterShechter etal. reportedthepreparationofafewsimple5 (hydroxyphenyl)tetrazoles by the addition of aryl nitriles with sodium azide in the presenceofborontrifluoride(Scheme10)74 .

N N N HO CN HO NaN BF N 3, 3 H DMF,reflux 88% 18 19

Scheme 10. PreparationoftetrazoleswithNaN 3inthepresenceofBF 3asLewisacid RecentlytheuseofaluminumchlorideasaLewisacidcatalystforthegenerationof aliphatic tetrazoles with a relatively low yield has been reported 75 . The crude was protectedasaresinboundtritylderivatives,whichwassubjectedtoalkylationfollowed bycleavagefromthesolidsupporttogeneratethedesiredtetrazolederivatives(Scheme 11).

Ph N N Ph N N NaN AlCl Cl n CN 3, 3 Cl n N Cl Cl n N N N THF,0°C H Et3N,DMF,r.t. 3371%

N N 1.ArOH,KI,60°C N N Cl n N K CO NMP 2 3, ArO n NH N N 2.TFA,CH2Cl2,r.t. 2499% Scheme 11. TetrazoleringformationwithNaN 3inthepresenceofAlCl 3asLewisacid 1.1.3.1.3. Sharplessmethodology:TheClickChemistryapproach TheClickChemistry Theterm“ClickChemistry“wasintroducedbyK.BarrySharplessetal. in2001 76,77 . “Click chemistry” is a modular approach that uses only practical and reliable 12 Chapter1Introduction reactionswithreadilyavailablereagents.Inseveralinstanceswateristheidealreaction solvent,providingthebestyieldsandhighestrates.Reaction workupandpurification usesbenignsolventsandavoidschromatography. Oneofthe“click approaches”isthecopper(I)catalyzed1,2,3triazoleformationfrom azidesandterminalacetylenesasaparticularlypowerfullinkingreaction,duetoitshigh degreeofreliabilityandcompletespecificityofthereactants.

Synthesisoftetrazolerings Sharpless etal .havereportedasimpleprotocolfortransformingawidevarietyof nitriles into the corresponding 1 Htetrazoles, by using NaN 3 in the presence of Zn(II) saltsinaqueousconditions(Scheme12) 61,63,78,79 .Thisprocedureshowsagoodlevelof generality, however, in the case of sterically hindered aromatic or alkyl inactivated nitriles, high temperatures (140 170 °C) are required. They have not been able to achievesignificantconversionsofaromaticnitrilesbearingansp 3hybridizedsubstituent inthe ortho position 63 .

Whenthereactionisrunataconcentrationof1Minsodiumazideand1MofZnBr 2a smallamountofhydrazoicacidintheheadspaceabovethereactionmixtureisliberated 78 .Evenat100°C,releaseofhydrazoicacidisminimal.Theexactroleofisnotyet clear 78 .Themechanismofthereactionhasbeencontroversial,withevidencesupporting bothatwostepmechanismandaconcerted[2+3]cycloaddition 61 . 1.1eqNaN 3 R N 1eqZnBr2 R CN N NH N i-PrOH/H2O reflux Scheme 12. TetrazoleringformationwiththeSharplessmethodology Thechiefcompetingreactionishydrolysisofthenitriletoprimaryamide;thereforewith electronpoor nitriles, lowering the amount of zinc avoids significant formation of the amidebyproduct.Otherzincsaltssuchperchlorateandtriflatealsowork;Zincbromideis thebestcompromisebetweencost,selectivityandreactivity.

1.1.3.1.4. Tinandsiliconmediatedmethods Someofthenewermethodsforthepreparationof5substitutedtetrazolesinvolve thereactionofalkylorarylnitrileswithsaferorganicsolubleazidessuchastrialkyltin azideortrimethylsilylazide29,1,80 .

13 Chapter1Introduction

1.1.3.1.4.1.Trialkyltinazides Methods for the tetrazole formation from organicsoluble reagents trimethylstannyl 81 ortrinbutylstannylazides 48,82 aremorecommonlyutilizedinlarger scalethanthesodiumazide/ammoniumsaltprotocols. Duncia and Carini, 44 of DuPont, looking for a good alternative method to synthesize sartans (Section 1.1.2.2.1.) 83 and using the biphenylnitrile 20 as a model system, discoveredthatbothtrimethyland nbutyltinazidesreactformingthetrialkltintetrazole adducts. However, removal and disposal of stoichiometric (highly toxic) residual organotinattheendofthereactionisamajordrawbackofthismethodology 48 . Trialkyltin azide is typicallyprepared insitu from trialkyl chloride (volatile and toxic) andsodiumazide,andhasbeenshowntobeeffectiveinthesynthesisof5substituted tetrazoles.Betteryieldsaregenerallyobtainedcomparedtosiliconbasedazidereagents. Thetreatmentofthestartingnitrile 20withtrimethylortrinbutyltinazide48intoluene or xylene at refluxing gives the corresponding tetrazole. The insoluble tintetrazole adduct 21precipitatesandwhenthereactionisfinished,theproductissimplyfilteredand dried.Subsequentacidhydrolysisyieldsthedesiredtetrazole(Scheme13).

SnMe3 N N N NH N Me Me N N Me N N

+ Me3SnN3,Tol,24h, H 85% 89%

20 21 22 Scheme 13. Synthesisofsartansprecursorusingtrimethyltinazide Highertemperatureand/orlongerreactiontimearerequiredusingtrinbutyltinreagent becauseofthemorebulkycharacter.Analternativetoremovethetributyltinmoiety,isto substitutethetingroupwithatritylprotectinggroup. 1.1.3.1.4.2.Trimethylsilylazide

Trimethylsilyl azide has been reported to react withnitrilestogive5substituted tetrazoles 84 .Itisanattractiveazidesourceduetoitsstabilityandrelativelyhighboiling point(105°C).However,benzonitrilereactswithonlyverylowconversionand ortho substitutedbenzontrilesfailtoundergothereaction. 14 Chapter1Introduction

TMSN 3undersolventfreeconditions 85 Pizzo et al. recently reported the use of TMSN 3 in solvent free conditions . Catalytic amount of tetrabutylammonium fluoride (TBAF) is used for the anionic activationofthesiliconnitrogenbond 86 .TheuseofTBAFhastheadvantagetoactivate the azide nucleophile and deprotects the Nsilylated products. This catalytic system is relativelyefficientandawiderangeoftetrazolesareobtainedin1to48hoursat85to 120°C(Scheme14).

1.5eqTMSN3 N CN NH 0.5eqTBAF3H2O N N 120°C,24h 23 24

Scheme 14. SynthesisoftetrazoleswithTMSN 3 inthepresenceofTBAF

TMSN 3inthepresenceofdibutyltinoxideascatalyst Theuseoftrimethlsilylazideinthepresenceofa catalytic amount of dibutyltin oxidetoconvertnitrilesintotetrazoleshasbeendeveloped(Scheme15) 43,87,88 . N N CN N NH Br TMSN3,(CH3)2SnO Br PhCH3,93°C 80% 25 26

Scheme 15. SynthesisoftetrazoleswithTMSN 3 inthepresenceofdibutyltinoxideascatalyst

Inthegeneralprocedurethenitrileistreatedintolueneathightemperaturefor24to72 hours,with2equivalentsoftrimethylsilylazideand0.1equivalentofdibutyltinoxideto providethedesiredtetrazole.Howeverinsomecases,fullconversionisobtainedusing intotal1equivoftinreagentad5equivof(TMS)N 3at100°C(Scheme15). Thecatalyticcycleinvolvestheformationinsitu ofthedialkyl( Otrimethylsilyl) azidostannylhydrin 28 which reacts with the nitrile to give the N(dialkyl (trimethylsloxy)stannyl)tetrazole 29 (Scheme 16). The intermediate N(dialkyl (trimethylsoloxy)stanyl)tetrazole 29 breaksdownintothe N(trimethylsilyl)tetrazole 30 andthedialkyltinoxide 27 thatcarriesonthecatalyticcycle(Scheme16)43 .

15 Chapter1Introduction

R' CN

SiMe N 3 Me3SiO N3 R' N O Sn N N Sn R R R R 6328 29 64

SiMe3 O ' N Me SiN R N 3 3 Sn R R N N 2762 6530 Scheme 16. Thetrimethylsilylazideastheazidesourcegreatlyreducesthehazardposedby in situ generation of hydrazoic acid and eliminates the possibility of the exposure to the toxictrialkyltinchlorideusedforthepreparationoftrialkyltinazide.However,atleast twoequivalentsoftrimethylsilylazidearerequiredforthereactiontoruntocompletion anditisstilldifficulttoseparatethedesiredproductfromthestannanecompounds.In additionthestannanecompoundsusedinthesereactionsaregenerallyhighlytoxicand requireadditionaltreatmentofthewastewater.

TMSN 3inthepresenceoftrimethylaluminium AmethodusingtrimethylsilylazidewasrecentlydescribedbyLillychemistsHuff and Staszak, 55 who showed that an equimolar mixture of trimethylaluminum and trimethylsilyl azide in hot toluene is an efficient combination to prepare 5substituted tetrazoles (Scheme 17). However, highly hindered nitriles resulted in poor conversion andtheresultsaresimilartothoseobtainedusing nBu 3SnN 3. RoederandDehnicke 89 reportedthattrimethylaluminumwhentreatedwithtrimethylsilyl azide forms a 1 to 1 complex at temperatures below 120 °C which reacts to give

(Me 2AlN 3)3 only at higher temperature. Therefore, it is likely that trimethylaluminum simplyactsasaLewisacidunderthesereactionsanddoesnotform(Me 2AlN 3)2. H N CN N TMSN3,(CH3)3Al N N N N Toluene,80°C 87% 3172 3273

Scheme 17. SynthesisoftetrazoleswithTMSN 3inthepresenceofMe 3Al

16 Chapter1Introduction

TMSN 3inthepresenceofPd(PPh 3)4:Yamamotomethodology Yamamoto et al . reported the synthesis of 2allyltetrazoles starting from cyano compounds via thepalladiumcatalyzedthreecomponentscoupling reaction 90 . The N silyltetrazole34 ,derivedfromthecycloadditionreacts insitu withtheπallylpalladium speciestoprovidethe N allylatedproduct 34(Scheme18).

N N N N N NC CN NC N NC TMSN3,Pd(PPh3)4 N N + + OAc THF,60°C Si(CH3)3 PdL Ph 93% Ph n Ph 33 34 35 74 75 76 Scheme 18.Preparationof2,5disubstitutedtetrazoles 1.1.3.1.5. Aluminumazide AluminumazideshavealreadybeenreportedbyWibergandMichaudina1957 91 Germanpatent .TheAl(N 3)3canbepreparedbytreatmentofAlCl 3with3equivalents 91,92 of NaN 3 in THF at reflux . However, using aluminum azide for the preparation of tetrazoles, two moles of HN 3 are formed for every mole of product during the acidic quench of the reaction. The mechanism proposed proceeds through intramolecular deliveryofN 3 fromAl(N 3)3complexedwiththenitrile(Scheme19). H N Al(N3)3 N R CN R THF,80°C N N

R N: (N3)2Al Al(N3)2 N Al(N ) 3 2 N N N R R N N N N N N N

Scheme 19.ProposedmechanismfortthetetrazoleformationwithAl(N 3)3 1.1.3.1.6. Synthesisof5substitutedtetrazolesusingZn/Alhydrotalcitecatalyst Katam and et al. reported an alternative methods to prepare tetrazole rings using Zn/Al hydrotalcite as heterogeneous catalyst 93 (Scheme 20). The anionic [ZnAlCl], with [Zn]/[Al] ratio of 3 to 1, is synthesized by coprecipitation at pH 9. This methodologyrequiresrelativehightemperatureandlongreactiontimesinDMF,withthe useofZnwhichrequiresadditionaltreatmentofthewastewater.

17 Chapter1Introduction

N NaN N CN 3 N Zn/Alhydrotalcite N R R H DMF 120130°C,12h 6991% Scheme 20.Zn/Alhydrotalcitecatalyzedsynthesisof5substitutedtetrazoles 1.1.3.2. Synthesisoftetrazoleswithothermethods Severalreportshaveappearedwhichmakeuseofprecursorsotherthannitrilesto prepare5substituted1Htetrazoles.Ashortoverviewofthesemethodsaregivenherein. 1.1.3.2.1. From N(cyanoethyl)amides N(Cyanoethyl)amides36 reactswithtrimethylsilylazidetoprovide1Nprotected tetrazole 38 (Scheme 21). Removal of the Ncyanoethyl moiety of 38 with aqueous sodiumhydroxide,followedbyacidification,ledtothefreetetrazole 39 inrelativegood overallyield(Scheme21) 8.

CN

BocHN BocHN BocHN BocHN H H H N TMSN3,DEAD N 1.NaOH(1N) N Ph N Ph Ph Ph N N Ph3P,THF O N 2.HCl(1N) N O 3 N N 65%overall N CN Ph3P CN 36 37 38 39 Scheme 21. 1.1.3.2.2. Fromoximesalts Anusefulprocessforthepreparationof5substitutedtetrazolesisthereactionof oxime salt 41 with sodium azide developed by Antonowa and Hauptmann 94 . In this procedure, benzaldehyde 40 may be directly transformed into the corresponding aryl tetrazole 42 (Scheme22).

H OH N TsO N N CHO N 1.NH2OH,Pyridine H 3.NaN3,DMF N H 2.TsOH 130°C,4d 35% 40 41 42 Scheme 22. Synthesisoftetrazolesfromoximesalts 18 Chapter1Introduction

1.1.3.2.3. Fromimidatesaltandimidoylchlorides Zardetal. proposedanalternativemethodtoprepare5substitutedtetrazolesfrom imidatesaltswhichdoesnotinvolveazides95 .Thereactionofimidates 43with Nformyl isknowntogive1,2,4triazoles via theintermediate Nformylamidrazones 44 . However,byworkingatlowtemperature(0°C)thetriazoleformationcanbeavoided andindeed,inthepresenceofsodiumanddilutedHCl,thedesiredtetrazole 47can beisolatedingoodyields(Scheme23).Thetriazole 46 canbeisolatedonlyuponheating inxylene.

OEt NH2 N NaNO /HCl N H2NNHCHO NHCHO 2 N CHO Ar NH X Ar N 2 Ar N 43 44 45

Xylene/ (Ar=Ph)

N N N N NH Ar N Ar N H 46 47 Scheme 23. Fewyearslater,Zard96 proposedamethodtopreparedisubstitutedtetrazoles.The reactionofimidoylchloride 48 withsodiumazideprovidesthe5chloromethyltetrazole 49 which is then treated with potassium Oethyl xanthate in acetone to give the correspondingtetrazolexanthates 50 (Scheme24). S OEt Cl S

N Cl NaN3 N EtOCSSK N R N R N R N Acetone N CH2Cl N N 48 49 50 Scheme 24. Koldobskii etal. proposedthesynthesisof1,5disubstitutedtetrazolesunderphase transfer conditions from imidoyl chlorides by treatment with sodium azide (Scheme 25)97 .

R2 CH Cl /H O/NaN R1 2 2 2 3 N N N R tetrabutylammoniumbromide R 2 1 N Cl 20°C,1h,3695% N Scheme 25. Synthesisoftetrazolesfromimidoylchlorides 19 Chapter1Introduction

1.1.4. Reactivity of Tetrazoles Reactivity of 5substituted tetrazoles permits to classify them as aromatic compounds.Theringundergoeselectrophilicsubstitution,isstabletowardoxidationand, in general, the tetrazole ring remains unchanged during reduction of susceptible substituents1.

1.1.4.1. Reactionwithelectrophiles

Peculiaritiesoftheπelectronsystemofthetetrazoleringistheavailabilityoflone pairs of the nitrogens which allow these heteroatoms to be attacked by various electrophilicreagents1,98 .Asidefromthevarietyofalkylsubstituents,manyothergroups can be introduced including acyl, imidoyl, silyl, phosphoryl, sulfonyl, aryl, vinyl and aminofunctions98 . Themostcommonnucleophiletype reactionsatthetetrazole nitrogens arise from the acidityoftheringNHbond(Section1.1.1.2.).Thetetrazolicacidsformstableanions when treated with bases and are more reactive than neutral tetrazoles towards electrophilesandalkylatingagents (Scheme26)98 .Theproductisamixtureof1 Nand 2Nalkylisomers,therelativeproportionsofwhichdependupontheconditionsofthe alkylation, the steric requirements of the alkylating agent and the influence of the 5 substituent.Ingeneral,electrondonatingsubstituentsatC5tendtofavor2 Nalkylation. AmoreexhaustivediscussionofthistopicisgiveninChapter2.

R' H R N R N R N R N R N OH R'X N NH N N + N R' N N N N N N N N N N

R' R N R N N N R' N N N N "R R" Scheme 26. Reactionswithelectrophiles 1.1.4.1.1. Alkylationoftetrazolateanionsalts Metalsaltsof5substitutedtetrazolesundergotoalkylationonheatingwithalkyl halidesinawiderangeofsolvents.Theproductsareamixtureof5substituted1 Nand 2Nalkyltetrazoles(Scheme27) 1. 20 Chapter1Introduction

R N R N R N R'X N M N + N R' N N N N R' N N Scheme 27.Alkylationtotetrazolestoformamixtureof1,5and2,5disubstittedtetrazoles 1.1.4.1.2. Acylationandalkylationofneutraltetrazoles There are a variety of electrophilic substitutions on 5substituted tetrazoles with reagentssuchashydrazonoylhalides,electrondeficientvinylsystemsandacylhalides49 .

ThesereactionsarecarriedoutinthepresenceofexcessEt 3Nusedtopromotelossof halide or hydrogen halide (generating nitrilimines or nitrile oxides) and involve the tetrazolateanionasthereactivetetrazolespecies1.

Michaelreaction The Michael reactions of 5substituted tetrazoles with electrondeficient vinyl systems givethe2alkylatedproductsinyieldsofabout5080% 1(Scheme28). R R R N Z N N N N N N + HN N N N N Z Z Scheme 28.Michaelreactionsof5substitutedtetrazoles Acylation Electrophilessuchasacylhalidesandimidoylhalidesattackthe5substitutedtetrazole ringattheN2positionwhichcangiveafterthermaldecompositiontheHuisgenproduct (Scheme29). R' X H N N N N R' R' N N N R'CXCl N N 2 RC N N RC N N N N R R' R R X X X X=O,S,N Scheme 29.AcylationoftetrazolesfollowedbythermaldecompositionandHuisgenreaction

21 Chapter1Introduction

1.1.5. The Chemistry of the Cyano Group 1.1.5.1. Introduction

Nitrilesareveryimportantintermediatesinsyntheticorganicchemistry 99,100 .They arealsoofconsiderableindustrialimportanceasintegralpartofdyes,herbicides,natural products,agrochemicalsandnewbiologicalactiveagents. 1.1.5.1.1. History Hydrogencyanidewasdiscoveredin1782byCarlScheele,whowasinvestigating thedyePrussianBlueorBerlinerBlau,asitwasknownintheGermanspeakingworld. Mixingthedyewithanacidandheatinggavehimaflammablegasthatdissolvedwellin water, producing an acidic solution. Logically enough, he called his discovery Berlin Blausäure(Prussicacid).Scheele'sdeathin1786is sometimes attributed to accidental poisoningbyhydrogencyanide.J.L.GayLussacwasthefirsttopreparethepureacidin 1811 and Friedrich Wöhler and Justus von Liebig were the first to prepare the first nitrilesbenzoylcyanideandbenzonitrilein1832. 1.1.5.2. Chemical&Physicalproperties

Thechemicalandphysicalpropertiesofnitrilesareinthissectionbrieflydiscussed. ThecyanideionCN isisoelectronicwithcarbonmonoxideanddinitrogenand,because ofthehighlyelectronegativenitrogen,theC≡Nbondishighlypolar,resultinginhigh molecular dipole moments 99 . Nitriles, therefore, have strong permanent dipoledipole attractions as well as van der Waals dispersion forces between the molecules. Hence, nitrileshavehigherboilingpointsthanwouldotherwisebeexpectedfromtheirmolecular weights. nitriles with α typically have p Ka ~ 25, but the acidity increasesifmorethanonecyanogroupispresentasseeninthecaseofthemalononitrile

(p Ka11.0). Nitriles are important laboratory and industrial solvents because of their characteristic physical properties. The common solvent acetonitrile can be taken as an example.Ithasahighboilingpointforatwocarbonsystem(bp81.6°C/760Torr),due to the above mentioned large dipole moment (3.9 D) leading to intermolecular association. 22 Chapter1Introduction

On account of their σdonating, πaccepting and potential πdonating properties, nitrilesactasligandsincoordinationandorganometalliccompounds,besidesthecyanide anion(Figure10).

LnM N MLn LnM N R LnM N R R σbondingπbondingσπbonding

Figure 10.Ligandbindingmodelsofnitriles

Theabilityofthecyanogrouptoactasaligandhasbeenexploitedtoformliquid– crystalline metal complexes. These are found to have enhance electronic polarizabilities 101 (Figure11). Cl N M N Cl Figure 11.Metalcomplexliquidcrystalswithnitrileligands 1.1.5.3. Biologicalactivity

Although nitriles (organic cyanides) have sometimes been stigmatized as poisonous,comparedtosimplecyanidesaltssuchassodiumandpotassiumcyanide,they areordinarilymuchlesstoxic.Theparentcompound,hydrogencyanide cancauserapid death in humans due to metabolic asphyxiation. Death can occur within seconds or minutesoftheinhalationofhighconcentrationsofhydrogencyanidegas.Arecentstudy reportsanestimatedLC(50)inhumansof270ppmfora68minutesexposure102 . Organiccompoundspossessingacyanogroupoccurinnature,includingcompound 51 , whichhasantibioticactivityandcompound 52 whichisanantiviralagentisolatedfroma Verongida sponge(Figure12). OH OH NC O H O HO

CN H

51 119 12052 Figure 12.Naturallyoccurringcompoundscontainingacyanogroup

23 Chapter1Introduction

Compoundscontainingacyanogrouphaveapplicationsinmedicinalchemistryandsome ofthemarealsoavailableonthemarket.AselectionofdrugsisgiveninFigure13. NC CN Me MeO N OMe N N CN N MeO OMe 122 54 53121 Letrozole Verapamil Femara(Novartis) antiarrhythmicand antineoplastic,aromataseinhibitor vasodilatatoragent

OH N CN H N N N O NC

55123 124 56 Vildagliptin Fadrozole antidiabeticagent Arensin(CibaGeigy) (Novartis) antineoplastic,nonsteroidal aromataseinhibitor Figure 13. Selectedcyanosubstitutedpharmaceuticals 1.1.5.4. Preparationofnitriles

The development of new methods for the synthesis of nitriles is important in organicsynthesis,sincenitrilesareusefulasintermediatesforthepreparationofamines, tetrazoles and other functional groups. The synthetic methods for the preparation of nitrilescanberelatedmainlytofourreactiontype:addition,substitution,eliminationand conversionofothernitriles103,104 . 1.1.5.4.1. Preparationofnitrilesbyadditionofhydrogencyanide Severalmethodsforthepreparationofnitrilesbyadditionofhydrogencyanideto unsaturatedcompoundshavebeendeveloped 104a includingtheadditionofHCNinthe presenceofdicobaltoctacarbonyl, 105nickelcatalysts, 106 andpalladiumcatalysts 107 .

1.1.5.4.2. Preparationofalkylnitrilesbysubstitution Oneofthemostgeneralmethodsforthesynthesisofnitrilesisadirectnucleophilic substitution of alkyl halides with inorganic cyanides 104a (Scheme 30). The classical 24 Chapter1Introduction conditionsinvolveheatingahalidewithacyanidesaltinaqueousalcoholsolutionorin aprotic polar solvents such as DMSO (Kolbe nitrile synthesis) (Scheme 31) 108 . In analogy,theuseofmetalthiocyanatessuchasKSCNinanucleophilicsubstitutionwith organichalidesisageneralproceduretointroducethethiocyanategroupintoamolecule 109 .

K KX NC R X R CN

Scheme 30.MechanismoftheKolbenitrilesynthesis

DMSO Br +NaCN CN 90160°C 93% Scheme 31.Synthesisofnitriles 1.1.5.4.3. Preparationofarylnitriles Aryl nitriles can be prepared by the cyanation of aryl halides with an excess of copper(I) cyanide in a polar highboiling solvent such as DMF 110 , nitrobenzene, or pyridine at reflux temperature (Rosenmundvon Braun Reaction) 111 . The mechanism probablyinvolvestheformationofaCu(III)speciesthroughoxidativeadditionofthe aryl halide at the Cu(I). Subsequent reductive elimination then leads to the product (Scheme32).

Ar oxidative reductiveelimination Ar X +CuCN Cu Ar CN addition NC X CuX

CH3 CH3 Br CuCN CN DMF 131 57 13258 Scheme 32. Synthesisofarylnitrilescatalyzedbycoppersalts Recently alternative procedures for the synthesis of aryl nitriles are reported, 112 including the use of less toxic cyanide source such as K 4[Fe(CN) 6] , or palladium catalysis(Scheme33) 113 .

Cl Pd(OAc)2,dpppe CN TMEDA +KCN toluene F C F3C 140°C,16h 3 133 59 134 60 Scheme 33. Cyanationofarylchlorides 25 Chapter1Introduction

1.1.5.4.3.1.Preparationofnitrilesbydehydration Inthelast40 years,anumberofefficientmethodshavebeendevelopedforthe dehydrationofoximesandamidestonitrilesandthesearchforbetterreagentsisstillon going104,114,115 . 116 117 Numerous reagents such as Burgess reagent, PPh 3 / CCl 4, trifluoroacetic or 118,119 120 acetic anhydride and anhydrous pyridine, alkyl cyanoformates, aluminum , 121 silica gel, 122 tetrachloropyridine, 123 phthalic anhydride, 124 etc. 125 have been developed. In addition Vilsmeier reagent, Propsal, cyanurchloride and N,N’ carbonyl diimidazole(DCI)aresomeexampleswhichfindanindustrialapplication. The usefulness of this synthetic approach to nitriles, directly from aldehydes, is demonstrated in the onepot synthesis of carbonitrile derivative 63 from 2 hydroxyacetophenone 61 . Compounds 61 are first subjected to the VilsmeierHaack reaction to form aldehyde 62 in situ . Treatment of this mixture with hydroxylamine hydrochlorideprovidesthedesirednitriles 63 (Scheme34)126 .

O O O O 1.DMF,POCl3,0°Ctor.t. CHO CN . N R 2.NH2OHHCl,DMF,r.t.,34h R R OH R O O OH O 61 62 63 Scheme 34. Onepotsynthesisof4oxo4H1benzopyran3carbonitriles Afurthermethodforthepreparationofnitrilesfromprimaryamidesutilizesthe methyl (carboxysulfamoyl) triethylammonium hydroxide inner salt (Burgess reagent) 127,128 .Themechanismofthereactioninvolvesformationofthesulfonateesterfromthe enolateformoftheamidefollowedby syn elimination(Scheme35).

OO S CO CH OH O O N 2 3 R CN R NH R NH2 R N H Scheme 35.ConversionofprimaryamidesintonitrilesbyusingtheBurgessreagent 1.1.5.4.4. Preparationofnitrilesfromnitroalkanes Carreira etal. reportedaconvenientprotocolforthesynthesisofopticallyactive aldoximesandnitrilesstartingfromchiralnitroalkanes 129 .Thetreatmentofthestarting nitrocompoundswithbenzylbromide,KOHand nBu 4NIfollowedbyadditionofSOCl 2 26 Chapter1Introduction leadsdirectlytonitrilesinrelativegoodyieldswithoutlossofopticalactivity(Scheme 36). NO 2 CN

1.BnBr,KOH,nBu4NI,THF

2.SOCl2,NEt3,THF 14164 7273% 14265 Scheme 36. Transformationofopticallyactivenitroalkanesintonitrilesinaonepotprocedure 1.1.5.4.5. Preparationofnitrilesfromhydrazones Several procedure has been developed for the preparation of nitriles from hydrazones, including oxidative cleavage of dimethylhydrazone of aldehydes with magnesium monoperoxyphthalate hexahydrate (MMPP) 104b,130 and microwaveassisted solventfreeoxidativecleavageusingoxonewithwetalumina131 . A convenient procedure to form nitriles under mildly basic conditions is the treatmentofdimethylhydrazoneswithexcessofmethyliodidefollowedbyreactionwith DBU(Scheme37)132 .

OMe

N N 1.MeI,THF,6h 2.DBU,0°C,3h H CN 67144 14366 Scheme 37. Synthesisofnitrilesfromhydrazoneofaldehydes 1.1.5.5. Reactivityofnitriles

Theimportanceofnitrilesasintermediatesinorganicsynthesisiswellestablished 100,104a. However nitriles are relatively unreactive in comparison to other unsaturated organonitrogencompounds.Aclassicexampleisacetonitrile,commonlyemployedasa solventinavarietyofreactions.Thelowreactivityofnitrilesisattributedtothelow basicityofthe sp hybridisednitrogenatom. Nitriles typically undergo nucleophilic additions and the chemistry of the nitrile functionalgroup,C≡N,isverysimilartothatofthe carbonyl, C=O of aldehydes and ketones. 27 Chapter1Introduction

1.1.5.5.1. Hydrationofnitrilestoformprimaryamides Nitrilescanbeconvertedtothecorrespondingprimaryamides.Severalmethodshas been developed including the application enzymatic reactions 133a, catalytic hydration with manganese dioxide on silica gel, 133b alkaline solution of peroxide, microwave irradiationwithsodiumperboratetetrahydrateinamixtureofwater/ 134 . Nitriles are activated by lowvalent ruthenium complexes and undergo reactions withnucleophilesunderneutralconditions(Scheme38) 104a,135 .

O RuH2(PPh3)4cat. RCN+H2O R NH2 Scheme 38. Catalytichydrationofnitrilesunderneutralconditions 1.1.5.5.2. Hydrolysisofnitrilestocarboxylicacids Carboxylic acidscanbepreparedbyhydrolysisofnitriles. The reaction requires strongacid( e.g. H 2SO 4)orstrongbase( e.g. NaOH)andheat. 1.1.5.5.3. Reductionofnitrilestoprimaryamines Nitrilescanbeconvertedtothecorrespondingprimaryaminesby hydrogenation. 136 SeveralcatalystscanbeusedincludingRhAlO 3inethanol ,nickelcatalysts such as Raney Nickel, NiAlNaOH, palladium catalysts, BH 3, NaBH 4/AlCl 3, LiAlH 4 amongothers(Scheme39)104a. H ,Cat. RCN 2 RCH NH 2 2 Scheme 39. Reductionofnitrilestoamines 1.1.5.5.4. Pinnerreaction The Pinner reaction is the partial solvolysis of a nitrile to yield an iminoether. TreatmentofthenitrilewithgaseousHClinamixtureofanhydrouschloroformandan alcoholproducestheiminoetherhydrochloride.ThesesaltsareknownasPinnersaltsand mayreactfurtherwithvariousnucleophiles(Scheme40) 137 .

NH2 Cl NH HCl R'OH K2CO3 R N R N H Cl R R OR' OR' Scheme 40. Synthesisofiminoethers 28 Chapter1Introduction

1.1.5.5.5. Ritterreaction Nitriles are converted to the corrsponding Nalkyl amides via the Ritter reaction usingvariousalkylatingreagents,forexample,strongacidandisobutylene 138 (Scheme 41).Tertiaryalcohols,suchas tert butylacetate 139,140 ,reactwithnitrilesinthepresence ofstrongacidstoformamides via acarbocation.

1. O H2SO4 RN R N 2. H H2O Scheme 41. Ritterreaction

29 Chapter1Discussion

1.2. Application of Click Chemistry for a new Synthesis of 5-Substituted Tetrazoles from Organoaluminum Azides and Nitriles. Results and Discussion

Recentlytetrazolederivativeshaveattractedmuchattentionfortheuseasstarting materialsinfinechemicals(Section1.1).However,aversatilemethodforsynthesizing tetrazolesthroughasafeandsimplemanipulationhasnotbeendeveloped. In the course of our investigation into an alternative synthesis of sartan derivatives (Figure14),itbecameofinteresttofindanalternativesafeprocessforthepreparationof tetrazolesonanindustrialscale.

O OH

N O N NH N N

6 Figure 14. Valsartan(Novartis) We report here the discovery and development of a novel process for the efficient transformation of a wide variety of nitriles into the corresponding tetrazoles using dialkylaluminumazide.Wehavefoundthatorganicaluminumcompoundsareeffective azidesourcesforthedirectconversionofnitrilestotetrazoles(Scheme42)141,142 .

Toluene R2AlCl+NaN3 R2AlN3+NaCl 0°Ctor.t. 46h

N R2AlN3 NH R' C N R' Toluene N N 40to120°C Scheme 42.[2+3]Cycloadditionroutetotetrazoles

Dialkylaluminum azides can be prepared rapidly (Scheme 42) by the addition of an equimolecularamountofdialkylaluminumchloridetosodiumazideinanaproticorganic 30 Chapter1Discussion solventsuchastoluene,xyleneorhexane 143,144 . Thealkylresidue(R)canbebranched (isobutyl)orlinear(methylorethyl) 141,142 .Duringthecycloadditionnobyproducts areformedandthedesiredtetrazoleisproducedinhighyield.Theproductcaneasilybe isolatedinexcellentpuritywithasimpleworkupproedure.Althoughthemechanismis notyetunderstood,wesuggestthatthealuminumactsasa Lewisacid,activatingthe nitriletoazideaddition(Scheme43).

R' N R2Al NAlR2 N AlR2 N R' N N N R' N N N N N Scheme 43. Proposedtwostepmechanismfortheformationoftetrazoles

31 Chapter1Discussion

1.2.1. Dialkylaluminum azides 1.2.1.1.Introduction 1.2.1.1.1.Thedialkylaluminumazide

Thestructuresofthediethylaluminumanddimethylaluminumazidesinsolutionwere already investigated in the 1960s and determined as a trimer (R 2AlN 3)3 which form a 145 planarsixmemberringwithsymmetryD 3h (Figure15) . _ _ R R _ N N_ N Al N N N R Al Al R R=Me,Et R N R N _ N_ Figure 15. Trimericforminsolutionofdialkylaluminumazide 1.2.1.1.2.Thereactionsofthediethylaluminumazide Diethylaluminum azide is already known as an activated azide donor for the conversion of esters to acylazides 143 , ring opening of epoxyalcohols 146 and triazole formationfromα’aminoα,βunsaturatedketones 147 ,buthasneverbeenemployedinthe synthesisoftetrazoles. Conversionofesterstoacylazides Rawaland etal. reportedaonepotprocedurefortheconversionofesterstoacyl azides using diethylaluminum azide which combine into one reagent the nucleophilic azide unit with a highly oxophilic species 143 . The reaction is carried out at room temperature using two equivalents of diethylaluminum azide to form the desired acylazidewith6077%ofyield(Scheme44). O O Et2AlN3

R OMe Hexane R N3 r.t.,2d Scheme 44. Onepotprocedureforthesynthesisofacylazides 32 Chapter1Discussion

Ringopeningofepoxyalcohols Benedetti et al. reportedthereactionof2,3epoxyalcoholswithdiethylaluminum azidetogive3azido1,2diolsundermildcondition(Scheme45) 146a. Thereactionishighlyselective,leadingtotheformationofthecorrespondingazidodiols withinversionofconfigurationatC3.

R R OH O Et2AlN3 R' BocHN R' BocHN Toluene OH 78°Ctor.t.,17h OH N3

Scheme 45. Ringopeningof2,3epoxyalcoholswithEt 2AlN 3 Triazoleformationfromα’aminoα,βunsaturatedketones A few years later, Benedetti et al. reported the preparation of triazoles from α’ aminoα,βunsaturatedketonesusingdiethylaluminumazide(Scheme46) 147 .

Et2AlN3 R Toluene N N R' r.t.,148h NH Bn2N R O O R' Bn2NAlEt2 1041%

Scheme 46. Triazoleformationfromα’aminoα,βunsaturatedketoneswithEt 2AlN 3 1.2.1.2.Diethylaluminumazideformation

Dialkylaluminum azides can be prepared in a short time by addition of an equimolecularamountofdialkylaluminumchloridetosodiumazideinanaproticorganic solventsuchastoluene,xyleneorhexane.Accordingtoliteratureprocedures,143wehave prepared a variety of dialkylaluminum azides where the alkyl residue is branched (isobutyl)orlinear(methylorethyl)(Scheme47)141,142 . Toluene R2AlCl+NaN3 R2AlN3+NaCl 0°Ctor.t. 46h Scheme 47. Preparationofdialkylaluminumazides

33 Chapter1Discussion

1.2.1.2.1.FTIRStudy

The formation of Et 2AlN 3fromdiethylaluminumchloride andsodium azidewas followed by FTIR spectroscopy (Scheme 48, Figures 1618). A clear solution of diethylaluminumchloride(3.7ml,2.7Minxylene) was treated, at room temperature, withsodiumazide(0.65g)inoneportionandtheIRspectrameasuredeverytwominutes foraperiodof24hours.Duringthecourseof the reaction, the temperature was also monitoredinternally.

Xylene Et2AlCl+NaN3 Et2AlN3+NaCl r.t. Scheme 48. Formationofdiethylaluminumazide The temperature increased during the first 15 minutes, from 25 to 34 °C and then decreased again to 25 °C. After the addition of sodium azide, the IR spectra showed 1 immediately a strong signal at 2138 cm , typical of azides, ν asim (N 3), which increased duringthetime(Figure17).Thesodiumazideisalmostnotsolubleinasolventsuchas xyleneandisnotdetectedbyIR,thatmeansthatthisbandat2138cm 1correspondsto theformationofdiethylaluminumazideinsolution.Anothertypicalazidebandappears at1223cm 1,butthissignaldecreasedwithin67hoursandanewsignalat1269cm 1 145b appeared,whichcorrespondstothesymmetryvalenceνsim (N 3) . Inconclusion,from theFTIRpicturesseamsthatthediethylaluminumazideisimmediatelyformed,butthe equilibrium in solution, may be between the monomeric and the trimeric forms, is stabilizedwithin6–7hours(Figures17,18).

Figure 16. Proceedingofthereaction 34 Chapter1Discussion

Figure 17. Signalat2138cm 1(3Dpicture)

Figure 18. Decreaseofsignalat1223cm 1,increaseofsignalat1269cm 1(3Dpicture)

1.2.1.2.2.Differentialscanningcalorimetry(DSC) Thethermalbehaviorsofdiethylaluminumandtributyltin azides are indicatedby theDSCthermographsshowninFigure19and20respectively. All calorimetric scans wereperformedwiththeMettlerToledo821calorimeter.

Thediethylaluminumazide,warmedat4°C/min, startsanexothermicdecompositionat 220°C,withthemaximumpeakat278°C,andanonsetofthedecompositioninthe range of 230260 °C (Figure 19). In the case of dibutyltin azide, under the same conditions(4°C/min)theexothermicdecompositionstartsat180°Cwiththemaximum

35 Chapter1Discussion peakat288°Candanonsetofthedecompositionintherangeof230280°C(Figure20). Ofnote,theDSCofdiethylaluminmazideisbettercomparedtothatoftributyltinazide in terms of safety margins. The isothermal DSC was also measured at 150 °C for 12 hoursandthediethylaluminumazideshowsisstableundertheseconditions.

278 °C

Figure 19. DynamicDSCofEt 2AlN 3

288 °C

182 °C 247 °C

Figure 20. DynamicDSCof n-Bu 3SnN 3

36 Chapter1Discussion

1.2.2. Synthesis of Starting Materials 1.2.2.1. Alkylthiocyanates

Alkyl thiocyanates are important synthetic intermediates for the preparation of sulfurcontaining organic compounds. For introduction of a thiocyanate group into an organicmolecule,themostgeneralrouteistheuseofmetalthiocyanatessuchasKSCN inanucleophilicsubstitutionwithorganichalides (Section 1.1.5.4.2.) 109 . Nucleophilic substitutions are frequently carried out in two phases system using phase transfer catalysis(PTC) 148 tofacilitatethereactionbetweentheorganicreactantintheorganic phaseandthenucleophileintheaqueousphaseasaninorganicsalt.

Synthesisofbenzylthiocyanate(16)109 N Br H2O,Bu4NBr5mol% S +KSCN reflux,2h 97% 68 16 Scheme 49. Synthesisofbenzylthiocyanate Thesynthesisofbenzylhiocyanate 16 iscarriedoutat100°Cwithbenzylbromide andtwoequivalentsofaqueouspotassiumthiocynateinthepresenceofcatalyticamount oftetrabutylammoniumbromideasphasetransfercatalyst(5mol%)(Scheme49).The reaction is stirred for two hours and the product is isolated by extraction with ethyl acetate.Thecrudeproductispurificatedbybulbtobulbdistillationtogivetheproductas ayellowcrystallinematerialingoodyield(Experimentalpart,Section5.1).

Synthesisof4’thiocyanatomethylbiphenyl2carbonitrile(70)109 The4’thiocyanatomethylbiphenyl2carbonitrile 70ispreparedbyfollowingthe sameprocedureusedfor 16 underPTCconditions.

N N N Br S

Bu4NBr(5mol%) +KSCN Water,toluene reflux,4h 99% 69 70 Scheme 50. Synthesisof4’thiocyanatomethylbiphenyl2carbonitrile 37 Chapter1Discussion

1.2.2.2. Synthesisofnitrilederivativesfrommalononitrile Synthesisof4(2,2dicyanoethenyl)benzoicacidmethylester(73) N N O O ZnCl2 O N + MeO H 100°C,10min MeO N 94% 71 72 73 Scheme 51. Synthesisof4(2,2dicyanoethenyl)benzoicacidmethylester Followingtheprocedurereportedby Venkataratnam 149 thepreparationof 4(2,2 dicyanoethenyl)benzoic acid methyl ester 73 is carried out in the presence of zinc chlorideascatalystundersolventfreeconditions.Anequimolaramountofmalononitrile andmethyl4formylbenzoate,inthepresenceofzincchloride(10mol%)iswarmedat 100°Cfor15minutes.Theresultingheterogenicmixtureiscooledtoroomtemperature, washed with aqueous methanol (5 % solution) and filtered to give the pure desired product 73asayellowcrystallinematerialinverygoodyield.

2,2Dibenzylmalonitrile(74)

Forsymmetriccompounds,malononitrileundergoesdialkylationreadilybytreating with an appropriate alkylating agent 150 . The treatment of malononitrile with 2.4 equivalents of DBU and benzyl bromide in DMF at 80 °C for 8 hours (Scheme 52), followedbyasimpleworkupprocedure,affordsthedesired2,2dibenzylmalonitrile 74 with80%ofyield. N N N Br DBU + DMF 80°C,8h N

80% 71 68 74 Scheme 52. Synthesisof2,2dibenzylmalonitrile

38 Chapter1Discussion

1.2.3. Synthesis of Tetrazoles with Dialkylaluminum Azides Awidevarietyofnitrilederivativesinthepresenceofdifferentfunctionalgroups areefficiently convertedintothecorrespondingtetrazolesusingdialkylaluminumazide undermildconditions 141,142 . The reaction temperature depends on the reactivityof the substratesandcanbeselectedfromarangeof40°Cto120°C(Scheme53).Therateof the 1,3cycloaddition generally increases with increase in the electronwithdrawing characteristicsofthesubstituentR’inthenitrile.Thedialkylaluminumazideisprepared in situ by mixing, under argon or nitrogen in anhydrous conditions, equimolecular amountsofdialkylaluminumazideinsolution(inhexane,xyleneortoluene)andsolid sodiumazideat0°C(ExperimentalPart,Chapter5.1).Duringthereactionasuspension of NaCl is formed. The starting nitrile is then added to the azide mixture at room temperature.Inthecaseofreactivesubstratesuchascyanopyridinesandcyanopyrazines low temperatures are required. The reactions are followed by HPLC and TLC and generallywhentheanalysisshow>98%conversion,themixtureiscooledto0°Cand the excess of dialkylaluminum azide used (1 – 3 equivalents) is safely destroyed by quenching with sodium hydroxide and sodium nitrite, followed by acidification with hydrochloricacid,whichdestroysthehydrazoicacidformed(Scheme54).

Toluene R2AlCl+NaN3 R2AlN3+NaCl 0°Ctor.t. 46h

N R2AlN3 NH R' C N R' Toluene N N 40to120°C Scheme 53. [2+3]Cycloadditionroutetotetrazoles HNO 2+HN 3(g) →N 2(g) +N 2O (g) +H 2O

Scheme 54. Saferemovalofhydrazoicacidduringtheworkup Acidification (pH ≤ 2) removes the aluminum salts which are water soluble. Basic extractionofthetetrazolederivativeseparatesthestartingnitrileintotheorganicphase andthenreacidificationaffordsthepureproduct. Allthereactionconditionshereindescribedarenotoptimizedbecauseourscopewasfirst prove the compatibility and the application of the dialkylaluminum azide as an azide 39 Chapter1Discussion source which reacts with a wide variety of starting nitriles in thepresence of different functionalgroupstogivethecorrespondingtetrazolederivative. 1.2.3.1. Synthesis of tetrazoles in the presence of sulfonyl, thio, thiocyanofunctionalgroups

Entry T [°C] Time [h] Product Yield [%] N O O N S N N 1[a,b] 55 3 H 76*

75

N N N S N 2[a] 45 4.5 H 46 [b] 60 1 40 17

N N S N N [a] 55 24 H 83* 3 76

N NH N N N S [c] 4 r.t. 24 87

77

N NH N N N N NH N S

[c] 110 72 93 5

78 Table 1.Synthesisof5substitutedtetrazoles.

Notes:*Isolatedyieldaftercrystallization;[a]Et 2AlN 3(2.5Mintoluene);

[b] i-Bu 2AlN 3(1.8Mintoluene);[c]Et 2AlN 3(2.7Minxylene). Tetrazolederivativesinthepresenceofsulfonyl,thio,thiocyanofunctionalgroups are synthesized in good yields under mild reaction conditions (Table 1). The 5 phenylsulfonylmethyltetrazole 75 is prepared in good yield with 1.4 equivalents of

Et 2AlN 3andthereactionmixturestirredfor3hoursat55°C(Table1;entry1).Thesame experimentisdoneusing iBu 2AlN 3 toobtainthesameyield.5Benzylthiotetrazole 17 is preparedusing1.4equivalentsofEt 2AlN 3at45°Cfor4andhalfhours(Table1;entry 2).Thedesiredproduct 17isobtainedinonly4050%yieldbecauseoftheformationof benzyl isothiocyanate derivated from the rearrangementofthestartingthiocyanate 151 . Thesameresultisobtaineddroppingthesubstrateinthreeportionsintotheazidemixture

40 Chapter1Discussion

overaperiodofonehour,andacomparableyieldisobtainedusing iBuAlN 3asazide sourceat60°Cfor1hour.Interestingtomention that the Xray structure shows that compound 17 crystallized only in the 1 Htautomeric form (Figures 21, 22)(See Xray discussion,Chapter4).

N N N N S S NH N N N H 1H-Tautomer 2 H-Tautomer Figure 21.Tautomericequilibriumof 46 insolution

Figure 22.Structureof5(benzylthio)1H tetrazole 17 in the crystal with thermal ellipsoids drawn at 50%probabilitylevel Phenylsulfanylmethyltetrazole 76 is obtained in very good yield using 1.4 equivalents of Et 2AlN 3at55°Cfor30hours(Table1;entry3).Themono and bis tetrazoles,respectively 77 and 78 ,canbeselectivelyobtaineddependingonthereaction conditions (Table 1; entries 4, 5). The monotetrazole 77 is obtained with complete regioselectivityingoodyieldusing1.5equivalentsofEt 2AlN 3atroomtemperaturein24 hours.Traceofbyproductderivatedfromthe rearrangementofthestartingmaterial,is alsoobservedinthiscase 151 . The bis tetrazole 78 isobtainedusing2.8equivalentsof

Et 2AlN 3startingfrom 77 .Themixtureisstirredfor3daysfrom90to110°Cgivingthe desiredproductinexcellentyield(Table1). 1.2.3.2. Synthesisoftetrazolesinthepresenceofdoublebonds

The reaction of benzylidenemalonitrile with Et 2AlN 3 gives the corresponding tetrazoles 79 or 80 ingoodyieldundermildconditions(Table2).Toobtainthemono tetrazolederivative 79 ,thereactionisstirredfor6hoursat40°Cwith2equivalentsof

Et 2AlN 3(Table2;entry6).Thedesiredtetrazole 79 isobtainedinverygoodyieldbut withapurityof91%(HPLC)withthepartialformationofthe bis tetrazolederivative (Table 2; entry 7). Tetrazole 80 isobtainedbytreatmentofthestartingnitrilewith 3 equivalents of Et 2AlN 3 at 65 °C for 24 hours, yielding the desired pure bis tetrazole derivative in good yield. It is interesting to mention that under these conditions the 41 Chapter1Discussion startingbenzylidenemalonitrilegivesonlythetetrazolederivatives 79 and 80 withoutany conjugateadditionoftheethylresiduetothedoublebondwhichundergoesinthecaseof 152 Et 2AlClintolueneat40°C .Thefivememberednitrogencontainingheterocyclesare traditional centers for energetic materials 5, for this reason the thermal behavior of compound 80 ,withcontainsgeminal bis tetrazolesinthestructure,wasmeasuredwitha MettlerToledo821calorimeter.ThedynamicDSC(heating4°C/min)showsthethermal stability, under this condition, of 80 until 190 °C. However, at 203 °C a small endothermic peak, attributed to the melting point, is followed by a strong exothermic decompositionwithmaximumat205°C,withameasuredenthalpyof1302kJKg 1and thisenergycorrespondstoanadiabatictemperatureof ca 868°C.

Entry T [°C] Time [h] Product Yield [%]

N NH N [a] N 6 40 6 97 N 79

N NH N N [b] NH 7 65 24 N 75 N N 80 N N N [a] N 8 90 20 H 65**

81 N NH N N [b] 9 60 18 97* 82 N N NH N N N N [b] r.t. 2 HN 71 10 83 Table 2.Synthesisof5substitutedtetrazoles. Notes:* Yield after extractions and crystallization; ** Yield after direct

crystallizationofthecrude;[a]Et 2AlN 3(2.5Mintoluene),[b]Et 2AlN 3(2.7M inxylene) Alpha ,beta unsaturated vinyl nitriles are relatively good substrates, however cyclohexene1carbonitrile requires, a higher temperature (Table 2; entries 8, 9). The reactioniscarriedoutusing1.4equivalentsofEt2AlN 3at90°Cfor24hourstogivethe desired5(1cyclohene1yl)tetrazole 81 ingoodyield.Thereactiondoesnotundergoat

42 Chapter1Discussion

T<50°Candat75°Cthereactionrequireslongerreactiontime(36hours)togivethe desiredproductwiththesameyield.Cinnamonitrilegivesthedesired5styryltetrazole

82 inverygoodyieldusing1.3equivalentsofEt 2AlN 3at5070°Cfor18hours.The reaction proceed very well without the formation of any byproducts. Fumaronitrile providesthe correspondingtetrazole 83 aftertwohoursatroomtemperature(Table2; entry10). 1.2.3.3. Synthesisoftetrazolesfromalkylnitriles

Entry T Time Product Yield nnn Entry T Time Product Yield [°C] [h] [%] [°C] [h] [%] HN N F F F N N [a] 11 90 30 60* N [c] N 15 65 17 80 HN N 88 HN N N N 84 N N N CH [a] NH [b] 3 12 70 49 64** 16 85120 18 N 45 NH N N 85 89 N N N CH3 N N NH N N [b] NH [b] N 13 60 24 N 81 17 75 18 H 87 N 86 90 N N N NH [c] 14 100 3d 82

87 Table 3.Synthesisof5alkylsubstitutedtetrazoles. Notes:*Yield after extractions and crystallization; **Yield after direct crystallization of the

crude;[a]Et 2AlN 3(1.8Mintoluene),[b]Et 2AlN 3(2.7Minxylene),[c]Et 2AlN 3(intoluene2.5M) Inactivatedandstericallyhinderedalkylnitrilesrequirerelativelyhightemperature andlongerreactiontime(Table3).The trans cyclobutane1,2ditetrazole 84 (Table3; entry 11), is synthesized from the corresponding dinitrile using 1.33 equivalents of

Et 2AlN 3 at 90 °C for 30 hours in relative good yield. Excess of Et 2AlN 3 does not influencetherateofthereacion.Thetetrazole 85 isobtainedundersimilarconditions using1.5 equivalentsofEt 2AlN 3at70°Cfor49hours(Table3;entry12).Sterically 43 Chapter1Discussion hinderednitrilessuchas2phenylpropionitrileprovidesthecorrespondingtetrazole 86 in goodyieldwith1.33equivalentsofEt 2AlN 3 at60°Cfor24hoursandmorebulky2,2 diphenylpropionitrilerequirehighertemperaturetogivethe correspondingtetrazole 89 (Table 3; entries 13, 16). The inactivated 1adamantenecarbonitrile requires longer reaction times and provides the corresponding tetrazole 87 with an excess of Et 2AlN 3 (2.23 equivalents) at 90110 °C for three days (Table 3; entry 14). The 5(2 trifluoromethyl)benzyltetrazole 88 ispreparedingood yieldusing1.5equivalentsof

Et 2AlN 3 orMe 2AlN 3at65°Cfor17hours(Table3;entry15).Geminaldinitrilessuchas 2,2dibenzylmalonitrilerequiremildreactionconditions.The bis tetrazole 90 isprepared at75°Cfor18hoursusing1.6equivalentsofEt 2AlN 3 foreachnitrilegroup (Table3; entry17). 1.2.3.4. Synthesisoftetrazolesfromaromaticnitriles Aromaticnitrilesaresuitablesubstratesforthismethodology (Table4). Simple benzonitrilerequires1.1to1.3equivalentsofEt 2AlN 3at80°Cfor24hoursyieldingthe desired tetrazole 1 in excellent yield (Table 4; entry 18). The corresponding 1,2 dicyanobenzenerequiresshorterreactiontimesandprovidesthebistetrazole 91 ingood yieldusing1.4equivalentsofEt 2AlN 3at90°Cforonly3hours(Table4;entry19).The 4cyanophenylacetonitrilerequireslongerreactiontimecomparedto1,2dicyanobenzene andthereactioniscarriedoutwithanexcessofEt 2AlN 3(2.1equivalents)at75°Cfor24 hours to give the desired bis tetrazole 93 in good yield(Table4; entry21).Aromatic nitronitriles such as the 4nitrobenzonitrile are very reactive and the nitrogroup may react with the Et 2AlN 3 instead of the cyano group. In this case the reaction is very exothermicwithgasevolutionevenat0°Candonly15%ofthedesiredtetrazole 94 is isolatedundertheseconditions(Table4;entry22).Atagiventemperaturesomehetero substitutedaromaticnitrilesrequireshorterreactiontimesthanbenzonitrile,forexample 2hydroxybenzonitrileisconvertedtothecorrespondingtetrazole 95 intwohoursat80 °Cinsteadtwentyfourhours(Table4;entry23).Thehydroxylgroupisrotectedinsitu withtriethylaluminum(Section1.2.3.5.). Para substitutedhalogenbenzonitrilesundergo the cycloaddition (Table 4; entries 28, 29). The 5(4chlorophenyl)tetrazole 2 is obtainedinverygoodyieldusing1.57equivalentsofEt 2AlN 3at90°Cfor24hoursand the 5(4fluorophenyl)tetrazole 99 using1.5equivalentsofEt 2AlN 3at130°Cfor15 hours.

44 Chapter1Discussion

Entry T Time Product Yield Entry T Time Product Yield [°C] [h] [%] [°C] [h] [%] N N F N N N N [a] N [b] N 18 80 24 H 99* 24 90 7 H 95 55 39 42 95

N NH Cl N N N N N N N N NH H [a] N [a] 19 90 3 75 25 50 27 95 97 91 N N CH3 N Br N N N [a] N [a,c] N 20 80 25 H 83 26 50 30 H 71 92 26 N N N NH I N N N N H [a] H [a] 21 75 24 N 95 27 50 3d 85 N 98 N N 93 N N N N N N [a] N [d] N 22 0 0.16 H 15 28 90 24 H 97 Cl O2N 94 1 OH N N N N N N [a] N [b] N 23 80 2.5 H 97 29 130 15 H 88* r.t. 4 F 95 99 Table 4.Synthesisof5arylsubstitutedtetrazoles.

Notes:*Yieldafterextractionsandcrystallization;[a]Et 2AlN 3(2.7Minxylene),[b]Et 2AlN 3

(1.8Mintoluene),[c]Me 2AlN 3(1Minhexane/toluene),[d]Et 2AlN 3(2.5Mintoluene)

The reaction proceeds well in the case of ortho substituted aryl nitriles where steric hindrance might be anticipated to reduce yield (Table 4; entries 20, 23, 2527). In comparison with the methodology proposed by Sharpless 63,78,79 we have been able to achive conversion of aromatic nitriles bearing an sp 3hybridized substituent in ortho position(Table4;entry20)atrelativehightemperatureandlongreactiontime. 5Ortho methylphenyltetrazole 92 is prepared in good yield using one equivalent of

Et 2AlN 3at80°Cfor25hours(Table4;entry20). Ortho halogensubstitutedaromatic nitriles(Table4;entries2427)reachtocompletionat50°Cwithinapproxymately30 hoursofreaction. Thereactivitiesofeach ohalogenbenzonitrilewascheckedbyparallel

45 Chapter1Discussion reactions at 50 °C mixing equimolar amounts of ofluoro and obromobenzonitrile, equimolaramountsof ofluoroand ochlorobenzonitrileandfinallyequimolaramountsof ofluoro and oiodobenzonitrile and following the respective conversions by HPLC. Orth ofluoro, chloro and –bromobenzonitrile have comparable reactivity, but o iodobenzonitrile provides complete conversion after three days. An approximate explanationcanbegivenlookingthesterichinderanceofin oposition and the relativeelectroniceffectinthearomaticringattachedtothenitrile(Figures23,24).The ortho halogeninfluencestheelectronicpropertiesofthearomaticringandindirectlythe activationofthenitrilegroupthoughthecycloaddition. The moleculeswere built and optimizedusingSyaylsoftware(Tripos)(Figure23).Thechargeswerecalculatedusing GasteigerMarsilimethodandtheelectrostaticpotentialwasmappedwithMolcadonthe Connolysurfaceofeachmolecule(Figure24).Corey–Pauling–Koltun(CPK)modelsare the simplest type of representation of the surface of small molecules. In these space fillingmodels,theatomsarerepresentedassphereswhoseradiiareproportionaltothe atom'svanderWaalsradius(Figure23).Figure24showstheeffectinthearomaticring ofthepresenceofhalogenatomscomparedtothesimplebenzonitrile.Inthecaseof o iodobenzonitrile,thearomaticringisprobablymoreelectronrichbecauseofthemajor mesomericeffectofiodocomparedtothehalogensseries(Figure24).Thetotalsurface ofthesimplebenzonitrileand ofluorobenzonitrilearecomparable(respectively114.8Å 2 and 118.8 Å 2) as well as the total van der Waals surface of obromo and o chlorobenzonitrile(respectively128.4Å 2and132.8Å 2).ThevanderWaalssurfaceof o iodobenzonitrileisbiggercomparedtotheabovementionedseries(141.5Å 2)becauseof thebiggersizeoftheiodineatom(Figure23).

N X=Cl X=F X

X=H

X=I X=Br

Figure 23. 3DRepresentationofCPKmodel of ortho halogenbenzonitrilesandbenzonitrile 46 Chapter1Discussion

X=F X=Cl

N N F Cl N

X N

X=H N N I X=Br Br X=I

Figure 24. 3D Representation of electrostatic potential on van derWaals surface for ortho -halogenbenzonitrilesandbenzonitril

1.2.3.5. Synthesisoftetrazolesinthepresenceofhydroxygroup Alkylandarylnitrileswithan alpha hydroxylgroupreactatalowertemperature, althoughitisnecessarytoprotectthehydroxylgroupwithtriethylaluminum,whichis removedduringtheconventionalworkupprocedure(Table4;entry23;Table7;entries 3033).Theprotectionofthehydroxylgroupisdone insitu mixing1.2equivalentsof triethyl aluminum in toluene with the starting hydroxy nitrile derivative at 0 °C and stirringtheresultingmixturefortwohours(Scheme55).

OH O AlEt3 OH Et Al,toluene 1.R AlN H 3 2 3 N R' CN 0°C,2h R' CN 2.H+ R' N N N Scheme 55. Protection in situ ofthehydroxylgroupandcycloaddition Tetrazole 100 is synthesized in relative good yield using 1.3 equivalents of diethylaluminumazidefrom0°Ctoroomtemperaturein24hours(Table5;entry30). Thereactionwasdoneonlyoncewithoutanyoptimizationforsafetyreasonsbecauseof theriskofHCNformationfromthestartingnitrile.Mandelonitrileand Rmandelonitrile provide the corresponding tetrazoles 101 and 102 in very good yield using 1.5 equivalentsofEt 2AlN 3at4045°Cinaroundonehour(Table5;entries31,32).

47 Chapter1Discussion

Entry T [°C] Time [h] Product Yield [%] OH N H C [a] 0tor.t. 24 3 N 65 30 N NH 100 OH [a] 45 1.3 N 82* 31 N N NH 101 OH N 32 [a] 40 1 N 99 N NH 102 Table 5.Synthesisof5substitutedtetrazoles.

Notes:* Yield after crystallization; [a] Et 2AlN 3 (2.7 M in xylene) 1.2.3.6. Synthesisof5substitutedheteroaromatictetrazoles

Heteroaromatic nitriles such as pyridinecarbonitriles and cyanopyrazine give the correspondingtetrazolesinafewhoursatlowtemperature with good yields (Table 6; entries3337);theyrequireshorterreactiontimesandlowerreactiontemperaturethan benzonitrile (Table 4; entry 18). The main problem of these substrates is the high hydrophilicityofthecorrespondingproductwhichmakesdifficultthepurificationwith the common extraction procedure. In all these cases the reaction mixture is quenched withHCl(2M),thepHadjustedwithpotassiumcarbonatetoisoelectricpointat6.5,the aqueous phase is then saturated with solid NaCl and the product extracted with ethyl acetate;someoftheproductcanbelostintheaqueousphase. Ortho , meta and para cyanopyridine have similar reactivity and give the corresponding tetrazole derivative, respectively 103 , 104 , 105 using1.3equivalentsofEt 2AlN 3at0°Cfor3hours(Table6; entries 3335). The 2,6pyridinedicarbonitrile gives the desired tetrazole 106 (Table 6; entry36)using3equivalentsofEt 2AlN 3at0°Cforonehourandismorereactivethat the analogue 1,2 dicyanobenzene (Table 4; entry 19). The pyrazinecarbonitrile is too reactive with Et 2AlN 3 (reaction very exothermic) and the use of iBu 2AlN 3 is more appropriate(Table6;entry37).Thereactionundergoeswithstoichiometricamountof azidefrom–40to0°Cinthreehourstogivethedesiredproduct 107 ingoodyield.

48 Chapter1Discussion

Entry T [°C] Time Product Yield Entry T [°C] Time Product Yield [h] [%] [h] [%] N N N N N N [a] 0tor.t. 3 H 67 38 [a] 55 N 87 33 12 O 103 HN N 108

N N N [a] [a] N 34 0tor.t. 3 N N N 78* 39 55 12 S 81* H HN N 104 109

N N N [a] N [a] N 35 0tor.t. 3 N N 95* 40 0to 24 N 82 H r.t. H HN N 105 110 N N N NH [a] N H 36 0 1 N 84 N N N 106 N N N N [b] N N 37 40to0 3 H 64* 107 Table 6.Synthesisofheteroaromatictetrazoles

Notes:* Yield after crystallization; [a] Et 2AlN 3 (2.7 M in xylene); [b] i-Bu 2AlN 3 (1.8 M in toluene) 2Furanonitrile,2thiophenecarbonitrileandpyrrole2carbonitrilehavesimilarreactivity (Table6;entries3840). 2Furanonitrile and 2thiophenecarbonitrile give the correspondingtetrazole,respectively 108 and 109 ,ingoodyieldusing1.2equivalentsof

Et 2AlN 3at55°Cfor12hoursandthepurificationwasdoneusingtheconventionalwork upprocedure(Table6;entries38,39).Thepyrrole2carbonitrileisconvertedintothe correspondingtetrazole 110 usinganexcessofEt 2AlN 3(2.3equivalents)becauseofthe presenceoftheNHinthepyrroleringandthereactioniscarriedoutfrom0°Ctoroom temperature in 24 hours (Table 6; entry 40). XRay structure analysis of 108 , which contains an heteroatom near the tetrazole ring, shows that this compound crystallized exclusively in the 1Htautomeric form as in the case of compound 17 (See Xray discussion,Chapter4)(Scheme56,Figure25).

N N N NH S S N N NN H 1 HTautomer2 HTautomer Scheme 56. Tautomericequilibriumof 109 insolution 49 Chapter1Discussion

Figure 25. Structure of 5thiophen2yl1H tetrazole 109 inthecrystalwiththermalellipsoids drawnat50%probabilitylevel 1.2.3.7. Synthesisoftetrazolesinthepresenceofamides,amines,esters andethers

Nitrilescontainingamido,esterandetherfunctionalgroupsrequiremildreaction conditions(Table7).Bothenantiomersof2tetrazolpyrrolidine1carboxylicacidbenzyl ester 112 and 113 (Table7,entries42,43)arepreparedforthefirsttimeundervery mild conditions in 9 hours at 55 °C in high yield 142 . The preparation of the ( R) enantiomer 113 was also increased to 1.5 kg with very good reproducibility. The 142 cycloadditionproceedswellusing1.31.5equivalentsofEt 2AlN 3orMe 2AlN 3 .The Bocanalogue 111 isformedunderthesamereactionconditions(Table7;entry41),142 butthenecessaryacidicworkuppartiallycleavestheBocgroupgivingtheunprotected pyrrolidinetetrazole 114 .ToavoidthecleavageoftheBocgroup,thereactionmixture wasdirectlyquenchedwithasolutionofKHSO 4(10%)atpH5,butafforded57%of the desired product. The aqueous phase after the workup is evaporated and stirred 4 hoursinethanol,filteredanddelivered25%oftheunprotectedpyrrolidinetetrazole 114 . Thetetrazoles 112 and 113 areofinterestbecausetheyaretheprecursorsofthetetrazol 5ylpyrrolidine 114 and 115 respectively,whichareinterestingalternativetoproline 153 asanorganocatalystforavarietyofreactionsincluding:aldolreactions, 154,155 Mannich reactions, 156,157 DielsAlderreactions158,159 andMichaeladditions 160 .

50 Chapter1Discussion

Entry T Time Product Yield Entry T Time Product Yield [°C] [h] [%] [°C] [h] [%] H N NH N N NH [a,b] N N [c] H C N 41 40 30 O 57 46 r.t. 2 3 71 O N N CH 3 111 116

H N O NH N N O 42 [a,c,d] 50 9 N N 96 47 [a] r.t. 1 N 94 O N O NH Ph 117 112

H N N NH N N O NH [c] NN [c] N 43 55 9 O 95 48 r.t. 72 N 54* O O Ph CH3 113 118 [e] 44 r.t. 4 H N 94* [f] NH 55 85 18 N 99 H N [g] [h] NH 50 16 H N N 81 49 40 3 O 92 114 N N 119

H N [e] NH 97 45 r.t. 4 N H NN 94* 115 Table 7.

Notes:*Yieldaftercrystallization;[a]Et 2AlN 3(2.5Mintoluene);[b] i-Bu 2AlN 3(1.8Mintoluene);

[c]Et 2AlN 3(2.7Minxylene);[d]Me 2AlN 3(1Minhexane);[e]H 2,Pd/C10%inEtOH;[f]excess

Et 2AlN 3(2.5Mintolueneor2.7Minxylene);[g]i)Et 2AlN 3(2.7Minxylene)for8hat50°C,ii)

HCl(6M)for8hatr.t.;[h]Et 2AlN 3(1.8Mintoluene) Thepyrrolidinetetrazoleinbothenantiomericforms,canbedirectlyobtainedinaonepot reactionfromthestartingnitrilewithanexcessofdialkylaluminumazidetoprovidefirst thecycloaddition(T≤55°C)andthenthecleavagereaction(T≥65°C)(Scheme57) 142 . Althoughpurityof 114 obtainedundertheseconditionsishighaccordingtoNMR,but broadpeaksbyIRsuggeststhepresenceofsomewatersolubleinorganicmaterialsthat aredifficulttoremove.

H H H N 1eq.Et AlN N 1eq.Et 2AlN 3 2 3 CN NH NH N N Toluene N Toluene NN H NN Cbz 55°C,9h Cbz 85°C,9h 98% 120 112 114

Scheme 57. Onepotreactionforthepreparationof1 Htetrazol5yl

51 Chapter1Discussion

We were the first to solve the Xray structure of the 2( R)tetrazol5ylpyrrolidine. AccordingtoXrayanalysis,thecompound 115crystallizedashydrateand isexistingin zwitterionicform(Figure26;SeeXraydiscussion,Chapter4).

Figure 26. Structure of 2( R)tetrazol5yl pyrrolidine 115 in the crystal with thermal ellipsoidsdrawnat50%probabilitylevel

Because of the possible application in organocatalysis, the thermal behavior was measured for tetrazoles 112 and 114 (Figures 2730). All calorimetric scans were performedwithaMettlerToledo821calorimeter.ThedynamicDSC(heating4°C/min) showstherelativethermalstabilityof 112 until200°C(Figure27).Apeakat86°C,with ameasuredendothermyof74kJkg 1,isattributedtothemeltingpoint.Theexothermic decompositionstartsat254°Cwithanmeasuredenthalpyof–391kJKg 1andthisenergy correspondtoanadiabatictemperatureof ca 260°C(Figure27).The( S)2(tetrazol5 yl)pyrrolidine 114 isthermally stableuntil260°C(Figure29).Asmall endothermic peakat168°Cisattributedtothemeltingpoint,withameasuredendothermyof25kJkg 1andisfollowedbyanhighlyspontaneousexothermicdecompositionwithmaximumat 275 °C, with a measured enthalpy of 1182 kJkg 1 which corresponds to an adiabatic temperatureof ca 290°C(Figure29).TheisothermalDSCwasalsomeasuredat90°C for 12 hours and both compounds 112 and 114 showed to be stable under these conditions(Figures28,30).

52 Chapter1Discussion

^exo 051091/dyn 15.02.200511:01:28

Experiment:051091;Valsartan/129/VAD.34.05(180),11.02.200510:17:16

2 Integral 1640.29mJ Integral 311.41mJ Wg^1 normalis. 390.55Jg^1 normalis. 74.15Jg^1 Onset 223.66°C Onset 80.29°C Peakhöhe 0.77Wg^1 Peakhöhe 0.64Wg^1 Peak 254.47°C Peak 85.89°C Extrapol.Peak 253.15°C Extrapol.Peak 86.30°C Peakweite 32.40°C Peakweite 6.53°C LinkeGrenze 204.44°C LinkeGrenze 69.12°C RechteGrenze 291.38°C RechteGrenze 99.33°C Heizrate 4.00°Cmin^1 Heizrate 4.00°Cmin^1

Bemerkungen:Tiegel,Stahlvergoldet(unterArgonverschlossen) Probe:4.20mg(dyn) DSC821/180

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 °C

0 10 20 30 40 50 60 70 80 90 min NOVARTISPHARMA,SafetyLabs:WSJ145.8.65 SSSTATATA RRReeeSW8.10 Figure 27. Differentialscanningcalorimetry(DSC)for( S)2(tetrazol5yl)pyrrolidine 1carboxylicacidbenzylester 112 ^exo 051091/iso90°C 15.02.200510:48:09

Experiment:051091;Valsartan/129.VAD.34.05(18),11.02.200510:26:01

1 Wg^1

Bemerkungen:Tiegel,Stahlvergoldet(unterArgonverschlossen) Probe:4.26mg(tiso=12hTiso=90°C) DSC820/18

0 50 100 150 200 250 300 350 400 450 500 550 600 650 min NOVARTISPHARMA,SafetyLabs:WSJ145.8.65 SSSTATATA RRReeeSW8.10 Figure 28.Isothermicdifferentialscanningcalorimetry(DSC)at90°Cfor12hoursfor (S)2(tetrazol5yl)pyrrolidine1carboxylicacidbenzylester 112

53 Chapter1Discussion

^exo 051090/dyn 15.02.200512:56:05

Experiment:051090;100/101/103;VAD.12B.H2.C1(875),11.02.200508:55:34

Integral 231.66mJ Integral 108.96mJ Integral 5106.92mJ normalis. 53.63Jg^1 normalis. 25.22Jg^1 normalis. 1182.16Jg^1 Onset 99.64°C Onset 266.76°C Onset 269.30°C Peakhöhe 0.21Wg^1 Peakhöhe 0.98Wg^1 Peakhöhe 5.95Wg^1 Peak 112.75°C Peak 268.47°C Peak 275.35°C Extrapol.Peak 104.42°C Extrapol.Peak 268.53°C Extrapol.Peak 273.64°C Peakweite 17.00°C Peakweite 1.56°C Peakweite 9.68°C 5 LinkeGrenze 83.27°C LinkeGrenze 261.08°C LinkeGrenze 269.37°C Wg^1 RechteGrenze 126.21°C RechteGrenze 268.73°C RechteGrenze 365.18°C Heizrate 4.00°Cmin^1 Heizrate 4.00°Cmin^1 Heizrate 4.00°Cmin^1

Bemerkungen:Tiegel,Stahlvergoldet(unterArgonverschlossen) Probe:4.49mg(dyn) DSC821875

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 °C

0 10 20 30 40 50 60 70 80 90 min NOVARTISPHARMA,SafetyLabs:WSJ145.8.65 SSSTATATA RRReeeSW8.10 Figure 29. Differentialscanningcalorimetry(DSC)for( S)2(tetrazol5yl)pyrrolidine 114

^exo 051090/iso90°C 15.02.200512:57:43

Experiment:051090;100/101/103.VAD.12B:H2.C1(25),11.02.200509:06:10

1 Wg^1

Bemerkungen:Tiegel,Stahlvergoldet(unterArgonverschlossen) Probe:4.85mg(tiso=12hTiso=90°C) DSC25/758

0 50 100 150 200 250 300 350 400 450 500 550 600 650 min NOVARTISPHARMA,SafetyLabs:WSJ145.8.65 SSSTATATA RRReeeSW8.10 Figure 30. Isothermicdifferentialscanningcalorimetry(DSC)at90°Cfor12hoursfor( S) 2(tetrazol5yl)pyrrolidine 114

Dimethylcyanideprovidesthecorrespondingtetrazole 116 ingoodyieldusing1.5 equivalents of Et 2AlN 3atroomtemperaturefor2hours(Table7;entry46). The ester groupsarestableatroomtemperatureinthepresenceofdialkylaluminumazides(Table 7;entries47,48).Forexample,ethyltetrazole5carboxylate 117 (Table7;entry47)is efficientlypreparedusing1.3equivalentsofEt 2AlN 3atroomtemperatureinonehours and the monotetrazole 118 is prepared using 1.6 equivalents of Et 2AlN 3 at room temperaturefor3days(Table7;entry48).Inthiscasethereactionwasstoppedbefore thecompleteconversiontobeabletoisolateonlythemonotetrazolederivative. 54 Chapter1Discussion

2( R)Cyanotetrahydrofuraneisefficientlyconvertedintothecorrespondingtetrazole 119 using1.3equivalentsofEt 2AlN 3at40°Cfor3hours(Table6;entry49).The( R)5 (tetrahydrofuran2yl)tetrazole 119 ,similarlyto 46 and 109 ,crystallizedexclusivelyin the1 Htautomericform(Scheme58,Figure31;SeeXraydiscussion,Chapter4). H H N N N NH O O N N NN H 1 HTautomer2 HTautomer Scheme 58. Tautomericequilibriumof 119 insolution Figure 31. Structure of ( R)5(tetrahydro furan2yl)1Htetrazole 119 in the crystal with thermal ellipsoids drawn at 50 % probabilitylevel 1.2.3.8. Synthesisoftetrazolesinthepresenceofcarbonylgroups

InanalogywithDIBAHandTIBA 161 (Figure32),aldehydeandketonefunctional groupsarereducedtothecorrespondingalcoholswithEt 2AlN 3(Table8;entries5052).

iC4H9 iC4H9

Al H Al iC4H9 iC H 4 9 iC4H9 DIBAHTIBA Figure 32. The mechanism may involve a shift from the βcarbon on the residue of the diethylaluminum azide to the carbonyl group (Scheme 59) with the formation of one moleculeofethylenewhichderivesfromtheorganoaluminum.

55 Chapter1Discussion

Entry Starting material T [°C] Time [h] Product Yield [%] O

N O NH 57* O N N 50 [a,b] r.t. 24 122 CN O O 121 N 37* NH O N N 123 HN N N N 36** HO CN Et [b] 51 O 50 24 125 HN N H N N 124 50* HOH2C 126 O OH [b] 52 r.t. 14 N 38 CN N 127 N NH 128

Table 8. Notes: * Yield after chromatography; ** Yield after extractions and crystallization;

[a]Et 2AlN 3(2.5Mintoluene),[b]Et 2AlN 3(2.7Minxylene)

Al Al O O CH + H C CH R' R" 2 R' R" 2 2 H H H+

OH

R' R" H

Scheme 59.ProposedmechanismforthecarbonylreductionwithEt 2AlN 3 The treatment of 6isopropyl4oxo4Hchromene3carbonitrile with 2.8 equivalentsofEt 2AlN 3atroomtemperaturefor24hoursgivesamixtureoftetrazoles122 and 123 inverygoodyield(95%)inratioca3:2(Table8;entry50).Thetwotetrazole derivatives are then isolated by chromatography. The αβunsaturated bond in the 6 isopropyl4oxo4Hchromene3carbonitrile could be activated by the coordination of the aluminum species with the carbonyl group and the alkyl residue of the dialkylaluminumazide maymigratetotheβpositionofthedoublebond.Thesystem then,probablyduringtheworkup,restabilizesthearomaticitybyoxidation(Scheme60). 56 Chapter1Discussion

Thetetrazoleringmaybealreadyformedorcanbeformedsimultaneouslytothealkyl migration. O O O Et O Et Et2AlN3 workup H+ X X X X O O Et O OH X=tetrazole,CN Al Al Et Et 123 Scheme 60.Proposedmechanismfortheformationof 123

The4cyanobenzaldehydereactswith3equivalentsofEt 2AlN 3togiveamixture oftetrazole 125 and 126 ingoodyield(85%)inratioca2:1(Table8;entry51).The reaction probably proceed via an alkoxyaluminum intermediate which undergoes the ethyl migration 162 or hydride shift to give respectively 125 (Scheme 61) and 126 (Scheme62).Thetetrazoleringmaybealreadyformedorcanbeformedsimultaneously tothealkylorthehydridemigration. Et Al Al O Et O Et OH Et H+ Et H H H X X X X=CN,tetrazole125 Scheme 61. Proposedmechanismfortheformationof 125

Theproduct 126 isformedbythehydrideshiftfromtheβcarbononthealkylresidueof thediethylaluminumazidetothecarbonylgroup(Scheme62)withtheformationofone moleculeofethylenewhichderivesfromthealkylaluminumresidue.

Et Al Al O O Et OH

H H H H+ H H H H H X X X H2C CH2 X=CN,tetrazole 126

Scheme 62. Proposedmechanismfortheformationof 126 AccordingtoScheme105,thetetrazole 128 couldbealsoformedbythemigrationofthe hydridegrouptothecarbonyl(Table8;entry52).

57 Chapter1Discussion

1.2.3.9. Synthesisoftriazoles Entry Starting material T [°C] Time [h] Product Yield [%] N HN N [a] O 53 50to0 5 O 72 MeO2C CO2Me O 129 O CH H3C 3 130 N N NH O [b] CO2Me 54 r.t. 72 57 131 O CH3 132

Table 9. Synthesisoftriazoles.[a]Et 2AlN 3(1.8Mintoluene),[b]Et 2AlN 3(2.7 Minxylene) Weonlystartedtoinvestigatethetriazolesformationusingdialkylaluminumazides withalkynes.Firstexperimentsshowthatthecycloadditionoccursundermildconditions (Table 9). For example triazole 130 is prepared in a relative good yield with equimolecularamountofEt 2AlN 3startingat–50°Candwarmingthereactionmixtureto 0°Cinfivehours(Table9;entry53).Methylphenylpropiolaterequireslongerreaction timecomparedtobut2ynedioicacidmethylesterandtriazole 132 ispreparedingood yieldinthreedaysatroomtemperature(Table9;entry54).

1.2.3.10. Synthesisofalternativeazides During the course of the studies, we have investigated the [1,3,2] benzodioxaborole2azido 134 and the diisopropoxyde aluminum azide 139 as novel azidesourcesforthesynthesisftetrazoles,but,unfortunatelywithoutanysuccess.Boron azides were already reported in the 1960s 163,164 but never used for the preparation of tetrazolerings.

1.2.3.10.1. [1,3,2]Benzodioxaborole2azido(134)

O Me3SiN3 O B Cl B N N N O CH2Cl2,78°C O 133 134 Scheme 63.Synthesisof[1,3,2]benzodioxaborole2azido 134

58 Chapter1Discussion

The [1,3,2]benzodioxaborole2azido 134 is prepared following the procedure reportedbyKlapötkeandcoworkers 165 .Beta chloroorbromocatecholboranedissolved indichloromethaneistreated,at78°C,with1.5equivalentsoftrimethylsilylazide.The resultingsolutionisgraduallywarmedtoroomtemperatureandstirredfortwohours.The solvent and the excess of trimethylsilylazide are removed by evaporation to give the productasawhitecrystallinematerial,whichishydrolyzedafterfewminutes. ThereactionwasfurthermorefollowedbyFTIRspectroscopyandthespectrameasured every two minutes for a period of 20 hours. The temperature was also monitored internally(Figures33,34).Thetrimethylsilylazidehasacharacteristicabsorptionband caused by asymmetric stretching vibration of the azide group at 2138 cm 1. After the addition of βchlorocatecholborane this peak decreases and a new strong absorption bandappearsat2169cm1,characteristicofthestretchingvibrationoftheboronazide group ν(BN3). The desired [1,3,2]benzodioxaborole2azido 134 hydrolyzed after crystallization,whilewetriedtoprepareinsitu 1.5equivalentsof 134 anduseittoward cycloaddition for the synthesis of tetrazoles. Unfortunately, no tetrazoles are isolated usingreactivestartingnitrilesunderdifferentreactionconditions(Scheme66,Table10). Insomecases(Table10;entries1,3),4%ofdesiredproductisdetectedbyHPLCbut probablybecauseofthecycloaddionwiththetrimethylsilylazidespecies.

1 Figure 33. Decreaseofsignalat2138(s,ν(SiN3)),increaseofsignalat2169(s,ν(BN3))cm (3Dpicture)

59 Chapter1Discussion

1 Figure 34.Decreaseofsignalat2138(s,ν(SiN3)),increaseofsignalat2169(s,ν(BN3))cm O B N 3 N NH R CN O R N N CH2Cl2,Toluene Scheme 64. Synthesisoftetrazoleswith[1,3,2]benzodioxaborole2azido Entry Starting material T [°C] Time [h] Conversion [%] F CN 50 24 0 1[a] 120 60 4 135 O 2[a] 55 27 0 O CN 136 H 3[a] r.t.to55 48 4 N CN Cbz 120 Table 10. Synthesis of tetrazoles with [1,3,2]benzodioxaborole2azido [a] conversionbyHPLC 1.2.3.10.2. Diisopropoxydealuminumazide(139) Wetriedtoprepareandisolatethediisopropoxyaluminumazidefromthereaction ofdiisopropoxyaluminumchlorideprepared in situ withsodiumazide(Scheme65).A solutionof2equivalentsofaluminumisopropoxydeintolueneistreated,at0°C,with 60 Chapter1Discussion aluminumchloride,warmedatroomtemperatureandstirredoverthenight.Theresulting solutioniscooledat0°Candtreatedwith3equivalentsofsodiumazide,thangradually warmed at room temperature and stirred over the night. The resulting heterogeneous mixtureiscentrifugedtoobtaintwosolidlayersandanuppersolutionwhicharechecked separately by IR without detect any characteristic stretching vibration of an organoaluminumazidegrouparound2150cm 1.

O O O AlCl3 3NaN3 2 Al Al Cl 3 Al N N N +3NaCl O O 0°Ctor.t. Toluene O O r.t. 137 138 139 Scheme 65. Synthesisofdisopropoxydealuminumazide 1.2.3.11. Tetrazolatesaltsandnucleophilicsubstitution Neutralizationoftetrazolicacidswithmetalhydroxidesgivestablemetaltetrazolate salts(Section1.1.1.2.)1,16 whicharereactivetowardnucleophilicsubstitution. 1.2.3.11.1. 5(4’Methylbiphenyl2yl)tetrazolepotassiumsalt(140) N N N N H C N NH N N 3 H3C K KOH MeOH,r.t. 22 140 Scheme 66. Preparationof5(4’methylbiphenyl2yl)1Htetrazolepotassiumsalt 140 5(4’Methylbiphenyl2yl)tetrazole, dissolved in methanol, is treated with equimolar amounts of potassium hydroxide and stirred at room temperature for two hours.Thesolventisremovedtogivethedesiredtetrazolatesaltinquantitativeyield.

1.2.3.11.2. 5(4Chlorophenyl)tetrazolecesiumsalt(2) The 4chlorophenyltetrazole 1,dissolvedinmethanol,istreatedwithequimolar amountsofcesiumhydroxidemonohydrateandstirredatroomtemperatureforonehour. Thesolventisremovedtogivethedesiredtetrazolatederivativeinquantitativeyield.

61 Chapter1Discussion

N N N N + N NH N N [Cs]

. CsOHH 2O MeOH

Cl Cl 1 2 Scheme 67. Preparationof5(4chlorophenyl)tetrazolecesium salt 2 1.2.3.11.3. Nucleophilicsubstitutionwithtetrazoles Cl NO2

KN N N N N N N Cl N S O Acetonitrile N N N O + N O + O 60°C,32h O O

O O O Cl

N1Isomer N2Isomer 13.5%81% 141 142 143 219

Scheme 68. Synthesis of ( S)2[5(4chlorophenyl)tetrazol1yl]4phenylbuthyric acid ethyl ester 143 and(S)2[5(4chlorophenyl)tetrazol2yl]4phenylbuthyricacidethylester 219 The 5(4chlorophenyl)tetrazole potassium salt is prepared by treating the 1.3 equivalentsof4chlorophenyltetrazole 1withequimolaramountsofpotassiumhydroxide inmethanolatroomtemperatureforonehour.Thesolventisremovedandtheresulting crystalline material added, at room temperature, to a solution of ( R)2(nitro benzenesulfonyloxy)4phenylbutyric acid ethyl ester 141 in acetonitrile. The resulting mixture is stirred 32 hours at 60 °C. The product is extracted with ethyl acetate and potassium carbonate to remove the excess of tetrazoleintotheaqueousphaseandthen chromatographed(elutionsystemhexane/ethylacetate9:1)togivethetworegioisomers ingoodyieldwitharatioN1andN2of1to6.Thereactionisnotfurtherinvestigated andshouldfollowanS N2mechanism.

62 Chapter1Conclusion 1.3. The 5-Substituted Tetrazoles: Conclusions

Thefirstreportedmethodtosynthesizetetrazoleswasthereactionofhydrazoicacid 67 (HN 3)withorganiccyanidesin1932 .However,thisprocedurehasnotfoundpractical applicationonaccountofthehightoxicity,explosivenatureandlowboilingpoint(37°C) ofhydrazoicacid.Currently,5substitutedtetrazolesareusuallyobtainedbytheadditionof azidesaltstonitriles (typicallyat100150°C)(Section1.1.3.).Unfortunately,allofthese protocolshavedisadvantagesincluding:theuseoftoxicmetals,expensivereagents,harsh reaction conditions, water sensitivity and the presence of dangerous hydrazoic acid. Methodsthatseektoavoidhydrazoicacidliberationduringthereactionbyavoidingacidic conditions require a large excess of sodium azide as well as long reaction times. In addition, the majority of methods use dipolar aprotic solvents such as DMF. One of the most common methods involves the use of sodium azide in the presence of ammonium chloride or tertiary ammonium hydrochloride to form in situ ammonium azide species

(Section1.1.3.1.2.1.).ThereactionisaccompaniedbythesublimationofexplosiveNH 4N3, which also occurs when aprotic solvents instead of DMF are used for the reaction 166 . Trimethylsilylandtrialkyltinazidearealternativegeneralreagents(Section1.1.3.1.4.).In somecases, fullconversioncanonlybeobtainedwithalargeexcessofazideandharsh reactionconditions.Themajordrawbackofthismethodisthedifficultremovalofhighly toxicresidualorganotinattheendofthereaction 167 .Huffproposedaprocedurein1993 usingequimolaramountsoftrimethylsilylazideactivatedbytriethylaluminumintoluene, but highly hindered nitriles resulted in poor conversion (Section 1.1.3.1.4.2.). The Sharplessapproachutilizingzinccatalysisinaqueousconditionsisanimprovementover previous methods (Section 1.1.3.1.3.), but still requires the tedious removal of zinc salts fromthefinalproductandadditionalwastewatertreatments.Moreover,thereactionrates at 100 ° C are often insufficient for bulk intermediates and the process requires higher temperatureandlongerreactiontime. Theapplicationofdialklaluminumazideforthesynthesisof5substitutedtetrazolesis a new efficient process and offers several advantages over many of the previously published procedures, including a reduced environmental impact resulting from the

63 Chapter1Conclusion elimination of toxic waste 141,142 . The use of dialkylaluminum azides as an azide source greatly reduces the hazard posed by in situ generation of hydrazoic acid and avoids ammonium and alkylammonium azide formation. The reaction is suitable for use on a largescaleasspecialcareisnotrequiredwhenrecyclingwastewaterbecausealuminumis a nontoxic metal compared to tin organo metallics. As dialkylaluminum chlorides are available in large quantities and are relatively inexpensive (they are produced for use in ZieglerNatta catalysis) the reaction is also economically attractive. Dialkylaluminum azidesarepreparedinashorttime(48h,r.t.),aresolubleinorganicsolvents,arecheap and nontoxic. The cycloaddition occurs under mild conditions and it is possible to synthesize a broad variety of tetrazole derivatives in the presence of different functional groupsincludinghalogens,–sulfonyl,thioethers,,esters,andethers168 .Becauseof thelowp Kaof1 Htetrazoles(~35)andtheirhighlycrystallinenature,asimpleworkup procedureisusuallysufficienttoprovidethepuretetrazoles.Inadditionwecanconfirm that the general procedure described herein is applicable to a wider range of substrates leadingtothecorrespondingtetrazolesingoodyields.Thehighreactivity,lowcostsand theecocompatibilityduetothealuminummakethisnovelprocessparticularlyattractive and,inaddition,isapplicableforlargescalepreparation.Thereforethediscoveryandthe developmentofthisnewmethodologyforthepreparationoftetrazolesissignificantwith respecttosafety,economy,ecology,diversityofsubstrates.

64 Chapter2.Introduction

Chapter 2. Alkylation of Tetrazole Ring

2.1. Alkylation of Tetrazole Ring: Introduction

Thetetrazoleitselfisanaromaticnucleus,whichmayexistintwotautomericforms (Figure35)1(SeeSection1.1.). N N N N R R N N N NH H 1H2H

Figure 35 .Tautomericformsof5substitutedtetrazoles Replacementofthetautomericringhydrogenleadstotwopossibletypeofdisubstituted tetrazoles,namelythe1,5andthe2,5disubstitutedtetrazoles,respectivelythe1Nand 2Nalkylated(Scheme69).Thetransformationof5substitutedtetrazolesto Nsubstituted tetrazolesisfundamentallyimportantforthepreparativechemistryoftetrazoles. 4 N N N 5 N N 3 N N N R R R R N N NH N N N 2 N N 1 1H R R1 Scheme 69.Structureandnumberingofdisubstiutedtetrazoles

65 Chapter2.Introduction

2.1.1. Chemical and Physical Proprieties of Disubstituted Tetrazoles 2.1.1.1. Physicalproperties

NUnsubstituted tetrazoles are generally white solids where the hydrogen in the tetrazole ring provides intermolecular hydrogen bonding which influences the melting point. NUnsubstitutedtetrazolestendtobemoderately highmeltingsolidsduetothese intermolecular hydrogen bonding. Replacement of the ring NH hydrogen by a methyl causes in 1,5 and 2,5disubstituted tetrazoles a lowmelting point except where the 5 substituentitselfiscapableofforminghydrogenbonds( e.g .,OHorNH) 1.Inmolecules where hydrogen bonding is not possible, for example in the Nmethyl disubstituted tetrazoleseries,themorepolar1,5disubstitutedform(highdipolemoment)usuallyhasa higher melting point or boiling point than the corresponding 2,5disubstituted isomer (lowerdipolemoment)(Figure36). In general1,5disubstitutedtetrazoleshaveadipolar momentintherangeof5.05.90Dandthecorresponding2,5derivativeshavevaluesof 2.42.7D 1.

H3C HN N N N N N N N N N N N CH3 F F F

96 145 146 mp158160°Cmp7477°Cmp7074°C

H3C HN N N N N N N N N N N N CH3

Cl Cl Cl 1 147 148 mp255257°Cmp120°Cmp108°C

Figure 36.Examplesofmeltingpointsoftetrazoleseries

66 Chapter2.Introduction

2.1.1.2. Solubilityandchromatography

Thesolubilityoftetrazolesisstronglyinfluencedbytheeffectofcarbonornitrogen substituentsonthechargedistributioninthering.Ingeneral,2,5disubstitutedtetrazole, withlowdipolemoments,tendtobesolubleinapolar organic solvents 1. The different dipolemomentsusuallyensureexcellentseparationofregioisomersonsilicagelcolumns withnormalelutionsystemssuchashexane/ethylacetate5:1. 2.1.1.3. Nuclearmagneticresonancespectroscopy

NMR spectroscopy is particularly useful for determing the sustitution pattern in tetrazoles. 13 CNMRshiftsofthetetrazoleC5issensitivetothebondingpatterninthe ringandallowsadistinctionofisomers.Thechemicalshiftfor2,5disubstitutedtetrazoles are generally 10 ppm deshielded than for the corresponding 1,5disubstituted isomers (Figure37,seeExperimentalPart,Section4.2)1,169 .

H3C N N N N H3C N N N N N N N N CH3 N N N N 5 5 163.2ppm CH3 162.1ppm 154.85ppm 153.7ppm 5 5 F F

Cl Cl 145 146 147 148

H3C N N N N MeO C 2 N N CH MeO C N N 5 3 2 154.1ppm 5 164.2ppm

149 150 Figure 37.13 CNMRshiftsoftheC5in1,5and2,5disubstitutedtetrazoles Thechemicalshiftsofcarbonatomsinnitrogenheterocyclesaregenerallygovernedbythe number and location of nearby nitrogen atoms. The electron may be the main factors in determining chemical shifts. Tetrazole exhibited abnormal 13 C shielding but showed 1Hshiftinagreementwiththeπelectrondensities. 67 Chapter2.Introduction

2.1.2. Alkylation of Tetrazole Ring with Alkyl Halides Alkylation of 5substituted tetrazoles is one of the most useful routes for the preparationof Nsubstitutedderivativesduetotheavailabilityofvariousstartingtetrazoles, alkylating agents and to the simplicity of the process 32a,98,170 . At the present time, introductionofanappropriate Nsubstituentintoanalreadyexistingtetrazolecycleisthe mostcommonsyntheticpathwaytodisubstitutedtetrazoles(Section1.1.4). Inalmostallthecasesalkylationof5substitutedtetrazoleswithalkylhalidesgiveriseto mixturesofisomeric1,5and2,5disubstitutedtetrazoles 1,171 (Section2.1).Thepositionof substitutionhasbeenfoundtobesensitivetothestericrequirementsofthealkylatingagent and to the C5 substituent of tetrazole 98,172 . We report here some example of recent reportedliteraturesforthealkylationof5substitutedtetrazoles.

2.1.2.1. Alkylationoftetrazoles

Triphenylmethyl(trityl)groupisonecommonprotectinggroupfortetrazolerings 173 . Itisdemonstratedthatthealkylationoftetrazoles with triphenylchloromethane provides exclusivelytheN2derivatives(Scheme70) 32a . Thereactionisusuallycarriedoutinthe presenceofbaseanditispresumablethattritylationof5substitutedtetrazolesfollowsS N1 mechanism.

H N N N N N N Ph 3CCl N N Et N,CH Cl Br 3 2 2 Br 0°Ctor.t.,3h 90% 26 151 Scheme 70.Preparationof Ntrityltetrazoles 2.1.2.2. Alkylationoftetrazoleswithalcohols

The alkylation of tetrazoles with alcohols can be performed under a variety of conditions 170 . Alcohols readily generate carbenium cations in the presence of acidic

68 Chapter2.Introduction

catalysts and react with Nunsubstituted tetrazoles yielding mixtures of 1N and 2N regioisomers.Thereactioncanbecarriedoutinneutralorganicsolvents(dichloromethane, acetonitrile,chloroform)inthepresenceofcatalyticamountsofsulphuricoraLewisacid (Scheme71).

R' H R R N R N N cat.H+orLewisacid N R' N R'OH N N + N + N N N H2O N Scheme 71. Formation of 2 Nalkyl derivatives as the sole products has been reported for the reactionof5substitutedtetrazoleswithsecondaryandtertiaryaliphaticalcoholssuchas tert butylalcoholinsulphuricacidmedia(Scheme72)98,174,175,176 .Thereactionproceedat roomtemperatureinhighyieldsinrelativeshorttime(13hours).Inthisacidicconditions thetetrazolesispartaillyprotonatedtoformthesymmetrical1H,4Htetrazoliumcation,in thelatter,onlytheatomsN2andN3areaccessibleforelectrophilicattackwhereasbothN1 andN4areblockedbytheattachedprotons. H N N N R' N NH R' N R R R N N N N N N H Scheme 72. 2.1.2.3. AlkylationoftetrazolesbyadditionofCCmultiplebonds

NUnsbstitutedtetrazolesreactwithvinylethersinacidiccatalyzedconditions.The tetrazoleformsabondwiththeαcarbonatomofthevinylmoiety(Scheme73).The N2 alkylatedtetrazoleisthepredominantlyformedproducts. Me CHOR' H R R N R N cat.H+ N N CHOR' NH + H2C CHOR' N + N N N N N Me N CH2Cl2 R=H,CF3 Scheme 73. AdditionontoC=Cbonds

69 Chapter2.Introduction

Additionontothetriplebondsinarylacetilenesyieldsαsubstituted Nvinyltetrazoles,but sofar,only5trifluoromethyltetrazoleshasbeenreportedas5substitutedstartingmaterial (Scheme74). Ar H F3C N F3C N F3C N N + HC Ar N + N N N N N N N Ar 152 153 154 Scheme 74. AdditionontoC≡Cbonds

70 Chapter2.Introduction

2.1.3. Methylation of Tetrazole Ring

Inthelastyearsawidevarietyof Nmethyltetrazolederivativeshasbeenreported from pharmaceutical companies as compounds with biological activities. In medicinal chemistrytheycanfindapplicationinthetreatmentofpainandinflammation 155 177 , obesity 156 178 ,HIV 157 179 ,diabete 180 ,asanticancer 181 andantimicrobialagents 182 . More than 600 patent applications including Nmethyltetrazole derivatives were publishedinthelasttenyearsfrompharmaceuticalandagriculturalcompaniesandsome exampleisshowninScheme77.

N O N F F Me N Me N N O NH N H N N N Cl Cl N N N N F O N N O N N N Me N H 155 156 157 Scheme 75. NMethyltetrazoleswithbiologicalactivity 2.1.3.1. Methylationwithdimethylsulfate

Dimethyl sulphate 183 is a well known methylating agent for amines, phenols, alcohols,thiolsandtetrazoles184,185 .Typically,onemethylisremovedmorequicklythan theothermethylgroup.Themechanismthattypicallyoccurswithdimethylsulfateisan

SN2reaction. Dimethyl sulfate is carcinogenic and toxic 186 . The toxicity of dimethyl sulfate is so extremethatsomeconsideritapotentialchemicalweaponwhileisabsorbedthroughthe skin,mucousmembranesandgastrointestinaltract.Sincedimethylsulfateisverytoxic, othermethylatingreagentsareoftenused.However,itissometimesmoreappropriateto usedimethylsulfateduetotheeffectivenessandaffordability.

2.1.3.2. Methylationwithmethyliodide

MethyliodideisanexcellentreagentforS N2substitutionreactionsandisawell knownreagentusedformethylation,likedimethylsulfate,butislesshazardousandmore

71 Chapter2.Introduction

expensive.Methyliodideisaliquidwithlowboilingpoint(42.5°C)andtherearesome disadvantagestoitsusesuchasitstoxicprofile187 .Thesubstancecanbeabsorbedinto thebodybyinhalationofitsvapor,byingestionandthroughtheskin.Itisirritatingtothe eyes, the skin and the respiratory tract and may cause effects on the central nervous system. Methylationoftetrazolesisnormallycarriedoutonthetetrazolateaniongenerated insitu by dissolution in an equimolar quantity of aqueous sodium hydroxide, with stoichiometricmethyliodideinacetonefollowedbyheatingatrefluxfor3to18hours (Scheme76), 188,189 orinethanolwater(1:1)underrefluxfor12hours 12,190 orwithNaH inTHF191 amongothers. R R R N MeI N N N N + N Me N N Me2CO/H2O N N N N 4:1 Me Scheme 76. MethylationoftetrazoleringswithMeI 2.1.3.3. Methylationwithdiazomethane

Diazomethaneisawellknownmethylatingagentforcarboxylicacids2,192 .Itreact with5substitutedtetrazolestoyieldthecorrespondingdisubstitutedderivatives,1and 2Nmethyltetrazoles, in ratio close to that observed for alkylation of the respective tetrazolateswithdimethylsulfateormethyliodide98 (Scheme77).

H Me R N R R N CH2N2 N N N + N Me N N N N N N

Scheme 77. MethylationoftetrazoleringwithCH 2N2 Aplausibleexplanationforsuchsimilarityisthatthefirststageoftheprocessisafast protontransferfromtheNHacidicheterocyclestoadiazomethanemolecule.Then,atthe ratelimitingstep,thetetrazolateanionandprotonateddiazomethaneformanionpair 98 . Themethylationoftetrazoleswithdiazomethanehasthetendencytobecurrentlyrarely usedbecauseofitshighlytoxicandexplosivenature.Inaddition,polyethylenemayform asabyproductofdiazomethylation 193 .

72 Chapter2.Introduction

2.1.3.4. Methylationwithtrimethylsilyldiazomethane

Trimethylsilyldiazomethane, 194 a greenish yellow liquid, is stable thermally and can be distilled at atmospheric pressure, is commercially available and is a safer alternative for diazomethane as methylatig agent. However the industrial use of this methylatingagentislimitatedbycostandbythefactthatitformsnumerousartifacts complicatingspectrainterpretation.Thusareactionofthisdiazoalkanewithwaterfree acetic acid in benzene at room temperature gave not only the expected trimethylsilylmethyl acetate but also methyl acetate and trimethylsilyl acetate (Scheme 78) 195 . HOAc + N2 Me3SiCHN2Me3SiCH2N2 OAc Me3SiCH2OAc

HOAc

+ Me3SiOAc+CH3N2 OAc

N2

CH3OAc Scheme 78. 2.1.3.5. OAlkylSpropargylxanthates(dithiocarbonates)

Zard et al. reported recently esterification reagents capable of reacting with NH acids as well 196 tomethylateandbenzylate5substitutedtetrazoles (Scheme 79). The methylation gives a 1 to 7 mixture of 1N and 2Nsubstituted tetrazoles respectively, whereastheonlyreactionproductdetectedinthebenzylationisthecorresponding2alkyl derivatives. H R' R R N S R N N N R'O N R' N + N + N N S N N N R'=Me,Bn Scheme 79. Alkylationoftetrazoleswithdithiocarbonates

73 Chapter2.Introduction

2.1.3.6. Synthesisofmethyltetrazolesfromimidates

InanextensionworkofZard 96 ,reactionofimidatehydrochloridesaltwithmethyl hydrazine gives compound 159 which could be treated with sodium nitrite in diluted hydrochloricacidtogivethe1 Nmethyl5phenyltetrazoleingoodyield.Thisapproachis complementary to the direct methylation of the free tetrazole ring which leads to a mixtureofisomerswherethe2Nisomerdominates(Scheme82). OEt NH Me N N NaNO2/HCl N + H2NNHCH3 NH2 NH Cl N N H Me H2O 158 159 160 Scheme 80. Synthesisof1 Nmethyl5phenyltetrazolesfromimidates

74 Chapter2.Discussion

2.2. Alkylation of Tetrazole Ring: Results and Discussion

In the course of our investigation towards the protection or alkylation of the tetrazolemoiety,wepreparedavarietyof Nalkylatedtetrazolesincluding tert butyl(See Chapter 3),benzyl, trytil and methylated derivatives.Accordingtopublisheddatafor numerous 1,5 and 2,5disubstituted tetrazoles, the 1,5regioismer are generally more polar,theyhaveahighermeltingpointandthepositionoftheC5signalintheir 13 C NMRdiffersconsiderably:itislocatedataboutδ150ppmand160ppm,respectivelyfor the 1,5 and the 2,5regioisomer (Section 2.1.1.). Therefore, the regioisomers can be distinguishedwithahighreliabilityand,generally,theycanbeisolatedingoodyieldsby simplechromatographyonsilicagel. Preparationof Nisopropyltetrazolerings The (R)2(tetrazol5yl)pyrrolidine1carboxylic acid benzyl ester 113 is efficiently alkylated at room temperature in acetonitrileunderbasicconditionsusing2 equivalents of 2iodopropane (Scheme 83) 142 . The two regioisomers are isolated by chromatography(elutionsystem:hexane/ethylacetate3:1).

I K CO H N 2 3 H N H N NH N N + + N N Acetonitrile N N N N N N N Cbz r.t.,3d Cbz Cbz 64%28% 113 161 162

Scheme 81. Synthesisof( R)-2(isopropyltetrazole5yl)pyrrolidine1carboxylicacid benzylesters 161 and 162 Tritylationoftetrazolering

The (R)2(tetrazol5yl)pyrrolidine1carboxylic acid benzyl ester 113 is also efficiently converted into the corresponding trityl derivative using 1.1. equivalent of chlorotriphenylmethaneinthepresenceoftriethylamineinTHFatroomtemperaturefor 2hours(Scheme84).Thetriphenylmethyl(trityl)isacommonprotectinggroupforthe 75 Chapter2.Discussion tetrazoles 173 . According to published data, the alkylation of 113 with triphenylchloromethaneprovidesexclusivelythe2Nderivatives 164 forstericreasons32a andthetritylationpresumablyfollowsaS N1mechanism.

H N Cl H N Et3N N NH + N N THF N N N r.t.,2h N Cbz Cbz 77% 113 163 164

Scheme 82. Synthesisof(R)2(2trityl2Htetrazol5yl)pyrrolidine1carboxylicacidbenzylester 164

Benzylationoftetrazolerings Tetrazole rings are readily converted into the Nbenzyl derivative at room temperatureusing1.2equivalentsofbenzylbromideinacetoneunderbasicconditions. The 4[2benzenesulfonyl2(benzyltetrazol5yl)vinyl]benzoic acid methyl ester 166 and 167 areobtainedinratio1to1(Scheme83).Thetworegioisomershaveasimilar polarityandtheirseparationisverydifficultbychromatographyonsilicagel.

Br N N O N N O O N O O N O N N S N S S N N K2CO3 N H + + Acetone,r.t. 69%

COOCH COOCH3 COOCH3 3 165 68 166 167

Scheme 83. Synthesisof4[2benzenesulfonyl2(benzyltetrazol5yl)vinyl]benzoicacidmethyl ester 166 and 167 Thestarting4[2benzensulfonyl2(tetrazol5yl)vinyl]benzoicacidmethylester 165 is obtained via Knovenagelreactionbetweenthetetrazole 75 andmethyl4formylbenzoate inthepresenceof20%ofpiperidineindioxaneatrefluxfor15hoursyieldingonly30% ofthedesiredKnovenagelproduct 165 (Scheme84).

76 Chapter2.Discussion

N CHO N O O N O O N S N S N N Piperidine20% N H + H Dioxane reflux,15h COOCH3 30% COOCH3 75 72 165

Scheme 84.Knovenagelreactionforthesynthesisof4[2benzensulfonyl2(tetrazol5yl)vinyl] benzoicacidmethylester 165 To improve the yield of this reaction, different reaction parameters were tested but dioxaneassolventinthepresenceofpiperidinewasfoundtobethebestcondition(Table 11).

Entry Aldehyde [equiv] Solvent Catalyst T [°C] Time [h] Yield [%] 1 1 i-BuOH βalanine 100 12 6.5 2 1 pyridine piperidine 125 18 18 3 1 dioxane piperidine reflux 15 30 4 1.5 dioxane piperidine reflux 15 20

Table 11. Screening of reaction conditions for the synthesis of 4[2 benzensulfonyl2(tetrazol5yl)vinyl]benzoicacidmethylester 165 The2(tetrazol5yl)pyrrolidine1carboxylicacid tert butylester 111wasreadily converted into the corresponding Nbenzylated derivatives 168 , 169 under the same conditions as 165 (Scheme 85). Fortunately, in this case, the two regioisomers are efficiently separated by chromatography on silica gel (elution system: hexane/ethyl acetate3:1)

PhCH Br H H 2 H H N K2CO3 N N N N N N + N N Acetone,r.t. Boc N N Boc N N Boc N N

44%49% 111 168 169

Scheme 85. Synthesis of ( S)tert butyl2(benzyltetrazol5yl)pyrrolidine1carboxylate 168 and 169

77 Chapter2.Discussion

2.2.1. Novel Methylation of Tetrazole Rings using 1-Methyl-3-p-tolyltriazene as Methylating Agent Methylation of tetrazole rings is normally carried out by using iodomethane, diazomethane, dimethylsulfate or trimethylsilyldiazomethane (Section 2.1). All these methodologies suffer from several disadvantages such as the high toxic profile and thermalinstabilityofthemethylatingagent,possible presence of byproducts and toxic waterwaste.Therefore,anewandsafemethodologyforthemethylationoftetrazolerings ishighlydesirable.Wehavefoundthatthe1methyl3ptolyltriazeneisanefficientand safer methylating agent for tetrazole ring and overcome the above mentioned disadvantages. 1Alkyl3ptolyltriazenes 197,198,199 are commercially available or canbe easilyprepared 4,200,201 .The1methyl3ptolyltriazeneisawellknownalkylatingagent used for the methylation of carboxylic acids, 193,202 but it was never used for the methylationoftetrazolerings. The methylation of tetrazole rings proceeds nearly quantitatively in an aprotic solvent suchasdichloromethaneatroomtemperatureinashorttimeandwithawidevarietyof 5substitutedtetrazolesinthepresenceofdifferentfunctionalgroupssuchashalogens, doublebonds,protectinggroups(BocandCbz),thioand.Thereactioncanbe easilymonitoredbyTLC(typicalelutionsystem:ethylacetate/hexane1:4)orbyHPLC. Theratioofthe1,5and2,5regioisomersisbetween1:1to1:4dependingonthenature of the substituent in position C5 and the isomers are easily separated by simple chromatographyonsilicagel. Although the mechanism is not well understood, we suggest that the pathway for the carboxylic acids 265,202 canbeextendedto5substitutedtetrazoles.Thetetrazole ring is deprotonated and the resulting tetrazolate attacks the methyl group in a nucleophiic substitutionS N2toformthedesiredNmethyltetrazolederivative,anilineandnitrogen( Scheme86 ). R N R N N R H N N N N N Ar N N N Ar N N N N Me N N + Ar NH2 +N2 H Me H2 Me N Scheme 86.Proposedmechanismforthemethylationof Nunsubstitutedtetrazoleswithmethyl aryltriazene

78 Chapter2.Discussion

2.2.1.1. 1Methyl3ptolyltriazene

Alkylaryltriazenesexistasatautomericmixtureofforms 170 and 171(Figure38) andarealreadyknownasmethylatingagentforcarboxylicacids203 .

H Ar N N NH R Ar N N N R 170 171 Figure 38.Tautomericformsofalkylaryltriezenes

TheIRspectraofmonoalkyltriazenesgenerallyshowtwoNHstretchingvibrationbands, oneat3480–3440cm 1,assignedtotautomer 170 andtheothernear3338cm 1assigned to tautomer 171 201 . From the temperature dependence of the intensity ratio of the IR bands, ∆H of the tautomeric equilibrium is estimated to be 0.3 kcal mol 1. 1H NMR spectrum of 3methyl1ptolyltriazene, measured in dichloromethane at –65 °C or in chloroformat55°C,exhibitsonlyoneresonance,adoubletforthe Nmethylprotons, indicatingthatonlytautomer 170 isdetectableundertheseconditions.However,tautomer 171 of the same ptolyltriazene has been detected in chloroform by 13 C NMR spectroscopy 204 andthefailuretodetectthe 1HNMRsignalsoftheform 171 hasbeen ascribedtolowintensitiesofthesesignalswhichmaywellbeconsiderablybroadened. 2.2.1.1.1. Preparationof1methyl3ptolyltriazene The 1methyl3ptolyltriazene can be easily prepared from the corresponding diazonium6,200,201 saltor via theGrignardmethod 200,201a.

2.2.1.1.1.1.Preparation via Grignard TheformationofmonoalkyltriazenebythereactionofaGrignardreagentwithan arylazidewasalreadyreportedbyDimrothin1903(Scheme87)199,201a.

ArN3+RMgXArN(MgX)N=NRArNHN=NR Scheme 87.Synthesisofmonoalkyltriazene via Grignardreaction Thismethodologycannotbeusedwhenthearylgroupcontainssubstituentswhichmay reactwiththeGignardreagentsuchasCO 2RandCNfunctionalgroups.Inthemajorityof suchinstancesthediazoniumcouplingmethoddescribedbelow,isapracticalalternative.

79 Chapter2.Discussion

2.2.1.1.1.2. Preparation via diazoniumcoupling Themonoalkylaryltriazenescanbeeasilypreparedwiththe Ncouplingofanaryl diazonium salts with primary amines in the presence of sodium carbonate in DMF (Scheme88)200,201a. NHMe N + N2 N Na2CO3 + MeNH2 DMF Me Me 172 173 Scheme 88. Synthesisof1methyl3ptolyltriazene via diazoniumsalt

2.2.1.1.2. Reactionsof1alkylaryltriazene Syntheticapplicationsofmonoalkyltriazenesincludeesterification,deaminationof primary amines and the ability to act as bridging agents in coordination chemistry, althoughonecouldlookuponthispropertyasanextensionoftheirnucleophiliccharacter 201a.

2.2.1.1.2.1.Reactionwithacids Alkylaryltriazenes decompose when in contact with acids; consequently, purificationbystandardchromatographicmethodsisnotalwayspossible201a.Forinstance the reaction of 1phenyl3alkyltriazenes with aluminum trihalides affords N alkylanilines,withnitrogenevolution(Scheme89). H H LA Ar N N NH R Ar N N N R Ar N N N R LA

ArNH2

H Ar N LA R + N2

ArNHR Scheme 89. Degradationofmonoalkylaryltriazenes 2.2.1.1.2.2.Methylationofcarboxylicacids 1Alkyl3aryltriazenesareknownalkylatingagentofcarboxylicacidsbecauseof itsfacilitytoreleasethealkylfragment193,201c, .Thereactionofcarboxylicacidswith1

80 Chapter2.Discussion methyl3ptolyltriazene,inparticularwithpolymethacrylicacids,isalreadyknownfor severalyears(Scheme90) 193,200202 . R COOH + Ar N N NH Me Ar NH2 + R CO2Me + N2

Scheme 90. Methylationofcarboxylicacidswith1methyl3ptolyltriazene The proposed mechanism for the methylation of carboxylic acids with 1methyl aryltriazene follows a nucleophilic substutution S N2 to give the desired methylester, anilineandnitrogen 201a,202 (Scheme91).

O O O H R O O Ar N N N Ar N N N MeO R + Ar NH2 +N2 H Me H2 Me R

Scheme 91.Proposedmechanismforthemethylationofcarboxylicacidswithmethylaryltriazene Contrarytodiazomethane,1methyl3ptolyltriazenecanbepurchasedandsafelystored on the shelf to be used as needed and the formation of polyethylene contamination is eliminated. 2.2.1.1.2.3.Reductiontoanilinesandprimaryamines The alkylaryltriazene can alsobe reduced to aniline andprimary amineby using nickel/aluminum alloy in base 205 . The compound is reduced under mild conditions dissolvingthetriazeneinwateror alcoholwithpotassium hydroxide and treating with nickel/aluminumalloyatroomtemperaturefortwentyhours(Scheme92).

H NiAlalloy Ar N N N Ar NH + H C NH KOH/H O,MeOH 2 3 2 Me 2 r.t.,20h

Scheme 92. Reductionof1methylaryltriazenewithNi/Alalloy 2.1.1.1.2.2. Nucleophilicattack The nucleophilic character of monoalkylaryltriazenesisatonceevidentfromthe fact that formation of pentaazadienes often accompanies triazene formation during N diazo coupling. Dimroth 199 showedthatthesameunsymmetricalpentaazadiene arises

81 Chapter2.Discussion from two different coupling reactions of diazonium salt with 1methyl3aryltriazene (Scheme93). Me N ArN ++ + 2 Ar' N N NH Me Ar NN N N Ar' Ar'N2 + Ar N N NH Me

Scheme 93. Formationofpentaazadiene Significantly,diazocouplingoccursattheNatomadjacenttothemethyl,notthearyl group.ThegreaternucleophilicityofN3isalsoevidentduringacetylationwithacetic anhydride,whichaffords3acylderivatives 199a,201a. Reaction of 1methyl3ptolyltriazene 173 with thioketene 174 affords the Saryl thioimide 176via thethioacylatedtriazene155(Scheme94). Me Me N N2 Ar N N NH Me +(CF ) C=C=S Ar N N N CH(CF3)2 Ar 3 2 S CH(CF3)2 S 173 174 175 176 Scheme 94. Reactionof1methyl3ptolyltriazenewiththioketenes

2.2.1.1.2.5. Complexformation The nucleophilic character of triazenes leads to the formation of triazenidometal bonds,whichofferavarietyofbondingarrangementsintransitionmetalcomplexes201a. Threefundamentalcoordinationmodeshavebeenidentified:1)monodentate,withPtand Pd(typicalfordialkyltriazenes),2)bidentate,withRhandCo,3)triazenidogroupasa bridgingligandbetweentwometalatoms,whichcanalsobebondedtoeachother,with Ag,Rh,IrandHg(Figure39)201a .

N M' N N N N M N N M N M N

1)2)3) Figure 39. Modesofcomplexationoftriazenes

82 Chapter2.Discussion

2.2.1.2. Methylationoftetrazoleringswith1methyl3ptolyltriazene

A series of tetrazoles with different functional groups at the C5 position are converted into the corresponding Nmethyl derivatives in good yield under mild conditions. All the Nmethyl tetrazoles, with exception of 147 and 148 , are unknown compounds. The reactions are achieved by dissolving the tetrazole derivative in dichloromethane and treating with 1.251.5 equivalents of 1methyl3ptolyltriazene from0°Ctoroomtemperature(Scheme95).

CH3 H CH N 3 N N N H3C N N N N N N H N N N N + N R CH2Cl2,r.t. R R CH3 N2Isomer N1Isomer Scheme 95 .Methylationofthetetrazolering WhenHPLCandTLCanalysisshow≥98%conversion(usuallyafter20minutes–2 hours),thereactionmixtureiscooledat0°CandtreatedwithHCl(2M)toquenchthe excessof1methyl3ptolyltriazenewhichdecomposestoaniline, Nmethylanilineand nitrogen (Sectition 5.2.4.). The desired Nmethyltetrazole is extracted with dichloromethane into the organic phase. The two regioisomers are then isolated by chromatographyonsilicagel(typicalelutionsystem:hexane/ethylacetate4:1)toyield thetwopureN1andN2isomersinratiobetween1:1to1:4,dependingonthenatureof thesubstituentinpositionC5(Table12). Allthereactionconditionshereindescribedarenotoptimizedbecauseourfirstgoalwas toprovetheapplicabilityof1methyl3ptolyltriazeneasaversatilemethylatingagent fortetrazolerings. Accordingwithpublisheddata,theN1regioisomerismorepolarcomparedtothe N2and thisisconfirmedbythemeltingpointandtheHPLCanalysis(Table13).Thepositionof theC5signalintheir 13 CNMRdiffersconsiderably:itislocatedataboutδ150ppmfor the N1isomer and 160 ppm for the N2isomer. Therefore, isomeric 1,5 and 2,5 disubstitutedtetrazolescanbedistinguishedwithahighreliability(Introduction,Section 2.1).

83 Chapter2.Discussion

[c] Time N2/ N1-Isomer [b] Yield [%] Entry Product [h] [%] N2 N1 F F CH3 [a] N CH3 1 2 N N N 71/29 58 12 N N N N 146 145

H3C N CH3 N N N [a] Cl Cl 2 2 N 75/25 44 13 N N N 148 147

CH3 N O O N N N O O N S S N N N [a] 3 0.2 CH3 57/43 66 14

COOCH3 COOCH3 177 178

H3C N N N N N N H COOC N N H3COOC 3 CH3 4[a] 4 73/27 53 17 150 149

CH3 N N O N O O N O N [a] S N S 5 0.3 N N 52/48 38 36 CH3 179 180

N CH N N 3 N [a] S S 6 2 NN N N 66/34 55 42 H3C 181 182 CH3 N N N N [a] N N 7 1 S N S N 52/48 53 32 CH3 183 184 H N CH H N 3 N N N [a] N N N N N 8 1.5 Cbz Cbz 75/25 61 31 CH3 185 186

Table 12.Synthesisof Nmethylsubstitutedtetrazoles. Notes:[a]reactionperformedatr.t.;[b] N2/N1ratiobasedonHPLCofthecrude;[c]isolated yieldafterchromatography

84 Chapter2.Discussion

1 13 Product HPLC H NMR (CH 3-N) C NMR (C-5) mp [ppm] [ppm] [°C] 146 8.90 4.45 162.1 7074 145 6.37 4.03 153.7 7477 148 8.21 4.41 163.2 108 147 5.61 4.15 153.2 120 177 9.54 4.40 156.9 156158 178 9.35 3.83 147.8 158160 150 14.03 3.86 164.2 149 12.02 3.56 154.1 117120 179 4.62 4.33 156.1 137139 180 4.55 4.12 146.5 182184 181 5.75 4.40 160.2 8485 182 3.37 4.20 149.4 110111 183 7.90 4.33 162.4 184 6.54 3.84 153.1 185 8.03 4.27,4.30 167.7,167.9* 186 7.08 3.81,4.10 156.3,156.7*

Table 13.Physicalpropertiesof Nmethylsubstitutedtetrazoles. *Rotamers Aromatic tetrazole derivatives in the presence of halogens are suitable substrates for methylation with 1methyl3ptolyltriazene (Table 12; entries 1, 2). The reaction is carried out at room temperature in 2 hours using 1.5 equivalents of 1methyl3p tolyltriazene(Table12;entries1,2).Thehalogenpositiononthearomaticringdoesnot influence the final ratio of N1 and N2regioisomer which is around 1 to 2. Starting tetrazolederivativewhichcontainaromaticrings,conjugateddoublebondandsulphonyl moietyundergoesthemethylationinaveryshorttime(15minutes)affordingthedesired Nmethylatedtetrazole 178 and 177 ingoodyieldwitharegioselectivityN1andN2of1 to4(Table12;entry3).TheXraystructureof 177 wassolvedandusedasadditional referencetodistinguishinallthecasesthe1,5and2,5disubstitutedtetrazoleisomers (seeXraydiscussion,Chapter4)(Figure40).

Figure 40. Structure of 4[2benzene sulphonyl2(2methyl2Htetrazol5yl) vinyl]benzoicacidmethylester 177 inthe crystalwiththermalellipsoidsdrawnat50 %probabilitylevel

85 Chapter2.Discussion

Inthecaseof2’(tetrazol5yl)biphenyl4carboxylicacid187 ,thetetrazoleringandthe carboxylicacidmoietiesaresimultaneouslymethylatedingoodyieldsusing1methyl3 ptolyltriazeneatroomtemperaturein4hours(Table12;entry4)(Scheme96).

H3C N N N N N N N NH CH3 N N HOOC H C N N N H3COOC CH H3COOC N N 3 H 3 + CH2Cl2,r.t.,4h

N1Isomer N2Isomer 187 149 150 Scheme 96.Synthesisof4[1ethylidene2(methylterazol5yl)penta 2,4dienyl]benzoicacidmethylester 149 and 150

Theregioselectivityislowerinthecaseofsulfurcontainingtetrazolederivatives(Table 12;entries57),between1to1(Table12;entry5)uptoca2to3(Table12;entry7)with the2 Nmethylatedtetrazoleasthemajorregioisomer.5Phenylsulfonylmethyltetrazole 75 undergoesthemethylationusing1.4equivalentsof1methyl3ptolyltriazeneatroom temperature for 20 minutes (Table 12; entry 5). The 5thiophen2yltetrazole 109 provides the corresponding Nmethyltetrazoles 181 and 182 in high yield using 1.5 equivalentsof1methyl3ptolyltriazeneatroomtemperaturefor2hours(Table12;entry 6).The5benzylsulfanylNmethyltetrazoles181and 182areobtainedin2hoursingood yield using 1.5 equivalents of 1methyl3ptolyltriazene with a slight higher regioselectivitycomparedto 75 and 17(Table12;entries57). The (S)2(tetrazol5yl)pyrrolidine1carboxylic acidbenzyl ester 112ismethylatedin verygoodyieldusing1.5equivalentsof1methyl3ptolyltriazeneatroomtemperature for1.5hours,witharegioselectivityN1andN2of1to2(Table12;entry8) 205 . The resulting(S)2(methyltetrazol5yl)pyrrolidine1carboxylicacidbenzylesters 185 ,186 can be considered as precursors of a novel class of Nalkylatedtetrazolepyrrolidine organocatalysts 142 (Organocalysis;Chapter3)whichcouldbepreparedfromthecleavage oftheCbzprotectinggroup,asshowninScheme99.

86 Chapter2.Discussion

CH3 H H H H3C N N N H Et AlN N H N N CH3 2 3 N N N CN N N N + N Toluene HN N CH Cl r.t.,1.5h N N N N Cbz Cbz 2 2, Cbz Cbz 50°C,9h H C 120 96% 112 3 61%31% 186 185

H2 EtOH,r.t.34h

H H N N CH N 3 N N N H N N H N N

H3C 188 189 Scheme 97.Proposedsynthesisofnovelorganocatalysts

87 Chapter2.Conclusion

2.3. Alkylation of Tetrazole Rings: Conclusions

Theintroductionofan appropriate Nsubstituentintoanalreadyexistingtetrazole cycleisthemostcommonsyntheticpathwaytodisubstitutedtetrazoles(Section1.1.4), duetotheavailabilityofvariousstartingtetrazoles,alkylatingagentsandthesimplicityof theprocess 32a,98,170 .Thesetransformationsarefundamentallyimportantthereforeinthe last years a wide range of Nalkyltetrazole derivatives has been reported from pharmaceutical companies as compounds which present biological activities 177181 . Although the disubstituted tetrazoles attract interest, the preparation methods for these compounds are not sufficiently developed 37a . Within last decades not a single new approachwasadvancedforbuildingupatetrazoleringwithsubstituentsinposition N1 or N2,especiallyformethylatedtetrazolerings. Wehavepreparedawidevarietyof Nalkylatedtetrazoles,including Nisopropyl, tert butyl(SeeChapter3),trytil,benzylandmethyltetrazoles.Accordingtopublished data for numerous 1,5 and 2,5disubstituted tetrazoles, we were able to isolate and distinguishwithhighreliabilitythetworegioisomers.Inalmostallthecases,alkylationof 5substitutedtetrazoleswithalkylatingagentsgiverisetomixturesofisomeric1,5and 2,5disubstitutedtetrazoles1,171 (Section2.1).Thepositionofsubstitutionhasbeenfound tobesensitivetothestericrequirementsofthealkylatingagentandtotheC5substituent of tetrazole 98,172 . A significant instance are the trytilation and the tert butylation of tetrazoleringswhichprovideexclusivelytheN2regiosiomer. The general protocols for the methylation of tetrazole rings suffer from several disadvantagessuchasthehightoxicprofileofthemethylatingagent,toxicwaterwaste and possible presence of byproducts (Section 2.1.3.). Typical examples of methylating agentsusedfortetrazolesaremethyliodide,dimethylsulfateanddiazomethane.Wehave foundthatthe1methyl3ptolyltriazeneisavaluable,safe andefficientalternativefor themethylationoftetrazolerings,withpossibleapplicationforlargescaleprocess.The1 methyl3ptolyltriazene is a well known alkylating agent used for the methylation of carboxylic acids 193,202 , but never used for the methylation of tetrazoles. The reaction occurs rapidly (20 min to 4 hours) at room temperature. A simple workup procedure gives the mixture of 15 and 25methyltetrazole derivatives which are generally

88 Chapter2.Conclusion separated by chromatography on silica gel. Contrary to other methylating agents, 1 methyl3ptolyltriazene can be purchased and safely stored ontheshelftobeusedas needed.Thepossibilityofpolyethylenecontaminationtypicalinthecaseofdiazomethane is eliminated because of the reagent’s stability. The high reactivity, low cost and safe storageof1methyl3ptolyltriazenemakethisnovelprocessparticularlyattractivewith possibleapplicationinanindustrialscale.Inaddition,otheralkylaryltriazenescouldbe testedandusedtointroducedifferentalkylresiduesinthetetrazolemoietythankstotheir highreactivityasanalkylfragmentdonorandtheiravailability.

89 Chapter3.Introduction

Chapter 3. Organocatalysis Untilafewyearsago,itwasgenerallyacceptedthattransitionmetalcomplexesand enzymes were the two main classes of very efficient asymmetric catalysts. Synthetic chemists have scarcely used small organic molecules as catalysts throughout the last century, even though some of the very first asymmetric catalysts were purely organic molecules.Bycontrastchemistshavefocusedontransitionmetalcatalysts.Achangein perception occurred during the last few years when several reports confirmed that relatively simple organic molecules can be highly effective and remarkably enantioselective catalysts of a variety of fundamentally important transformations 206 . This rediscovery has initiated an explosive growth of research activities in organocatalysis both in industry and in academia. As realization grows that organic molecules not only have a "green" advantage but also can be very efficient catalysts, asymmetricorganocatalysismaybegintocatchupwiththespectacularadvancementsof enantioselectivetransitionmetalcatalysis. Asymmetric catalysis represents still one of the major challenges in modern organic chemistry. Besides the wellestablished asymmetric metalcomplexcatalyzed syntheses and biocatalysis, the use of "pure" organic catalysts turned out to be an additionalefficienttoolforthesynthesisofchiralbuildingblocks.

90 Chapter3.Introduction

3.1. Organocatalysis: introduction Between the extremes of transition metal catalysis and the enzymatic transformations, a third approach to the catalytic production of enantiomerically pure organiccompoundshasemerged:organocatalysis207 .Organocatalysisistheacceleration of chemical reaction with substoichiometric amount of an organic compound. Organocatalystsarepurely“organicmolecules”composedofmainlyC,H,O,N,SandP atoms to accelerate chemical reactions. Organocatalysts have several advantages includinginertnesstowardmoistureandoxygen,availability,lowcostandlowtoxicity, which confers a huge direct benefit in the production of pharmaceutical intermediates whencomparedwithtransitionmetalcatalysts.

During the last few years the asymmetric catalysis of carbonyl transformations via iminiumionandenamineintermediatesusingchiralaminesasorganocatalystshasgrown mostremarkably.ThefirstpublicationsfromthegroupsofMacMillan,List,Denmark, andJacobsenamongotherspavedthewayintheyears1990s.Thesereportsintroduced highlyenantioselectivetransformationsthatrivaledthemetalcatalyzedreactionsinboth yieldsandselectivity.Oncethisfoundationwaslaid,mountinginterestinorganocatalysis wasreflectedinarapidincreaseinpublicationsonthistopicfromagrowingnumberof researchgroups.

91 Chapter3.Introduction

3.1.1. Catalysts and Mechanism: The Enamine and Iminium Catalysis

ThemajorityoforganocatalystsareLewisbaseswhichinitiatethecatalyticcycle via nucleophilicadditiontothesubstrate208 .Twodifferentapproachescanbeenvisaged fororganocatalyzedreaction 209,210,211 (Scheme98).

N N :Nu EWG

Enamine Iminium Scheme 98.Enamineandiminiumorganocatlysysapproach

3.1.1.1. Enaminecatalysis

Thefirstmechanisminvolvesthecatalyticformationofanenamineintermediate with the chiral amine, generally a chiralpyrrolidinederivative.Theenamine,whichis generated from carbonyl compound via iminium ion formation, reacts with an electrophile to give an αmodified iminium ion which gives, upon hydrolysis, the α modified carbonyl compound 153e,212 (Scheme 99). Examples of enamine catalysis are prolinecatalyzed aldol reactions, Mannich reactions and Michael additions among others 207 .

O N +H+ H+ R 1 H2O R1 R2 R2

N N H R1 R2 Electrophile H O Y XY: CN +H2O Y X N NN R X 1 X ON R2 R1 Y CC R2 Scheme 99. Enaminecatalysis

92 Chapter3.Introduction

3.1.1.2. Iminiumcatalysis

Thesecondapproachisbasedonachiraliminiumionfromanunsaturatedcarbonyl andthechiralamine.Theactivespeciesisaniminiumionformedbyreversiblereaction of a chiral amine with an α,βcarbonyl substrate (Scheme 98). Example of iminium catalysisistheMacMillan’senantioselectiveDielsAlderreaction 213 .

3.1.1.3. Organocatalysts

WhereasmanymetalcentersaregoodLewisacids,organiccatalyststendtoreactas heteroatomcentered Lewis bases. Novel, previously unexplored catalysts classes are emerging.Forexample,asymmetriccatalysisbyBrønstedacidisarecentadditiontothe field of organocatalysis. Moreover, the design and use of synergetic systems and bifunctionalcatalysts,whichhavetwodistinctfunctionalities (e.g. a Lewis base and a Brønstedacid)withinthesamemolecule,isbecomingmoreandmorecommon 207 . A selection of typical organocatalysts is shown in Figure 41. Proline 193 , a chiralpool compound which catalyzes reactions by iminium ion or enamine pathway, is a prototypicalexamplewhichpromotesaldolandrelatedreactions 210,214 .Thesameistrue forcinchonaalkaloids 215 190 and 191 .Aminoacidderivedorganocatalystssuchasthe oxazolidinone 192introducedbyMacMillan etal . 213orthethiourea 199introducedby Jacobsen etal. haveenabledexcellentenantioselectivityine.g .,DielsAlderreactionsof α,βunsaturatedaldehydes(oxazolidinone 192 )orhydrocyanationof 216 (thiourea 199 ).Diaminecatalystssuchas 195 and 197 introducedrespectivelybyAlexakis 209,217 and Barbas 218 are versatile organocatalysts for Michael additions as well as tetrazole analoguesofprolinederivatives 114 219and 197153g,160a .

93 Chapter3.Introduction

OMe OMe H N O CH H OH 3 OH N N PhH2C CH3 H H N CH N N H 3 190 191 192 H H Ph N COOH Ph N N N N N N H H OTMS H H OMe H 193 194 195 196 197

tBu H S H H H N N N R N N N N H H H N N H NH O N N N 114 198 N 199 HO

tBu OR Figure 41. Selectionoforganocatalysts 3.1.1.4. Proline

3.1.1.4.1. History Despitetoveryrecentintroductionofthistypeofcatalysistosyntheticchemistry, organocatalytic reactions look back on a venerable history. The first example of an asymmetric organocatalytic reaction was reported y in 1912, by Bredig and Fiske 220 . They reported a modestly enantioselective (≤ 10 % ee) alkaloidcatalyzed cyanohydrin synthesis.Inthe1960s,Pracejus etal. showedthatorganocatalystscangivesignificant enantioselectivities.Usingalkaloidsascatalysts, afforded quite remarkable 74 % ee in theadditionofmethanoltophenylmethylketene 221 .The1970sbroughtamilestoneinthe areaofasymmetricorganocatalysis,whentwoindustrialgroupsledbyHajosatRoche and Wiechert at Schering published the first highly enantioselective catalytic aldol reactionsusingthesimpleaminoacidprolineascatalyst222 ,wheretheresultingketoneis animportantintermediateinsteroidsynthesis(Scheme100).Thecinchonaalkaloidsand prolinestoodastheonlyfamiliarorganocatalystsforsometime.

O O H3C H3C LProline(3.47mol%) H3C CH CN O O 3 O r.t.,80°C 200 201 Scheme 100. TheHajosParrishEderSauerWiechertreaction

94 Chapter3.Introduction

3.1.1.4.2. Reactivityofproline Proline is capable ofpromoting a variety of catalytic asymmetric transformations 153,207,210 .ItcanreactasanucleophilewithcarbonylgroupsorMichaelacceptorstoform iminium or enamines (Scheme 103). The use of proline as a catalyst requires normally amounts in the range of 1020 mol % and furthermore, the substrate itself (ketoneoraldehyde)orDMSOserveassolvents. Y O H X Electrophile XY: CN N CO2H NN R1 ON R 2 R1 CC H2O R2 H O = H N H O N CO2H Y H R1 H R X O Y 2 H O X +H2O R1 R N O 2 Y H R X 1 R2 Scheme 101. TheSprolinemediatedenaminecatalyticcycle 153d

3.1.1.5 Pyrrolidinetetrazole

Prolinederived compounds have proven themselves to be real workhorse organocatalysts.Theyhavebeenusedinavarietyofcarbonylcompoundtransformations, wherethecatalysisisbelievedtoinvolvetheiminiumform.Thesecatalystsarecheap andreadilyaccessible . Theorganocatalysissystemthathasbeenstudiedextensivelyistheenantioselective prolinebasedonewhichacceleratesarangeoftransformationsincludingaldolreactions, Robinson annulation, Mannich reaction and Michael additions. Although proline is an idealcatalystintermsofpriceandavailability,oftenencountereddrawbacksrelatesto lowreactivity andlowsolubilityofthe catalyst. In addition, when these reactions are highlyenantioselective,theyrequiresolventsuchasDMSOduetotheinsolublenatureof theprolineitself.Anold“trick”inmedicinalchemistrytoimprovethesolubilityofa carboxylicacidisthereplacementoftheacidfunctionalitywithatetrazolemoiety.A

95 Chapter3.Introduction second generation catalysts, in which the carboxylic acid of proline is replaced by a tetrazolicacidhavethereforerecentlyemergedandhavebeenproventoshowimproved 223 reactivityand/orselectivityformanyorganocatalyzedreactions .

3.1.1.5.1. Historyandsynthesis

Although ( S)5(pyrrolidine2yl)tetrazole 114 has already been synthetized in 1971byGrzonka etal. 224 andthephisicochemicalandbiologicalpropertieshavebeen investigatedinthemild1980s,itspotentialinasymmetric catalysis has been reported only in 2004 by Ley, 225 Yamamoto, 155 and Arvidsson et al. 226 . Starting from the commercialavailable NbenzyloxycarbonylprotectedSproline202 ,( S)5(pyrrolidine2 yl)tetrazoleisobtainedinfivesteps(Scheme102).

EDCl,HOBT NaN NH Cl H H 3, 4 H N 10%Pd/C,H2 H N NH (aq),r.t. CN DMF,9095°C N AcOH/H O N N COOH 3 N N 2 N HN N r.t.,4h N pTsCl,pyridine 78% Cbz H HN Cbz Cbz 89% CH2Cl2,r.t. 75% 202 120 112 114 Scheme 102. Synthesisof( S)5(pyrrolidine2yl)tetrazole114 proposedbyLey 225 3.1.1.5.2. Reactions The use of pyrrolidinetetrazole as a valuable alternative to proline as organocatalystisincreasingsince2004.Inthissectionwepresentonlyabriefoverview ofsomereportedapplicationofpyrrolidinetetrazoleinasymmetriccatalysis. Proline itself can be regarded as a bifunctional catalyst, with a carboxlic acid and an amine moiety, as well as the pyrrolidinetetrazole (Scheme 103). These two functionalities can both act as acid or base and can also facilitate chemical transformations.

H H H H N COO COOH N N N N N N N H H H H HN H N N Bifunctional Bifunctional N H Scheme 103. BifunctionalsitesforSprolineandpyrrolidinetetrazole Thehigherreactivityandenantioselectivityoftenobtainedwith(S)5(pyrrolidine

2yl)tetrazole catalyst is ascribed to the lower pKa and increased steric bulk of the

96 Chapter3.Introduction

tetrazolemoietyrelativetoSproline.TetrazoleandSprolinehaveap Kavalueof~8 and~12,respectivelyinDMSO.Thehydrogenbonding interactions in the transition stateofthesamereactionwiththetwocatalystsarelikelydifferentandprovidedifferent levelsofenantioselection 223 (Figure42).

N N R' H R' Y H X Y X H H O N O N N N 203 204 Figure 42. Proposed transition states 203 of Sproline and pyrrolidinetetrazole 204 mediatedenaminecatalyticcycle

3.1.1.5.2.1. AsymmetricMannichreaction Barbas et al. recently reported the organocatalytic Mannich reaction of azido ketoneswithiminesinthepresenceofthe( S)5(pyrrolidine2yl)tetrazoleascatalystto afford diamines with excellent yields and enantioselectivities 157 . The azido group controlstheregioselectivityofthereactionprovidingaccesstochiral1,2diaminesfrom azidoketones(Scheme104).

O PMP O NHPMP O NHPMP N Cat.30mol% Pd/C,H2 CO2Et CO2Et solvent,r.t. Boc2O N3 CO Et N3 NHBoc 2 EtOAc,48h 205 206 207 208

Catalyst Solvent Time Yield dr [s yn /anti] ee ( syn )[%] H O N DMSO 48 84 51:49 92 H OH H N DMSO 4 93 94:16 98 N N CH Cl 120 93 83:17 90 H HN N 2 2 Scheme 104. Organocatalyticasymmetricsynthesisof1,2azidoamine Ley et al. reportedtheapplicationof( S)5(pyrrolidine2yl)tetrazole to catalyze Mannichtype addition of ketones to NPMPprotected αimino ethyl glyxalate 225 (Scheme105).

97 Chapter3.Introduction

O O NHPMP NPMP Cat.5mol% CO2Et solvent,r.t. CO2Et 209 206 210 Catalyst Solvent Time Yield Dr [s yn /anti] ee [%] H N N N CH 2Cl 2 2 65 >19:1 >99 H HN N H O N CH 2Cl 2 2 0 H OH Scheme 105. Additionofcyclohexanoneinto N-PMPprotectedαiminoethylglyxalate It is interesting to note that the same reaction conditions with Sproline 227 gave no observable product after the same amount of time, indicating that organocatalyst solubilityisakeyinthisreaction. TheproposedhydrogenbondedtransitionstateissimilartothatsuggestedbyHoukand Bahmanyar 228(Figure43).ThePMPgrouponthesitsaxiallytoavoidclashwith thetetrazole,therebyforcingthe Eenaminetoproducethe syn product.

PMP N R' N H H N N CO2Et N N Figure 43. ProposedtransitionstateforthepyrrolidinetetrazolecatalyzedMannichreaction.

3.1.1.5.2.2. AsymmetricNitroMichaeladdition (S)5(Pyrrolidine2yl)tetrazole114isasuitableorganocatalystfornitroMichael addition and overcomes the solventlimits of the Sproline 229 . In alcoholic solvent, pyrrolidinetetrazole outperforms the proline, both in terms of yield and enantioselectivity(Tables14,15). O O Ph NO2 NO Cat.15mol% 2 solvent,24h 206 211 212

98 Chapter3.Introduction

Author Catalyst Solvent T [°C] Yield [a] [%] dr [b] ee [c] [%] [syn/anti] 229 Ley CH 2Cl 2 20 20 >15:1 40 H N CH 2Cl 2 40 98 >15:1 37 N N DMSO 20 97 >15:1 35 H HN N MeOH 20 61 >15:1 53 EtOH 20 65 >15:1 65 CH 2Cl 2 40 0 H O MeOH 20 37 >15:1 57 DMSO 20 93 >15:1 35 230 N List H OH DMSO 20 94 >20:1 23 Barbas 218c THF 20 7 48:1 56 Barbas 218b N THF 20 86 48:1 86 NH

209 Alexakis N N CHCl 3 20 74 94:6 81 H HCl N IPAEtOH Ley 160a N 20 >19:1 91 1:1 NH HN N

Table 14. Michaeladditionofcyclohexanonetonitrostyrene;[a]isolatedyield;[b]basedon 1H NMR;[c]basedonchiralHPLC Using thepyrrolidinetetrazole 114 ascatalyst,thereactioncanbeperformedwith1.5 equivalentsofketone231 .Therelativeconfigurationoftheproducthasbeenconfirmedby Xray analysis 229 . The improvement in enantioselectivity of the pyrrolidinetetrazole catalystovertheprolinesuggeststhatthereisan inherent difference between the two organocatalyststhataltersthetransitionstate.Theproposedtransitionstatesinvolvesthe participationofthetetrazoleinahydrogenbondedframeworkasissuggestedbyEnders forproline(Figure44).

N H R N R' H N N NO2 N Figure 44. ProposedtransitionstateinorganocatalyzedasymmetricnitroMichaeladdition The nitro Michael addition of isovaleraldeyde to nitrostyrene is tested with several organocatalysts,butneverwith 114 or 115(Table15).

O O NO2 Cat.20mol% H H solvent,r.t. NO 2 213 211 214

99 Chapter3.Introduction

Time Yield [a] dr [b] ee [c] (syn) Author Cat. Solvent [h] [%] [anti/syn] [%] H 218a,218c O Barbas N THF 72 <5 93:7 25 H OH N O THF 72 78 92:8 72 NH N THF 72 80 80:20 75 NH O O 232 Alexakis NH N CHCl 3 72 85 94:6 88 O H 233 iPr [d] Palomo N CH 2Cl 2 2024 >99 98:2 40 NH iPr N IPA:EtOH Ley160a N 24 3940 >19:1 37 (1:1) NH HN N Table 15.Michaeladditionofisovaleraldehydetonitrosyrene.[a]isolatedyield;[b]basedon 1H NMR;[c]basedonchiralHPLC;[d]Determinedby 1HNMR 3.1.1.5.2.3.Asymmetricadditionofmalonatestoenones O O O O Cat.15mol% O EtO OEt 15mol% OEt N H r.t.,48h O OEt 215 216 217

Cat. Solvent Conversion [a] [%] ee [b] [%] H N CH Cl 89 79 N 2 2 N CHCl 3 69 89 H HN N N N CHCl 3 40 0 NH HN N H O N CHCl 3 62 38 H OH Table 16.Organocatalyzedadditionofmalonatetocyclohexanone.[a] Estimatedby 1HNMR;[b]BasedonchiralHPLC

(S)5(Pyrrolidine2yl)tetrazole 114 is an effective catalyst for the asymmetric additionofmalonatestoenones(Table16).Thereactiongivesgoodresultsforarangeof substratesprovidingtheproductwithgoodenantioselectivitiesusing1.5equivalentsof enoneascouplingpartner234 .

100 Chapter3.Introduction

3.1.1.5.2.4.Asymmetricαaminationofaldehydes Barbas etal. recentlyreportedtheapplicationofthepyrrolidintetrazolecatalyzed αaminationofanaldehydeinatotalsynthesissequenceofthecelladhesioninhibitor BIRT377 223 (Scheme106). Cl

CO2Bn O H N O HN O N N N HN N Cl N H CO Bn H H CO2Bn N N 2 15mol% 7steps O N CH3CN CO2Bn Br

Br BIRT377 51%overall Br 218 219 220 221 Scheme 106. SynthesisofBIRT377 3.1.1.5.2.5.Aldolreactions (S)5(Pyrrolidine2yl)tetrazole 114isasuitableorganocatalystforaldolreaction 226,235 (Table17).Thedirectasymmetricaldolreactionbetweenketonesandaldehydes reliesonactivationoftheketonepartnerthroughformationofthecorrespondingenamine as an intermediate through condensation with the secondary amine function of the catalyst(Scheme109). O OH O O H Cat.20mol%

O N 25°C,4h 2 O2N 222 223 224

Cat. Solvent Yield [%] ee [%] H N DMSO 93 76 N N Dioxane 88 66 H HN N DMF 93 70 H O DMSO 75 73 N Dioxane 55 44 H OH DMF 50 70 Table 17.Organocatalyzedaldolreaction 226

101 Chapter3.Introduction

O H N H N N N N N H HN N HN N

OH O

=_ R N R O H H N H N N N Scheme 107.Proposedmechanismforpyrrolidinetetrazolecatalyzedaldolreactions 226

Thepyrrolidinetetrazoleismorereactiveandsometimesyieldshigherstereoselectivity comparedtoproline,whenemployedasorganocatalyst.Arviddson etal. suggestedthata possibleexplanationisthatprolineeasilyengagesinbicyclicoxazolidinoneformation, while pyrrolidinetetrazole does not 226 . Consequently, more catalyst is available for formingtheenamineintermediateinthealdolreactioninthecaseofpyrrolidinetetrazole thanwhenprolineisused. In addition,factors related to the low solubility of proline contributeinreactivity. 3.1.1.5.2.6. O Nitrosoaldolreaction Yamamoto etal. recentlyreportedtheuseofthe(S)5(pyrrolidine2yl)tetrazole 114asanefficientcatalystfor Onitrosoaldolractions236(Scheme108). O O O O Ph Cat.5mol% N N Ph H DMSO,r.t. 209 225 226

Cat. Time [h] Yield [%] ee [%] H N N N 1 94 >99 H HN N H O N 1 35 >99 H OH Scheme 108. ONitrosoaldolreactionofcyclohexanonewithnitrosobenzene Usingα,βunsaturatedketonesYamamoto etal. reportedthesynthesisofanitrosoDiels Alder adducttype via an Onitroso aldol reaction, followed by a Michael reaction (Scheme109) 159 .

102 Chapter3.Introduction

O H N O N O N (20mol%) N H HN N O Ph CH3CN,40°C,15h N 228 Ph 227 225 64%yield 99%ee Scheme 109. Stepwise Onitrosoaldol/Michaelreaction

3.1.1.6. Homoprolinetetrazole

The synthesis and application of the homologue of the pyrrolidinetetrazole has beenreportedbyLeyandcoworkers(Scheme110) 160a,219 .

H 1.CbzCl,Et3N H 1.NaCN,50°C H 10%Pd/C,H2 H CH2Cl2 93% AcOH/H O,r.t. N N N 2 N H OH OTs 2.TsCl Cbz 2.NaN3,NH4Cl NH 55% H NH pyridine,20% Cbz DMF,150°C N N N N 77% N N 73% 229 230 231 198 Scheme 110. Synthesisofthehomoprolinetetrazole HomoprolinetetrazolecatalyzestheasymmetricMichaeladditionofaketonetoanitro olefin. Its use gives improved entioselectivities in the Michael addition of carbonyl compoundstonitroolefins(Scheme111)(Section3.1.1.6.). O H O Ph N NO N 2 NO2 88%yield N 15mol% NH N dr:>19:1 IPAEtOH(1:1),r.t.,24h ee(syn):91% 209 211 212 Scheme 111. Michaeladditionofcyclohexanonetonitrostyrene

Two possible transition states are proposed. Both involve an electrostatic interaction betweenthenitrogroupandthenitrogenofthepyrrolidinering(Figure45).

N N N N N H NO N 2 H R R' R' H R

NO2 N N N N 232 233 Figure 45. Hydrogenbondedtransitionstate 232 ,andsterichindranceoftetrazole 233

103 Chapter3.Introduction

Screening of different ketones and nitro olefins suggests that the nature of the nitro Michaelacceptorhaslesseffectonthestereoselectivityofthereactionthantheketone. This observation supports the second model of transition state since any electronic changeofthenitroolefincouldleadtoasignificantchangeintheinteractionsinthe 160a model 332(Figure45) .

104 Chapter3.Discussion

3.2. Organocatalysis: Results and Discussion Theinitialaiminourinvestigationwastodesignanovelclassoforganocatalysts whichcouldbeusedinsolventsmorecommonlyusedinorganicsynthesiswithhighly lipophilic substrates. Using our new methodology for the synthesis of tetrazole rings starting from the corresponding nitrile with dialkylaluminum azide (Section 1.2.), we decided to prepare a variety of compounds based on pyrrolidinetetrazole skeleton 142 whichcouldfindinthefutureapplicationasanovel class of organocatalysts (Scheme 112).

H H N N N e N N d N H N N H N N 92% 94% 235 236

H a H N b H N c H N CN N N CN 9298% N 9098% N 9096% N HN N N Cbz Cbz H HN 115 Cbz 234 113 f h l 234 28% 65% >99% H N H N H N N N N N N N N N N N M Cbz Cbz H N N 162 161 239:M=Na+ g i + 88% 98% 240:M=K 241:M=Cs+ H N H 242:M=Pd++ N N N N N N N N H H N 237 238

Scheme 112. Preparationofoganocatalystsbasedonpyrrolidinetetrazoleskeleton. a)Et 2AlN 3, xylene,50°C,9h; b,i )Pd/C(10%wt),H 2,EtOH,r.t.,4h; c)2equivEt 2AlN 3,xylene,55°C,9h, then85°C,9h; d)αmethylstyrene,TFA,CH 2Cl 2,r.t.,3d;e) tBuOH,H 2SO 4,TFA,CH 2Cl 2,r.t.,8 h; f,h ) iPrI,K 2CO 3,MeCN,r.t.,3d; g)Pd/C(10%wt),H 2,EtOH,r.t.,7h

105 Chapter3.Discussion

3.2.1. Synthesis of a Novel Class of Organocatalysts 3.2.1.1. Synthesis of 5-pyrrolidine-2yl-tetrazole

5Pyrrolidine2yltetrazolerepresentsanewprolinederivedorganocatalystthatwas developedrecentlybyourself 142 andothers 155,225,226 .BoththeSandthe Renantiomers maybeprepared(Figure46).

H H N N N N N N H N N H N N H H 114 115 Figure 46. Structureof( S)114 and( R)5pyrrolidine2yltetrazole 115

Theutilityofthiscatalysthasbeendemonstratedinseveraltypesofreactionsincluding Mannichandaldolreactions,andMichaeladditions( Section3.1.3.1). However, all the methods for the preparation of 114 and 115 suffer from some disadvantagesinthetetrazoleformingstep.Thegeneralmethodstoconvertthenitrile into the corresponding pyrrolidinetetrazole use ammonium azide 155,225,226 or triethylammoniumazide 237asazidesourceswhichcanformdangeroussublimatesonto the side of the reaction vessel (Section 1.1.3.1.2.1.). Furthermore, the reported hydrogenationforthefinalcleavageoftheCbzgrouprequirestheuseof9:1aceticacid watermixtureunderahydrogenatmosphere(Scheme113,Table18).

H 1 H N 2 H N CN N N N N N HN N H HN N Cbz Cbz 120 112 114

Scheme 113. Generalsequenceforthepreparationof(S)5(pyrrolidine2yl)tetrazole 114 from thecorrespondingCbzprotectednitrile120

106 Chapter3.Discussion

STEP 1 Author Reagent Solvent Time [h] T [°C] Yield 238 Sharpless NaN 3,ZnBr 2 H2O/ iPrOH 16 reflux 91 239 Almquist NaN 3,NH 4Cl DMF 6 9095 100 155 Yamamoto NaN 3,NH 4Cl DMF 6 95 95 225,229 Ley NaN 3,NH 4Cl DMF 8 9095 78 237 Ley NaN 3,Et 3NHCl Toluene 24 95 95 226 Arvidsson NaN 3,ZnBr 2 H2O/ iPrOH 16 reflux 98 Sedelmeier, R2AlN 3(R=Me,Et) Tolueneorxylene 69 50 9096 Aureggi 142 STEP 2 Author Reagent Solvent Time [h] T [°C] Yield 239 Almquist H2,Pd/C10% AcOH/H 2O9:1 4 r.t. 68 155 Yamamoto H2,Pd/C10% AcOH/H 2O9:1 4 r.t. 95 229 Ley H2,Pd/C10% AcOH/H 2O9:1 4 r.t. 89 237 Ley H2,Pd/C10% AcOH/H 2O/EtOH1:1:1 98 226 Arvidsson H2,Pd/C10% Noconditions Noyieldgiven Sedelmeier, H2,Pd/C10% EtOH 4 r.t. 9096 Aureggi 142 Table 18. Reportedreactionconditionsforthepreparationof(S)5(pyrrolidine2yl)tetrazole 114 fromthecorrespondingCbzprotectednitrile For the first time we report a mild reaction conditions sequence which provides the desiredtetrazoles 114 and 115 inhighyieldandhighreproducibilityprovedfromthefact thatthissequencewasalsoscaledupin1.5kgforthepreparationofthe Renantiomer (Scheme114). Pd/C,H Et2AlN3 2 tolueneorxylene EtOH H 5055°C911h H N r.t.,35h H N CN N N N 9298% N 9098% N HN N H HN N Cbz Cbz 234 113 115 Scheme 114 .Sequenceforthesynthesisof(R)5(pyrrolidine2yl)tetrazole 115 fromthecorrespondingCbzprotectednitrile234

The formation of the tetrazole ring proceeds well under mild conditions. Using 2.4 equivalentsofEt 2AlN 3intolueneatroomtemperature,thereactionrequireslongertime to reach completion. However, under these condition, after 2 hours the reaction conversionobservedbyHPLCwas46%andafter4hoursalready94%.However,to

107 Chapter3.Discussion achieve total conversion (> 98% based on HPLC) the reaction requires 48 hours. Decreasingtheamountofazideto1.5or1.3equivalentsdoesnotdecreasetherate. At 50 °C after only 2 hours, 95 % of reaction conversion was observed by HPLC, howeverthereactionreachedtotalconversionafter912hours.Dimethylaluminumazide (1Minhexane)wastestedasanalternativetodiethylaluminumazide,butthereaction requires24hourstoreachcompletionprobablybecauseofthelowerconcentrationofthe reagent. The ( R) and the ( S)enantiomers of the starting nitrile, provide the correspondingtetrazolewiththesameyield. TheCbzgroupisremovedbyhydrogenationusing10%wtPd/Cinethanolfor3to5 hours at room temperature. We have found that ethanol could be a more appropriate solvent 205 comparedtotheaceticacidwatersystempreviouslydescribedbyothergroups 282a,293,301.Oncethatthehydrogenationiscompleted,thecatalystisremovedbyfiltration throughceliteandaceticacidandwatershouldbeusedtoremovetraceofproductonthe celite layer. The filtrate is concentrated and the (R)5(pyrrolidine2yl)tetrazole is crystallizedfromasolutionofaqueousaceticacid/ethanol.Xrayanalysisoftheproduct shows that ( R)5(pyrrolidine2yl)tetrazole exists as a zwitterionic form in the solid state(Figure47)(SeeXraydiscussion;Chapter4)

Figure 47. Structure of (R)-5pyrrolidine2yl tetrazole 115 inthecrystalwiththermalellipsoids drawnat50%probabilitylevel

3.2.1.1.1. Onepotprocedureforthesynthesisof5pyrrolidine2yltetrazole We observed that the Cbz protecting group can be removed with the diethylaluminumazideattemperaturehigherthat65 °C. The pyrrolidine tetrazole 114 and 115 canbedirectlyobtainedinonepot 142bywarmingthereactionmixtureatmore than65°Cwithanexcessofdialkylaluminumazidetoprovidefirstthecycloadditionand then the cleavage reaction (Scheme 115). Although purity of the 5pyrrolidine2yl tetrazoleobtainedwiththeonepotprocedureishighaccordingtoNMR,broadpeaksby IR and low optical rotation value may suggests the presence of some water soluble inorganicmaterialsthataredifficulttoremove.

108 Chapter3.Discussion

H H H 1eq.Et2AlN3 N 1eq.Et2AlN3 N CN NH N N Toluene N Toluene N N N H HN N Cbz 55°C,9h Cbz 85°C,9h 98% 120 112 114 Scheme 115. Onepotreactionforthepreparationof5pyrrolidine2yltetrazole 114 3.2.1.1.2. Preparationofpyrrolidinetetrazolemetalsalts Neutralization of tetrazolic acid with metal hydroxide or analogues gives stable metaltetrazolatesalts(Section1.1.1.2.) 142 .Sodium,potassiumandcesiumsaltsofthe (R)5pyrrolidine2yltetrazole are prepared mixing 115 with equimolar amounts of metalhydroxideinmethanolorwateratroomtemperature.Evaporationofthesolvent leadsthedesiredsaltinquantitativeyield(Scheme116).

H MOH H N N N N N CH3OHorwater N H N HN H N N M 115 239:M=Na+ 240:M=K+ + 241:M=Cs Scheme 116. Preparationofpyrrolidinetetrazolemetalsalts239 241 The(R)5pyrrolidine2yltetrazolesodiumsalt 239 canbealsoquantitativelyprepared usingsodiummethanolateinmethanolatroomtemperature(Scheme117).

N N N N Na H N H N NaOCH3 N N H CH OH NH 3 NH 115 239 Scheme 117. Preparationof(R)5pyrrolidine2yltetrazolesodiumsalt 239 The ( R)5pyrrolidine2yltetrazole palladium (II) complex 242 is prepared in aqueous THF with palladium acetate (0.5 equivalents) at 50 °C (Scheme 118). The productcrystallizesinquantitativeyieldafterstandingatroomtemperaturefortwohours to give a white crystalline material suitable for Xray analysis (See Xray discussion; Chapter4).

109 Chapter3.Discussion

H N N N NH H N N N Pd(OAc) H N 2 Pd N H N THF,H2O H 50°C,1h N N N N N H 115 242 Scheme 118. Preparation and structure of ( R)5pyrrolidine2yltetrazole palladium( II ) complex 242 inthecrystal(thermalellipsoidsdrawnat50%probabilitylevel)

3.2.1.2. Synthesisof Nalkylatedpyrrolidinetetrazoles

3.2.1.2.1. Synthesisof2tert-butyl5pyrrolidine2yl2H-tetrazole(237,243) Both the pure enantiomeric forms of the 2tertbutyl5pyrrolidine2yl2H tetrazole, 237 and 243 , are efficiently prepared in sulfuric acidic media with tert butanol 142 . According to published data 98,174,175 , the 2 Nalkyl isomer is the only regioisomerobtained 98,142,176 (Section2.1.).Webelievethatregioselectivityisduetothe steric bulk of the alkylating agent. The reaction proceeds at room temperature in the presence of trifluoroacetic acid (ten folds excess),sulfuricacidandtwoequivalentsof tert butanol (Scheme 121). Basic extraction with dichloromethane and aqueous potassiumcarbonateorsodiumhydroxideprovidesthefreebaseproductasabrownoil. H tBuOH H N N H SO 2 4 H N N CF COOH N N 3 N N CH2Cl2 N N H H 114 243 Scheme 119. Preparationof2tert-butyl5pyrrolidine2yl2Htetrazole243 Brown crystals of (R)2(2tert butyl2Htetrazol5yl) pyrrolidinium trifluoro acetate 244suitableforXrayanalysisareobtainedbytreatingthefreebasewithtrifloro aceticacidindichloromethane(Scheme120,Figure48)(SeeXraydiscussion;Chapter 4).

110 Chapter3.Discussion

H N N CF3COOH H N N CH Cl N N 2 2 NH r.t.,5min N N N H H TFA 243 244 Scheme 120.Preparationof(S)2(2tert butyl2Htetrazol5yl)pyrrolidiniumtrifluoroacetate 244 Figure 48. Structure of (S)2(2tert-butyl2H tetrazol5yl)pyrrolidiniumtrifluoroacetateinthe crystal with thermal ellipsoids drawn at 50 % probabilitylevel

2tertButyl5pyrrolidine2yl2Htetrazole treated with equimolar amount of HCl in dichloromethane leads, after evaporation of the solvent, to the ( R)2(2tert butyl2Htetrazol5yl) pyrrolidinium chloride 245 as a pink crystalline material (Scheme121).

H H N HCl N N N CH Cl N N N 2 2 N N H N r.t.,5min H H Cl 236 245 Scheme 121. Preparationof( R)2(2tert-butyl2Htetrazol5yl)pyrrolidiniumchloride 245 3.2.1.2.2. Synthesis of 2(1methyl1phenylethyl)5 -(R) pyrrolidine2yl2H tetrazole(235) 2(1Methyl1phenylethyl)5 (R)pyrrolidine2yl2Htetrazole 235 is efficiently prepared under acidic conditions (Scheme 122) 142 . Pyrrolidinetetrazole 115 is first dissolvedatroomtemperatureintrifluoroacetic acidanddichloromethane,thentreated withαmethylstyreneandstirredforthreedays.Abasicextractionwithaqueoussodium hydroxideneutralizestheexcessoftrifluoroaceticacid.Theorganicsolventisremoved toaffordacolorlessoilwhichcrystallizesuponstandingatroomtemperature.Colorless singlecrystalssuitableforXrayanalysesareobtained(Figure45)byslowevaporation ofamixtureofmethanol/ethylacetate(SeeXraydiscussion;Chapter4).

111 Chapter3.Discussion

H H N CF3COOH N N + N N CH2Cl2 N H HN N r.t.,3d H N N 115 246 235 Scheme 122. Synthesisof2(1methyl1phenylethyl)5-(R) pyrrolidine2yl2Htetrazole235

Figure 49. Structure of 2(1methyl1phenyl ethyl)5-(R) pyrrolidine2yl2Htetrazole 235 in thecrystalwiththermalellipsoidsdrawnat50% probabilitylevel

Colorless crystals of 2[(1methyl1phenylethyl)2Htetrazol5yl] pyrrolidinium saccharinate 248areobtainedbymixingequimolaramountof 235with obenzoicacid sulfimideindichloromethane(Scheme123)142 .SinglecrystalssuitableforXrayanalysis are obtained by slow evaporation of the solvent (Figure 50) (See Xray discussion; Chapter4).

H O N O N S H N N CH2Cl2 N NH + N H H N N O H N N N O O S O 247 235 248 Scheme 123. Preparation of 2[(1methyl1phenylethyl)2Htetrazol5yl] pyrrolidiniumsaccharinate 248

Figure 50.Structureof2[(1methyl1phenylethyl)2H tetrazol5yl] pyrrolidinium saccharinate 248 in the crystalwiththermalellipsoidsdrawnat50%probability level

112 Chapter3.Discussion

3.2.1.2.3. Isopropyl5(R)pyrrolidine2yltetrazole(237,238) The two regioisomers of the ( R)(isopropyltetrazol5yl)pyrrolidine1 carboxylic acid benzyl ester 237 and 238 are efficiently hydrogenated to provide the cleavageoftheCbzprotecting groupinethanolat room temperature for 4 to 7 hours (Scheme124)142 .

H N H N N H2,Pd/C10% N N N EtOH,r.t. N N N H N Cbz N1isomer:162 N2isomer:237 N2isomer:161 N1isomer:238 Product Time [h] Yield [%] 237 7 88 238 4 98 Scheme 124 .Preparationofisopropyl5(R)pyrrolidine2yltetrazole 237 and 238

Yellowsinglecrystalsofthe1Nisomer 237suitableforXrayanalysisareobtainedby slow evaporation of a mixture of ethanol / dichloromethane (Figure 51; See Xray discussion;Chapter4). Figure 51. Structure of 1isopropyl5(R)pyrrolidine2yl 1Htetrazole 237 in the crystal with thermal ellipsoids drawnat50%probabilitylevel

Brownsinglecrystalsof2isopropyl5(R)pyrrolidine2yl2Htetrazolesquaricacidsalt 250 suitable for Xray analysis are obtained by slow evaporation of a solution of dichloromethane/THFcontainingequimolaramountsof3,4dihydroxy3cyclobutene 1,2dioneand 238 (Scheme125,Figure52;SeeXraydiscussion;Chapter4).

113 Chapter3.Discussion

H O OH N N H N CH Cl THF + N 2 2, N N N N N r.t. H H O OH H N O OH

O O 249 238 250 Scheme 125. Preparationof2isopropyl5(R )pyrrolidine2yl2Htetrazolesquaricacidsalt250 Figure 52. Structure of 2isopropyl5(R ) pyrrolidine2yl2Htetrazolesquaric acid salt 250 inthecrystalwiththermalellipsoidsdrawn at50%probabilitylevel.

114 Chapter3.Discussion

3.2.2. Enamine There is agreement in the scientific community that the proline and analogues mediatedreactionsofaldehydesandketoneswithelectrophilesinvolvesanintermediate enamine. The prolinebased organocatalyzed Michael addition of aldehyde to nitro olefins very likely proceeds via an enamine mechanism with aminebased organocatalysts 240 . Despite the increasing interest on organocatalysis confirmed by the increasingnumberofpublicationsduringthelastyears,therearenotreallyevidencesof theenamineintermediateinthecatalyticcycle(Scheme126). During the course of our studies, we have detected, characterized with spectroscopic analysisand,insomecases,isolatedavarietyofenaminederivedfromthecondensation of aldehydes with the 5pyrrolidine2yltetrazole and its corresponding Nalkylated derivatives. Y H N X Electrophile O N N HN N R1 H2O R1 R2 R2 H N N = H N N N N N N Y H H N HN R X 1 H R2 O Y H N X +H2O N R1 N N R2 N Y H R X 1 R2 Scheme 126. Enaminecatalyticcycleofthepyrrolidinetetrazolemediatedreactions 3.2.2.1. Introduction

Seebach etal. reportedthediastereoselectiveMichaeladditionof( E)enaminesto (E)nitro olefins 241 . The reaction of nitrostyrene 211 with enamines preformed from ketonesandmorpholineleadstoγnitroketonespossessingdiastereomericpuritiesof90 99%(Scheme127).TheMichaeladditionoccurswiththe( Re*Re*)approachofthetwo componentsintheNewmanprojectionwitha gauche relationshipofthedonorandthe acceptorπsystemintheMichaeladdition(Figure53).

115 Chapter3.Discussion

O

N O NO 2 Ether,r.t. NO2 88% + dr99:1 251 211 252 Scheme 127. DiastereoselectiveMichaeladditionofenaminetonitrostyrene O

N

H NO2

Ar H Figure 53. (Re*Re *)Approach TheyalsoreportedthechiralversionofthisMichaelreactionpreformingtheenamine withachiralmorfolineandcyclohexanone,andtreatingitwithnitrostyrene 242 .TheX raystructureoftheresultingenamineintermediatewassolved(Scheme128).

Ph O

O Me N H Ph NO2 NO2 Me N 254 + Ether,r.t.,24h Ph O 253 Me N Ph H NO2

255

Hydrolysis

O O H Ph H Ph NO NO2 2 +

252 212 Scheme 128. Asymmetric Michael addition and Xray structure of the enamineMichael intermediate 305 Seebach et al. recently reported the role of the equilibrium between the enamine intermediateandtheoxazolidinoneforminthecatalytic cycle of the prolinecatalyzed

116 Chapter3.Discussion

Michaeladditions(Scheme129),inwhicheachspeciesinvolvedinthecatalyticcycleare characterizedbyspectroscopicstudies243 .

H H H H O CO H CO H O N 2 N 2 N CO2 H N O R1 R1 R1 R' R2 R2 R2 R Scheme 129. Equilibriumbetweentheenamineandoxazolidinone Barbas etal. reportedthedetectionofenamineformationthroughUVspectroscopy 214,218a,c ,andAlexakis etal. reportedthedetectionofanenamineintermediatebyGCMS 244 . Jørgensen et al. reported the reaction between a chiral preformed enamine with methylvinylketone 211 togivethedesiredproductwith72%ee(Scheme130).

Ar O O N O Ar CH2Cl2/MeOH + H H 257 72%ee 356: Ar= 258 Scheme 130. Michaeladditionofpreformedenaminewithmethylvinylketone 3.2.2.2. Enamineformation

WehavetestedournewcatalystsinMichaeladditionofcarbonylcompoundswith nitrostyrene(Section3.2.3.).Thehigh syn selectivityweobservedisinaccordancewith resultsobtainedinconjugateadditionsofpreformedenaminestonitroolefinsmentioned above.Keyfeatureofthesecatalystsarethepresenceofthesecondaryaminerequiredfor enamine formation. Further studies are needed to elucidate the mechanism of these Michaeladditions,whichverylikelyproceed via anenaminemechanism. Hereinwereportanenamineformationstudybetweenanaldehydeandournewclassof organocatalystsbasedonpyrrolidinetetrazoleskeleton. Theenamineformationbetweenaselectionofaldehydesandourspyrrolidinetetrazole organocatystsisprovenbyspectroscopicstudies(Scheme 131, Table 19). In a general procedure, equimolar amounts of aldehyde and catalyst are dissolved in d6DMSO. Signalscorrespondingtotheenaminestructureweredetectedinallthecases. 1HNMR

117 Chapter3.Discussion

spectrain d6DMSOrevealedinallthecasesacharacteristicsignalatδ6.06.4ppmwith acouplingconstantof ca 13.8Hz( doublet or singlet dependingonthestartingaldehyde) attributedtothevinylicprotonαtothenitrogen(hydrogenoftheformeraldehyde).The secondcharacteristicsignaloftheenamineisthehydrogenatδ4.04.9ppm( 3J=13.8 Hz)whichcorrespondstotheβvinylicproton.

H O NR' H N N R' DMSO N H + N N N N 510min R' H N N H R Scheme 131. Equilibriumoftheenamineformation 245 Enamine Entry Aldehyde Chiral Amine Product E/Z formation [%] O H N CH N 1 H 3 N 259 90 75:25 Ph H HN N O H N 2 CH N tBu 98 84:16 H 3 N 260 H N N Ph O CH3 3 H 261 23 Ph N Ph H O H N 4 N 262 70 >99:1 H N H HN N O H N 5 N Cumyl >99 >99:1 H N 263 H N N O H N tBu 6 N >99 >99:1 H N 264 H N N Table 19.Enamineconversionbasedon 1HNMRanalysis BasedonNMRanalysis,5{1[2phenylprop1en1yl]pyrrolidine2yl}tetrazole 259 isformedafter5minutesatroomtemperaturewithaconversionof90%(Table19;entry 1).The Eenamineisthemajorproductwitharatio Eand Zenamineof75to25(Figure 54). Using the 2tertbutyl5pyrrolidine2yl2Htetrazole the equilibrium is almost shiftedtotheenamine(98%conversion)witharatio Eand Zenamineof84to16(Table 19;entry2).

118 Chapter3.Discussion

H N N O H H N N N N N N CH3 H C H N d DMSO H + N 3 H + 6 N N N H N N H H 0.35 H CH3 H 0.30

6.42 EEnamine ZEnamine 0.25

0.20

0.15 H NormalizedIntensity

0.10 6.08

0.05

0

1.00 0.31

6.75 6.70 6.65 6.60 6.55 6.50 6.45 6.40 6.35 6.30 6.25 6.20 6.15 6.10 6.05 6.00 5.95 5.90 5.85 5.80 5.75 5.70 5.65 5.60 5.55 5.50 ChemicalShift(ppm)

Figure 54. 1HNMRsignaloftheenamine 259 Usingthe(R)(+)Nbenzylαmethylbenzylamineaschiralamine,only23%ofenamine was detected by 1H NMR analysis (Table 19; entry 3). Equimolecular amounts of isovaleraldehyde and (S)5pyrrolidine2yltetrazole 114 forms 6770 % of Eenamine formation(Figure55;Table19;entry4).ThesameexperimentusingSprolinerevealed signalswhichcanbeattributedtothosecharacteristicofenamineswithaδ3.99( dd , 3J= 13.8Hz,1H)andaδ6.04( d, 3J=13.8Hz,1H)(Figure56;Table19;entry5).

O H O H H NH H N N d + N N NN 6DMSO H N H + N N N N HN N N N N H N N H HN H HN 0.040 H N N N H H H N H H H 0.035 67 % H(H3J=13.8)

0.030 6.01 3

6.05 3 H( J=13.8)H 6.05 H( J=8.1,8.8) 0.025 H 4.06 4.08 4.03 4.05 4.68 4.66

0.020 4.69 4.66 0.015 omlzdIntensity NormalizedI

0.010 St.Mat.

0.005

0 1.01 0.50 1.04 1.17

6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4. 6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3. 8 ChemicalShift(ppm) Figure 55. Enamineformationbetweenisovaleraldehydeand(S)-5pyrrolidine2yltetrazole 114 119 Chapter3.Discussion

O H H H N O N O N d DMSO H + N 6 N N N H OH H OH H H H H 3.33

0.040

0.035

0.030 3 H 0.025 H( J=13.8Hz) 5.26 3.95 0.020 3.94 3.93 3 3.92 NormalizedIntensity 3 0.015 H(H JJ=13.8Hz)=13.8Hz) 5.24 4.00 5.28 6.03 6.07

0.010 3.99 3.71 3.70 3.72 4.02 3.73 4.03 5.66 5.65 5.68 0.005 3.62

0 1.00 1.21 3.03 3.21 1.08

6.0 5.5 5.0 4.5 4.0 3.5 ChemicalShift(ppm) Figure 56.ReactionbetweenisovaleraldehydeandSproline.Characteristicsignalsofenamine formation Using Nalkylated pyrrolidine tetrazoles (Table 19; entries5,6) aschiralamineswith isovaleraldehyde,theequilibriumisshiftedtotheenamineformationandthesignalsof thestatingamineandaldehydearedisappear.ThesameNMRexperimentperformedin

CDCl 3revealsaconversionof9094%.Thisdifferencecanbeexplainedbythepresence ofhydrochloricacidinthesolventwhichcouldhydrolyzepartiallytheenamineformed. Enamine derived from the condensation of isovaleraldehyde (1.6 equivalents) and N alkylatedtetrazolescanbeisolatedandcharacterized(ForexamplesseeFigures57,58). The reaction is carried out in dichloromethane with an excess of solid potassium carbonatetocatchthewaterformedduringthecondensationtotheenamine.Themixture isstirredatroomtemperaturefortwentyminutes,thepotassiumcarbonateisfiltered,the solventandexcessofisovaleraldehyderemovedtogivetheproductasacolorlessoilin quantitativeyield(Scheme132).Theenaminesformedarecharacterizedbyspectroscopy (NMR,IR,MS;formoredetailsseeexperimentalpart;Section5.3.).

H O N R H R N N K2CO3 N H + N N N N CH Cl ,r.t.,20min H NN 2 2 H

213 235:R=2NCumyl 263:R=2NCumyl 236:R=2NtBu 264:R=2NtBu 237:R=1N-iPr 265:R=1N-iPr 238:R=2N-iPr 266:R=2N-iPr Scheme 132. Preparationofenamines

120 Chapter3.Discussion

H d DMSO N 6 O N H K CO N 0.7 N 2 3 NN N H H + N H CH2Cl2 0.6 H NN

0.5

0.4

0.3 NormalizedIntensity

0.2

0.1

1.00 1.01 1.04 1.08 1.04 1.03 9.71 6.37

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 ChemicalShift(ppm)

d6DMSO

0.12

0.11

0.10

0.09

0.08

0.07 3 0.06 H ( J = 13.8 Hz) 3 0.05 3 H ( J = 13.8 Hz)

5.98 H( J=7.8,8.0Hz)

6.02 H NormalizedIntensity 0.04 4.06 4.03 4.08 4.04 4.57 4.56 4.55 0.03 4.58

0.02

0.01

1.00 1.01 1.04

6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 ChemicalShift(ppm) Figure 57. 1H NMR spectrum of the enamine 264 formed from the condensation between isovaleraldehydeand2tert-butyl5(R)pyrrolidine2yl2Htetrazole 236 (Formoredetailsseethe experimentalpart;Section5.3.)

121 Chapter3.Discussion

H N O N H N d6DMSO N K CO N 2 3 NN H + N H H NN CH 2Cl 2,r.t.,20min H 0.9

0.8

0.7

0.6

0.5

0.4 NormalizedIntensity 0.3

0.2

0.1

2.99 1.96 0.99 0.99 1.00 1.09 1.06 6.01

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 ChemicalShift(ppm)

d6DMSO

0.30

0.25

0.20 H ( 3J = 13.8 Hz)

0.15 H ( 3J = 13.8 Hz) 5.94

5.97 H H( 3J=7.8,8.0Hz) NormalizedIntensity 4.05 4.01 4.06 4.03 0.10 4.59 4.58 4.57 4.60

0.05

0 1.00 1.00 1.01

6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 ChemicalShift(ppm)

Figure 58 . 1H NMR spectrum of the enamine 263 formed from the condensation between isovaleraldehyde and 2(1methyl1phenylethyl)5 -(R)pyrrolidine2yl2Htetrazole 235 (For moredetailsseetheexperimentalpart;Section5.3.) 3.2.2.3. Oxazolinesformation Thetreatmentofα,αdiphenylprolinolwithisolvaleraldehydeindichloromethanein the presence of potassium carbonate provides to a bicyclic oxazoline compound 345 (Figure 59). Netherless, the use of cyclohexanone under the same reaction conditions doesnotyieldthecorrespondingoxazolinederivative.

122 Chapter3.Discussion

d6DMSO O

K2CO 3 H + N 0.9 N CH 2Cl 2,r.t.,20min O H HO 0.8

0.7

0.6

0.5

0.4 NormalizedIntensity 0.3

0.2

0.1

0 2.03 8.12 2.00 1.97 3.07 1.00 1.05 4.00

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 ChemicalShift(ppm)

Figure 59. (3 R,4 S)3Isobutyl1,1diphenyltetrahydropyrrolo[1,2c]oxazole 267 (Formoredetails seetheexperimentalpart;Section5.3.)

123 Chapter3.Discussion

3.2.3. Michael Addition Asymmetric CC bond forming reactions are among the most challenging endeavorsinorganicsynthesis.TheMichaelreactionisgenerallyregardedasoneofthe efficientandeffectivetransformationsandstudiesconcerningthisreactionhaveplayed animportantroleinthedevelopmentofmodernorganicchemistry 246 . Inorganocatalysis,themostcommonfeatureofthisreactionistheuseofunmodified nucleophilic donors that, upon activation by intermediate enamine formation, add stereoselectivelytothecorrespondingacceptorelectrophilesunderverymildconditions. Prolinewasoneofthefirsttobestudiedanditsuccessfullycatalyzedthereactionbothin DMSO and alcoholic solvents. However, in most cases reported the enatioselectvities obtainearerelativlylow(SeeSection3.1.). Inordertotesttheefficacyofournewpyrrolidinetetrazolebasedcatalysts,theMichael additionofacarbonylwithnitrostyrenewasselected. 3.2.3.1. Michaeladditionofisovaleraldehydeandnitrostyrene

The organocatylized Michael additions of isovaleraldehyde with nitrostyrene were screened at room temperature in different solventsandcatalyticamountsof(R) (tetrazol5yl)pyrrolidine 115 (Table20).Theamountsofcatalystplaysaroleintherate ofthereactionandthebestresultsareperformedingeneralwith20mol%ofcatalyst. The reaction proceeds smoothly in dichloromethane (Table 20; entries 47). Different amountsofcatalystdonotinfluencetheenantioselectivity,whileslightlyinfluencethe diastereoselectivity which is higher with 2040 mol % of catalyst. Good diastereoselectivityareobtainedalsoinethanoloracetonitrile(Table20;entries13,9 10),althoughtheenatioselectivityislower.Inionicliquidsthereactionisfaster,butless selective(Table20;entries1116).

124 Chapter3.Discussion

H N N O O NO N N N 2 H H NO H + H 2 solvent,r.t. 213 211 214 Cat Time Conversion [a] dr [b] ee [c] Entry Solvent [mol%] [h] [%] [syn/anti] [%]syn

1 CH 3CN 5 43 36 13:1 30 2 10 23 >95 17:1 30 3 20 19 >95 19:1 31

4 CH 2Cl 2 5 47 57 14:1 49 5 10 30 >95 15:1 52 6 20 20 >98 19:1 56 7 40 20 >98 19:1 55 8 EtOH 10 28 93 17:1 24 9 20 20 >99 17:1 28 10 40 5 >95 25:2 19

11 BumiPF 6 5 24 >95 12:1 31 12 10 18 >95 12:1 31 13 20 5 >95 12:1 32

14 EtmiBF 6 5 15 >99 18:1 20 15 10 4 >99 18:1 29 16 20 3 >99 18:1 24 Table 20.Michaeladditionofisovaleraldehydeandnitrostyrene.[ a]basedonHPLC analysis of the reaction mixture; [b] based on HPLC analysis of the crude product;[c]basedonchiralHPLCofthecrudeproduct Aselectionofcatalystswastestedatroomtemperature(Scheme133;Table23).TheS prolinecatalyzesthereactioninashortertimecompareto(R)(tetrazol5yl)pyrrolidine 115 (Table 21; entries 13; 68), while the enantioselectivity is in general lower. The diastereoselectivity in ethanol is higher for proline (Table 21; entry 7), while in dichloromethane or acetonitrile is lower (Table 21; entries 6,8). NAlkylpyrrolidine tetrazolesarenotsuitablecatalystsfortheMichaeladditionundertheseconditions(Table 21;entries4,5)aswellastheLprolinol(Table21;entry9).

O O NO 2 Cat.20mol% NO H + H 2 solvent,r.t. 213 211 214 Scheme 133. Michaeladditionofisovaleraldehydewithnitrostyrene 125 Chapter3.Discussion

Cat Time Conversion [a] dr [b] ee [c] Entry Solvent [h] [%] [syn/anti] [%]syn N 1 CH 2Cl 2 NH 20 >98 19:1 56 2 EtOH 20 >98 17:1 28 N N N 3 CH 3CN H 19 >95 19:1 31

N 7:1 4 CH Cl N 120 35 26 2 2 N N N H . HCl

N 5 EtOH N 76 90 7:1 23 N N H . HCl N 6 CH 2Cl 2 O 120 55 6:1 7 EtOH 5 >96 25:1 19 N OH 8 CH 3CN H 21 >96 6:1 10 9 CH 2Cl 2 48 20 2:1 N OH H Table 21. Michael addition of isovaleraldehyde and nitrostyrene. [ a] based on HPLC analysisofthereactionmixture;[b]basedonHPLCanalysisofthecrudeproduct;[c] basedonchiralHPLCofthecrudeproduct Interesting to note is that the (R)(tetrazol5yl)pyrrolidine 115 and its Nalkylated derivativesgivethesameenatiomer(enantiomerB:13.01minonchiralHPLC),whileS prolineandthe(S)(tetrazol5yl)pyrrolidine 114 theoppositeone(enantiomerA:8.26 minonchiralHPLC). TheproductobtainedfromtheMichaeladditionofisovaleraldehydeandnitrostyreneis sensitivetoracemizationonαposition.Forthisreason,wehavefoundmoreappropriate the direct reduction to the corresponding more stable primary alcohol. However, no relevantincreaseofenantioselectivitywasobserved. When the Michael reaction reach completion, the mixture is cooled to 0 °C and treated with an excess of sodium borohydride(Scheme134).

H N O NH N O OH NO2 H N N NaBH H 4 + H CH2Cl2 0°Ctor.t. r.t.,20h NO2 2h NO2

89%yield dr(syn/anty):19:1 ee:63% 213 211 214 268 Scheme 134. Michaeladditionfollowedbyreductiontoprimaryalcohol268

126 Chapter3.Discussion

3.2.3.2. Michaeladditionofcyclohexanoneandnitrostyrene

O O NO2 Cat.20mol% + r.t.,solvent NO2 209 211 212

Cat Time Conversion [a] dr [b] ee [c] Entry Solvent [h] [%] [syn/anti] [%]syn H 1 DMSO N 57 >99 17:1 49 NH 2 EtOH N 30 >99 19:1 60 H N N H 3 DMSO N 30 >95 2:1 13 N 4 EtOH N 30 >95 4:1 7 H N N . HCl H 5 DMSO N 40 >95 2:1 11 N N H N N . HCl 6 DMSO H 58 >99 13:1 23 O 7 EtOH N 30 >95 20:1 49 H OH

Table 22. Michael addition of cyclohexanone and nitrostyrene. [ a] based on HPLC analysisofthemixture;[b]basedonHPLCanalysisofthecrudeproduct;[c]basedon chiralHPLCofthecrudeproduct

The organocatalyzed Michael addition of cyclohexanone with nitrostyrene was screenedatroomtemperatureinDMSOandethanolwithdifferentcatalysts(Table22). Thereactionisperformedwithstoichiometricamountsofcyclohexanonewith20mol% ofcatalystatroomtemperature.Accordingtopublisheddata 229,230the2(R)(tetrazol5 yl)pyrrolidinegivesbetterdiastereoandenantioselectivitythanprolineinbothDMSO and ethanol (Table 22; entries 14). The corresponding Nalkyltetrazoles catalyze the reaction only after the addition of small amount of hydrochloric acid. However the diastereoselectivitiesandtheenantioselectivitiesarenot satisfactory.

127 Chapter3.Conclusion

3.3. Organocatalysis: Conclusions The enantioselective organocatalysis in which the reaction is mediated by a catalytic amount of chiral organic molecule is an emerging powerful tool in organic synthesis.Theinterestinthisfieldhasincreasedinthelastfewyears,andmorereactions and more class of organocatalysts are expected in the future. The hope is that organocatalysiswillfindaconsistentapplicationoutsidetheacademicenvironmentfor thesynthesisofcomplexmolecularstructures. Prolineisoneexampleofaversatileorganocatalyst.Howeverthereareanumberof drawbacksintheuseofprolineincludingitslimitedsolventsolubility(reactionsareoften performedinDMSO).Inadditionarelativelyhighcatalystloadingisusuallyrequired, commonly proline is used at levels of around 20 mol %. To overcome the above mentioned disadvantages of proline, the tetrazole analogue, namely the pyrrolidine tetrazole, is receiving considerable attention and represents a valuable alternative to proline,particularlyasitavoidstheuseofsolventsuchasDMSOandcanalsobeusedin smallerquantitieswithoutcompromisingonenantioselectivity 225 . Takingin accounttherecentlyemerginginterestin tetrazole analogues of proline, we haveefficientlypreparedavarietyofnewcompoundsbasedonthepyrrolidinetetrazole skeletonwhichcouldrepresentanovelclassoforganocatalystsinthefuture 142 . Despite the considerable progress that has been made in the elucidation of mechanisminvolvedinorganocatalyzedreactions,weareonlybeginningtounderstand thebasicfactorsthatcontrolthereactivityandselectivityinthesereactions.Therefore therationaldesignofnovelorganocatalystsremainsinmostcasesdifficult. Onemechanismcommonlyacceptedistheenaminecatalyticcycleinwhichthecatalytic formationofanintermediateenaminegeneratedfromacarbonylspeciesandthechiral organocatalystreactswithelectrophiles.Duringourinvestigationwehavedetected,and insomecasesisolated,theenamineintermediateswhicharesupposedtobeinvolvedin the enamine cataticcycle. Unfortunately, we were notabletoisolatesinglecrystalsof thesecompoundssuitableforXrayanalysiswhichcouldgivesomeadditionalimportant knowledgefortheunderstandingofthemechanisminvolved. InadditionwehaveselectedMichaeladditionofcarbonylcompoundstonitrostyreneto test the efficiency of some new pyrrolidinetetrazole based catalyst. In general the

128 Chapter3.Conclusion pyrrolidinetetrazole is superior to proline, and could be used in solvent such as dichloromethanewhereprolinefails,and Nalkylpyrrolidinetetrazolesarenotsuitable catalysts for these reactions. Further investigations on the new organocatalysts herein describedshouldbedoneinthefuture.

129 Chapter4.XRayDiscussion

Chapter 4. X-Ray Structures of Tetrazole Derivatives

AsalreadydiscussedinChapter1.1,thetetrazole ring exists in two tautomeric forms,1 Hand2Hform(Figure60)1. Inthegasphasecalculationsshowthatthe2 H tautomeristhefavoriteandinsolutionthe1 Hform,whichhasanhigherdipolemoment, isthedominanttautomer.The1 Htautomerisalsothemajorisomerinthesolidstateand this is supported by Xray crystallography data where intermolecular hydrogen bonds chains have been detected in the crystal structures 247,248,249 between the N1 and N4 atomsofadjacentringswiththeprotonpreferentiallylocatedattheN1site.

4 4 3 3 N N 5 N N R R 5 N N 2 N NH H 1 1 2 1H 2H Figure 60. Tautomericformsoftetrazolederivativesandnumberingofthetetrazolering

AvarietyofXraystructuresofour5substitutedtetrazoleshavebeensolved.All unsubstitutedtetrazoleshereinreported( 109 , 119 ,17 ),withexceptionofthepyrrolidine tetrazolederivative 115 whichispresentinthezwitterionicform,crystallizedasits1 H tautomer. Tetrazoles and tetrazolate complexes show the tetrazole ring to be a planar resonancehybrid 250 .Thebondlengthsandanglesinthetetrazoleandarylringsofthe structures herein reported are in accordance with literature data and are not discussed further162,247,248,251 .Selectedbondlengthsandanglesarelistedintablesinthissection.

4.1. 5Thiophen1Htetrazole(109)

YellowsinglecrystalssuitableforXrayanalysisareobtainedbyslowevaporation ofanethylacetatesolution(Figure61;seeChapter5.1).Thiscompoundcrystallizesin themonoclinicspacegroupPc,witha=9.962(2)Å,b=9.213(2)Å,c=7.219(2)Å, β= 3 3 110.516(9),Z=4,V=620.5(3)Å ,D c =1.629g/cm ,R 1=0.0275,wR 2=0.0748.The asymmetric unit has two molecules with the sulfur atoms disordered over two

130 Chapter4.XRayDiscussion orientationsAandB(Figure62).Molecule 109.II, positionAisthemajoronewitha ratio65:35ofAtoB.Molecule 109.I thepositionAisalsothemajoronebutwitha85: 15AtoB.

Figure 61. Structure of 5thiophen1Htetrazole 109 inthecrystalswiththermalellipsoidsdrawn at 50 % probability level. Minor orientation omittedforclarity

Figure 62. Asymmetric unit of 5thiophen1H tetrazole 109 withthethiopheneringdisordered overtwoorientationsAandB 109.II 109.I

Themolecule 109.II hasthetetrazoleandthethiopheneringstwistedwithrespecttoone another, with dihedral angles of 29.5(3)° and 31.1(5)° for the minor orientation B. In molecule 109.I thetworingsarealmostplanarwithrespecttooneanotherwithdihedral anglesbetweenthetetrazoleandthethipheneringsof4.5(2)°and3.8(11)°fortheminor orientationB.Withinthelimitsofaccuracyallbondlengthsintheorderedpartofthe structureagreewithexpectedvalues 251 .Furtherdetailsaregivenintables2527. ThetetrazoleringexistsintwotautomericformsN1andN2wheretheN1andN2are respectivelythenitrogenatomsinαandβpositiontothecarbonofthetetrazolering (Introduction, Chapter 1), however the 5thiophen1Htetrazole 109 crystallized exclusivelyinthe1 Htautomericform. Thiscouldbealsosupportedbythepresenceofa heteroatom such as sulphur which could be involved in an intramolecular hydrogen bonds.HowevertheintramolecularN −H⋅⋅⋅ShydrogenbondsarenotobservedbyXray analysis. Instead, the 1 Hisomer is stabilized by intermolecular hydrogen bonds with adjacentNatoms(Table26).ThecrystalpackingisaidedbyN −H⋅⋅⋅Nhydrogenbonds whichformlinearchainsalongthebaxis(Table26).

131 Chapter4.XRayDiscussion

Table 23. Bondlengths[Å]for5thiophen1Htetrazole109 Atoms Bond length C1AS2A 1.711(2) S2AC3A 1.721(3) S2BC3B 1.715(16) S2BC1B1.641(12) C11AS12A 1.676(3) S12BC11B1.666(6) S12AC13A 1.519(6) S12BC13B 1.362(11) C6–N10 1.327(3) C6–N7 1.343(3) C1–N20 1.321(3) C16–N17 1.345(3)

Table 24. Bond angles[°]for 109 Table 25. Torsionangles[°]for 109 Atoms Angle Atoms Angle C1AS2AC3A 91.77(14) N7–C6–N10–N9 0.3(3) C1BS2BC3B93.4(10) N8–N9–N10–C6 0.1(3) C13AS12AC11A 96.0(3) N20–C16–N17–N18 0.7(3) C13BS12BC11B100.9(7) C16–N17–N18–N190.0(3)

Table 26.Hydrogenbondsfor5thiophen1Htetrazole 109 [Åand°] D-H···A d(D-H) d(H···A) d(D···A) <(DHA) N7H7...N20#1 0.88 1.99 2.858(3) 168.5 N17H17...N10#2 0.88 2.00 2.865(3) 165.9

Symmetrytransformationsusedtogenerateequivalentatoms: #1x+1,y1,z#2x,y+1,z

4.2. 5(Benzylthio)1H tetrazole(17)

YellowsinglecrystalssuitableforXrayanalysisareobtainedbyslowevaporation ofanethylacetatesolution(Figure63;seeChapter5.1).Thiscompoundcrystallizesin themonoclinicspacegroupP2 1,witha=15.323(4)Å,b=5.761(2)Å,c=41.875(2)Å, β 3 3 =100.517(10),Z=16,V=3634.4(16)Å ,D c =1.405g/cm ,R 1=0.0318,wR 2=0.0832.

132 Chapter4.XRayDiscussion

Figure 63 . Structure of 5(benzylthio)1H tetrazole 17 in the crystal with thermal ellipsoidsdrawnat50%probabilitylevel

The asymmetric unit consists of eight molecules (Figure 64). The 5(benzylthio)1H tetrazole 17 hasthetetrazoleringandthephenylringtwistedwithrespecttooneanother (Table27).ThetorsionanglesdescribedfromtherepresentativeatomsC5S6C7C8are slightlydifferentineachmoleculeoftheasymmetricunit(Table30). Withinthelimitsof accuracy all bond lengths and angles agree with expected values. The representative distances and angles involving the sulfur atom are mentioned in table 8 and further representativedetailsaregivenintables2730. 3 15 16 5 4 6 7 13 8 11

14 9 10 12 Figure 64. Crystal packing of 5(benzylthio)1H tetrazole 17 and numbering of tetrazole and phenylrings

133 Chapter4.XRayDiscussion

Table 27. Dihedralanglesbetweentetrazoleandphenylrings [°]for 17 .ThenumberingoftheringsisshowninFigure81 Rings Angle 1,2 86,93(17) 3,4 80.29(16) 5,6 84.63(17) 7,8 74.91(17) 9,10 81.0617) 11,12 86.55(16) 13,14 86.29(17) 15,16 75.75(16) Table 28. Bondlengths[Å] 17 Table 29. Bond angles[°]for 17 Atoms Bond length Atoms Angle N1C5 1.336(4) N1C5S6 123.9(2) N4C5 1.323(4) C5S6C7 100.12(14) C5S6 1.731(3) C8C7S6 106.6(2) S6C7 1.832(3) C7C8 1.512(4) Table 30. Torsion angles[°]for5(benzylthio)1H tetrazole17 Atoms Angle C5–S6–C7–C8 170.6(2) C105–S106–C107–C108 162.8(2) C205–S206–C207–C208 164.2(2) C305–S306–C307–C308 153.4(2) C405–S406–C407–C408 162.0(2) C505–S506–C507–C508 171.3(2) C605–S606–C607–C608 154.6(2) C705–S706–C707–C708 162.7(2) The crystal packing is aided by intermolecular N −H⋅⋅⋅N hydrogen bonds which form linear chains along the baxis (Table 31). The 5(benzylthio)1H tetrazole 17 crystallizedexclusivelyinthe1 Htautomericform.Thisfactcouldbeexplainedlooking theintermolecularhydrogenbondsinthecrystalpacking.TheN −H⋅⋅⋅Nhydrogenbonds form a linear chain between the NH of the N1tautomerofonemoleculeandtheN1 positionofthemoleculeneighbor.

134 Chapter4.XRayDiscussion

Table 31.Hydrogenbondsfor5(benzylthio)1H tetrazole 17 [Åand°]

D-H···A d(D-H) d(H···A) d(D···A) <(DHA) N1H1...N304#1 0.88 1.88 2.756(4) 173.7 N101H101...N4#2 0.88 1.83 2.711(4) 175.1 N201H201...N104 0.88 1.86 2.735(4) 176.2 N301H301...N204#2 0.88 1.83 2.709(4) 174.9 N401H401...N504#3 0.88 1.83 2.709(4) 174.9 N501H501...N604 0.88 1.87 2.743(4) 174.5 N601H601...N704#3 0.88 1.83 2.705(3) 175.0 N701H701...N404#1 0.88 1.86 2.738(4) 174.5 Symmetrytransformationsusedtogenerateequivalentatoms: #1x+1,y,z#2x,y+1,z#3x,y1,z 4.3. (R)5(Tetrahydrofuran)1Htetrazole(119)

Figure 65. Structure of ( R)5 (tetrahydrofuran)1Htetrazole 119 in thecrystalwiththermalellipsoidsdrawn at50%probabilitylevel

ColorlesscrystalssuitableforXrayanalysisareobtainedbyslowevaporationofan ethyl acetate solution (Figure 65, see Chapter 5). This compound crystallizes in the orthorhombicspacegroupP2 12121,witha=8.295(2)Å,b=9.439(2)Å,c=16.650(3)Å, 3 3 Z=8,V=1303.6(5)Å ,D c =1.428g/cm ,R 1=0.0301,wR 2=0.0664.Theasymmetric unitconsistsoftwomoleculesinwhichthetetrazoleandthehydrofuranringsaretwisted with respect to one another and the hydrofuran rings have an envelop conformation (Figure66).Inthemolecule 119.II ,thefuranringisdisorderedovertwoorientationsA andBwitharatioof0.58:0.42.ThetwopositionsAandBaredescribedwiththeangle O11AC15O11Bof17.0(3)°(Table33).Thetorsionangleofmolecule 119.II intheA orientation, described by the atoms N17C16C15O11A, is 18.6(3)° and the

135 Chapter4.XRayDiscussion correspondingtorsionanglefortheBorientationissimilartothoseofmolecule 119.I (4.9(3)°and5.48(18)°respectively,Table 34). Within the limits of accuracy all bond lengths and angles in the ordered part of the structureagreewithexpectedvalues251 .Furtherdetailsaregivenintables3234. Figure 66.Asymmetricunitof(R) 5(tetrahydrofuran2yl)2H tetrazolewiththetetrahydrofurane ring of the molecule 119.II disorderedovertwoorientationsA andB 119 .II 119 .I

Table 32. Bondlengths[Å]for 119 Atoms Bond length O1C5 1.4308(17) O1C2 1.4427(18) C5C6 1.502(2) C15C16 1.490(2)

Table 33. Bondangles[°]for 119 Table 34. Torsionangles[°]for 119 Atoms Angle Atoms Angle C5O1–C2 109.24(11) O1–C5–C6–N7 5.48(18) O1C5–C6 107.68(11) O11A–C15–C16–N17 18.6(3) O1C5C4 106.37(11) O11B–C15–C16–N17 4.9(3) O11AC15C16113.2(3) N10–C6–N7–N8 0.30(14) O11AC15O11B 17.0(3) N7–N8–N9–N10 0.24(15) C16C15O11B 102.2(3) N17–N18–N19–N20 0.26(15) O11AC15C14 108.9(3) N17–C16–N20–N19 0.05(15) O11BC15C14 104.0(3)

ThecrystalpackingisaidedbyN −H⋅⋅⋅Nhydrogenbonds(Table35).Thetetrazolering exists in two tautomeric forms N1 and N2 where the N1 and N2 are respectively the nitrogen atoms in α and β position to the carbon of the tetrazole ring (Introduction, Chapter 1). However the (R)5(tetrahydrofuran2yl)2Htetrazole 119 crystallized exclusively in the 1 Htautomeric form. This fact is explained by the presence of an

136 Chapter4.XRayDiscussion intermolecularhydrogenbondbetweentheoxygenofonemoleculeandtheNHofthe neighboringmolecule. Table 35. Hydrogenbondsfor( R)5(tetrahydrofuran2yl)2Htetrazole119 [Åand°] D-H···A d(D-H) d(H···A) d(D···A) <(DHA) N10–H10...N7#1 0.854(18) 2.102(18) 2.8981(18) 155.0(13) N10H10...O1#1 0.854(18) 2.447(16) 3.0820(17) 131.8(12) N20H20...N17#2 0.81(2) 2.07(2) 2.8475(18) 160.0(16) N20H20...O11B#2 0.81(2) 2.434(19) 2.997(6) 127.5(14) Symmetrytransformationsusedtogenerateequivalentatoms: #1x,y+1/2,z+3/2#2x+2,y1/2,z+1/2

4.4. 4[2Benzenesulphonyl2(2methyl2Htetrazol5yl)vinyl] benzoicacidmethylester(177)

Figure 67. Structure of 4[2benzene sulphonyl2(2methyl2Htetrazol5yl) vinyl]benzoic acid methyl ester 177 in thecrystalwiththermalellipsoidsdrawn at50%probabilitylevel

Colorless single crystals suitable for Xray analysis are obtained by slow evaporation of a mixture of ethyl acetate / hexane (Figure 67; Chapter 5.2). This compound crystallizes in the monoclinic space group P1, with a = 7.582(2) Å, b = 8.425(2)Å,c=14.912(4)Å,α=75.784(9)°,β=87.969(9)°andγ=72.584(9)°,Z=2,V 3 3 =880.3(4)Å ,D c =1.450g/cm ,R1=0.0356,wR 2=0.0882. Withinthelimitofaccuracyallbondlengthsandanglesagreewithexpectedvalues251 . Themaindistance andangles arementioned(Tables3638).Thetwophenyl rings are almost perpendicular to each other with an angle of 72.83(5)°. The tetrazole and the phenyl(C11)ringshaveadihedralangleof27.38(8)°andthetetrazolewiththephenyl (C18)ringshaveadihedralangleof87.00(5)°.Thephenylring(C18)andthecarbonyl

137 Chapter4.XRayDiscussion groupareinthesameplane,whilethephenylringandthedoublebondhaveatorsion angleof4.1(3)°(Table38). Theconformationofthemoleculeinthecrystalis stabilized by an intramolecular H bondbetweenO9ofsulphonylgroupandN2ofthetetrazole.Analysisofsupramolecular array reveals the presence of πstacking between the phenyl rings based on C18, the distancebetweenmostproximatepairsofsuchringsinthesupramoleculararraybeing 3.8Å.

Figure 68. 4[2Benzenesulphonyl2(2 methyl2Htetrazol5yl)vinyl]benzoic acid methylester 177 inthecrystal

Table 36. Bondlengths[Å]for 177 Table 37. Angles[°]for 177

Atoms Bonds Length Atoms Angle C1–N2 1.331(2) N2–C1–N5 112.66(13) C1–N5 1.351(2) N3–C6–H 109.5 C1–C7 1.476(2) C17–C7–C1 128.91(14) C7–C17 1.339(2) C1–C7–S8 114.30(11) C7–S8 1.7901(16) O10–S8–O9 119.41(7) S8–O9 1.4379(12) C11–S8–C7 103.64(7) S8–C11 1.766(16) C7–C17–C18 130.07(15) Table 38. Torsionangles[°]for 177 Atoms Angle C1–N2–N3–N4 0.15(16) C1–N2–N3–C6 177.78(13) C6–N3–N4–N5 177.55(13) N5–C1–C7–S8 101.96(15) C7–S8–C11–C12 101.66(13) C7–S8–C11–C16 75.61(13) C1–C7–C17–C18 4.1(3) S8–C7–C17–C18 174.78(12) C22–C21–C24–O26 1.2(2)

138 Chapter4.XRayDiscussion

4.5. (R)5Pyrrolidine2yltetrazole(115) Figure 69. Structure of (R)-5 pyrrolidine2yltetrazole 115 in the crystal with thermal ellipsoids drawn at 50%probabilitylevel Colorless single crystals suitable for Xray analysis are obtained by slow evaporation of a mixture of ethanol / water (Figure 69; Chapter 5.3). This compound crystallizesintheorthorhombicspacegroupP2 12121,witha=10.213(8)Å,b=11.634(9) 3 3 Å,c=12.222(9)Å,Z=8,V=1452.2(19)Å ,D c =1.356g/cm ,R 1=0.0275,wR 2= 0.0684.XRaydiffractionshowsthatthe( R)5pyrrolidine2yltetrazole 115crystallizes inthehydrateform(Figures69,70).Theasymmetricunithastwomoleculeswhichare presentinthezwitterionicform.ThesolventiscoordinatedtothenitrogenN11ofthe pyrrolidineringof 115.II andthenitrogenN8ofthetetrazoleringin 115.I (Figure70). Figure 70. (R)5Pyrrolidine2yl tetrazoleinthecrystal.Hydrogenbonds shownasdottedlines

115.II 115.I

The( R)5pyrrolidine2yltetrazole hasthetetrazoleringandthepyrrolidineringtwisted withrespecttooneanother.Thetorsionanglebetweenthepyrrolidineandthetetrazole ringsis57.54(16)°formolecule 115.I and138.15(11)°formolecule 115.II (Table43). Withinthelimitsofaccuracyallbondlengthsagreewithexpectedvalues251 .Themain distancesandanglesofthetetrazoleringarementioned(Tables3941).Thepyrrolidine ringhasanenvelopeconformationonC5inmolecule 115.1 andonC15inmolecule 115.II . ThecrystalpackingisaidedbyintermolecularO −H⋅⋅⋅Nhydrogenbondsandbyinter molecularNH⋅⋅⋅Nhydrogenbonds(Table42).

139 Chapter4.XRayDiscussion

Table 39. Bondlengths[Å]for( R)5pyrrolidin2yltetrazole115 Atoms Bond length Atoms Bond length N1C2 1.5109(17) N11C12 1.5072(17) N1C5 1.50008(17) C15–C16 1.4911(18) C6N10 1.3338(19) C16N20 1.3388(18) C6–N7 1.3304(17) C16–N17 1.3289(17) C6–C5 1.4895(18) N19N20 1.344(3) N9N10 1.3491(18) C15–C16 1.4911(18) N11C15 1.4991(17)

Table 40. Bondangles[°]for 115 Table 41. Torsionangles[°]for 115 Atoms Angle Atoms Angle C2N1C5 105.38(10) N1–C5–C6–N7 57.54(16) C6–C5–N1 113.44(11) N1–C5–C6–N10 44.69(13) N1–C5–C4 101.44(11) C6–N7–N8–N9 0.05(13) N10–C6–N7 112.16(11) N8–N9–N10–C6 0.10(15) C6N10N9 104.42(11) N11–C15–C16–N17 138.15(11) C12N11C15 106.16(11) N11–C15–C16–N20 126.62(13) C16–C15–N11 111.39(11) C16–N17–N18–N19 0.44(12) C14–C15–N11 102.43(11) N17–C16–N20–N19 0.24(13) N20C16C15 124.32(11) C16N20N19 104.79(10)

Table 42. Hydrogenbonds[Åand°]forthe R5pyrrolidine2yltetrazole 115

D-H···A d(D-H) d(H···A) d(D···A) <(DHA) N1H1A...N20#1 0.913(17) 1.999(17) 2.862(2) 157.0(14) N1H1B...N18#2 0.869(18) 1.964(19) 2.827(2) 171.8(15) N11H11A...O21 0.889(19) 1.855(19) 2.734(2) 169.9(17) N11H11B...N7#3 0.908(19) 1.937(19) 2.835(2) 169.7(16) N11H11B...N8#3 0.908(19) 2.673(18) 3.476(3) 147.9(14) O21H21A...N17#4 0.85(2) 1.98(2) 2.825(2) 170.6(19) O21H21B...N8 0.83(2) 2.01(2) 2.827(2) 165.9(19) O21H21B...N9 0.83(2) 2.64(2) 3.301(2) 137.0(17) Symmetrytransformationsusedtogenerateequivalentatoms: #1x+2,y1/2,z+1/2#2x,y,z+1#3x+2,y+1/2,z+1/2#4x+1/2,y+3/2,z

140 Chapter4.XRayDiscussion

4.6. (R)5Pyrrolidine2yltetrazolepalladium(II)complex(242)

Figure 71.Structureof( R)5pyrrolidine2yltetrazolepalladium( II )complex 242 inthecrystalwiththermalellipsoidsdrawnat50%probabilitylevel

ColorlesscrystalssuitableforXrayanalysisareobtainedbyslowevaporationofa mixture of THF / water (Figure 71; Chapter 5.3). This compound crystallizes in the orthorhombicspacegroupP2 12121,witha=8.092(2)Å,b=8.597(2)Å,c=20.951(3)Å, 3 Z=4,V=1457.5(5)Å ,R 1=0.0152,wR 2=0.0369.The( R)5pyrrolidine2yltetrazole palladium(II) complexcrystallizesinamonohydratedform andtheXRaydiffraction showsthatthepalladium(II)hasadistortedsquareplanargeometryanditscoordination sphereisdefinedbytwo( R)5pyrrolidine2yltetrazoleligands(Figure72).

Figure 72.Structureof (R)5pyrrolidine2yl1Htetrazolepalladium( II )complex 242 in thecrystal In the normal squareplanar geometry the angle between the ligands (L) and the metal(M)L 1ML3andL 2ML4shouldbe180°andtheanglesdefinedbyL 1ML2=L 2

ML3=L 3ML4=L 4ML1=90°(Figure73).However,theN20PdN11andtheN10

141 Chapter4.XRayDiscussion

PdN1 angles, respectively 81.36(7)° and 80.97(8)°, show the distorted squareplanar environmentatpalladium(Figure72,Table43).Allthefiveatomsliewithin0.2Ǻ[Pd], withinaleastsquareplanedefinedbythefournitrogenatomsN1N10N11N20.

L L M L L

Figure 73. Squareplanargeometry The torsion angles N11C15C16N20 and N1C5C6N10 of 242 (Table 37) are differenttothosefoundintheXraystructureof( R)5pyrrolidine2yltetrazolehydrate 115 (Section4.3).The( R)5pyrrolidine2yltetrazolepalladium(II)complex242 hasthe two ligands with the tetrazole and the pyrrolidine rings twisted with respect to one anotherandthetorsionangelsaregivenintable43.BasedonthemethodofCramerand Pople,theconformationofthepyrrolidineringscanbedescribedastwistedonC2C3 andC12C13.Withinthelimitsofaccuracyallbondlengthsagreewithexpectedvalues. Themaindistancesandanglesofthetetrazoleringarementioned(Tables4345).The planarity and the bond lengths of the tetrazole ring are not influenced by the metal coordinationandarecomparablewiththedatafoundfor 115 (Section4.3). The crystal packing is aided by intermolecular O −H⋅⋅⋅N hydrogen bonds which form chainsalongthebaxisandbyintermolecularNH⋅⋅⋅Nhydrogenbonds(Table46).

Table 43. Torsionangles[°]for 237 Atoms Angle N11–C15–C16–N20 20.4(3) N1–C5–C6–N10 12.0(3) C16–N17–N18–N19 0.0(2) N16–N20–N19–N18 0.2(2) C6–N7–N8–N9 0.4(2) C6–N10–N9–N8 0.2(2)

142 Chapter4.XRayDiscussion

Table 44. Bondlengths[Å]for 237 Table 45. Angles[°]for 237 Atoms Bond length Atoms Angle Pd1N10 1.985(2) N10Pd1N20 177.87(8) Pd1N20 1.995(2) N10Pd1N11 97.72(8) Pd1N11 2.0560(18) N20Pd1N11 81.36(7) Pd1N12.0579(18) N10Pd1N1 80.97(8) N1C2 1.501(3) N20Pd1N1 99.94(7) N1C5 1.507(3) N11Pd1N1 178.64(8) C6N10 1.327(3) C2N1C5 106.12(16) N9N10 1.341(3) C2N1Pd1 114.48(13) N11C12 1.514(3) C5N1Pd1 113.20(13) N11C15 1.514(3) C6N10N9 108.00(18) C16N20 1.329(3) C6N10Pd1 117.03(15) N19N20 1.344(3) N9N10Pd1 134.96(14) C12N11C15 107.37(17) C12N11Pd1 114.57(14) C15N11Pd1 112.42(13) N20C16C15 119.6(2) C16N20N19 107.73(18) C16N20Pd1 115.63(14) N19N20Pd1 135.89(15)

Table 46.Hydrogenbonds[Åand°]for 237 complex. D-H···A d(D-H) d(H···A) d(D···A) <(DHA) N1–H1...N7#1 0.88(3) 2.14(3) 2.952(3) 154(2) N11–H11...N8#2 0.91(3) 2.03(3) 2.899(3) 159(2) O21–H21A...N18#3 0.79(3) 2.13(3) 2.903(3) 166(3) O21–H21B...N17 0.78(3) 2.18(3) 2.933(3) 161(4) Symmetrytransformationsusedtogenerateequivalentatoms:

#1x+2,y+1/2,z+1/2#2x+1,y+1/2,z+1/2#3x1/2,y+5/2,z

4.7. 1Isopropyl5(R)pyrrolidine2yl1Htetrazole(237)

YellowsinglecrystalssuitableforXrayanalysesareobtainedbyslowevaporation ofamixtureofethanol/methylenechloride(Figure74;Chapter5.3).Thiscompound crystallizesinthemonoclinicspacegroupC2,witha=11.598(5)Å,b=16.066(7)Å,c= 3 3 11.446(5)Å,β=103.38(2)°,Z=8,V=2074.9(16)Å ,D c =1.277g/cm ,R 1= 0.0270, wR 2= 0.0651 . 143 Chapter4.XRayDiscussion

Figure 74. Structureof1isopropyl5(R) Figure 75. 1Isopropyl5(R)pyrrolidine pyrrolidine2yl1Htetrazole 237 in the 2yl1 Htetrazole 237 crystal with thermal ellipsoids drawn at 50%probabilitylevel Xray diffraction shows that the 1isopropyl(R)5pyrrolidine2yl1Htetrazole 237 existsashydrochloride(Figures74,75)andthehydrochloricacidisanimpurityfromthe purification. The asymmetric unit has two 1isopropyl(R)5pyrrolidine2yl1H tetrazolemoleculesandtwochlorideionsonspecialpositions.Therefore,theratioof1 isopropyl(R)5pyrrolidine2yl1Htetrazoleandchlorideionis2:1andonlyoneofthe two1isopropyl(R)5pyrrolidine2yl1Htetrazolemoleculesintheasymmetricunitis protonated. The 1isopropyl(R)5pyrrolidine2yl1Htetrazole has the tetrazole ring and the pyrrolidine ring twisted with respect to one another but the torsion angles of 237 are differenttothosefoundintheXRaystructuresofotherpyrrolidinetetrazolederivatives (Sections4.44.10).BasedonthemethodofCramerandPople,theconformationcanbe described as twisted on C2C3 and C24C25. Within the limits of accuracy all bond lengthsagreewithexpectedvalues.Themaindistancesandanglesofthetetrazolering arementioned(Tables4850). Table 47. Bondlengths[Å]for1isopropyl(R)5pyrrolidine2yl1Htetrazole 237 Atoms Bond length Atoms Bond length N1C2 1.485(2) N21–C22 1.499(2) N1C5 1.5008(19) N21–C25 1.484(2) C6N10 1.342(2) C25–C26 1.498(2) C6–N7 1.325(2) C26N27 1.323(2) C6–C5 1.498(2) C26–N30 1.339(2) N10–C11 1.481(2) N30–C31 1.480(2)

144 Chapter4.XRayDiscussion

Table 48. Bondangles[°]for237 Atoms Angle Atoms Angle C2–N1–C5 106.56(11) C12–C11–C13 112.35(14) C6–C5–N1 109.93(12) C22–N21–C25 108.40(12) N10–C6–N7 108.52(13) N21–C25–C26 111.47(13) C6–N10–N9 108.16(12) C26–N30–N29 108.36(13) N10–C11–C12 109.24(14)

. Table 49. Torsionangles[°]for1isopropyl(R)5pyrrolidine2yl1Htetrazole237 Atoms Angle N1–C5–C6–N10 101.74(16) C6–N7–N8–N9 0.15(17) N8–N9–N10–C6 0.52(16) N21–C25–C26–N30 128.55(15) C26–N27–N28–N29 0.09(17) N30–C26–N27–N28 0.40(16)

Table 50. Hydrogenbonds[Åand°]for1isopropyl(R)5pyrrolidine2yl1Htetrazole237

D-H···A d(D-H) d(H···A) d(D···A) <(DHA) N1H1A...Cl14 0.92 2.24 3.1413(16) 164.7 N1H1B...N21 0.92 1.78 2.6931(19) 174.0 N21H21A...Cl34 0.86(2) 2.53(2) 3.2540(17) 142.6(16)

ThecrystalpackingisaidedbyintermolecularN −H⋅⋅⋅NandN −H⋅⋅⋅Clhydrogenbonds (Table 50). Four molecules 237 form a layer generating a channel along the caxis wherethechlorideatomsareinthechannels(Figure76).

Figure 76.Crystalpackingof 237 withHbondinteractionsshownasdottedlines 145 Chapter4.XRayDiscussion

4.8. 2(1Methyl1phenylethyl)5-(R) pyrrolidine2yl2H tetrazole(235)

Colorless single crystals of 235 suitable for Xray analyses are obtained by slow evaporation of a mixture of methanol / ethyl acetate (Figure 77; Chapter 5.3). This compoundcrystallizesintheorthorombicspacegroup P2 12121,witha=6.140(2)Å,b= 3 3 7.526(2)Å,c=29.490(4)Å,Z=4,V=1362.7(6)Å ,D c =1.254g/cm ,R 1=0.0362, wR 2=0.0850. Figure 77. Structure of 2(1methyl1phenyl ethyl)5-(R)pyrrolidine2yl2Htetrazole 235 inthe crystal with thermal ellipsoids drawn at 50 % probabilitylevel

Xray diffraction shows that 2(1methyl1phenylethyl)5(R) pyrrolidine2yl2H tetrazole 235 hasthetetrazoleringandthepyrrolidineringtwistedwithrespecttoone another(Table53),butthetorsionangleisdifferenttothosefoundintheXraystructures ofotherpyrrolidinetetrazolederivatives(Sections4.44.10).Basedonthemethodof CramerandPople,theconformationofthepyrrolidineringcanbedescribedastwisted onC2C3.Withinthelimitsofaccuracyallbondlengthsandanglesagreewithexpected values.Themaindistancesandanglesarementioned(Tables5153).

Figure 76. 2(1Methyl1phenylethyl)5- (R)pyrrolidine2yl2Htetrazole235

146 Chapter4.XRayDiscussion

Table 51. Bondlengths[Å]for2(1methyl1phenylethyl)5(R)pyrrolidine2yl1Htetrazole 235 Atoms Bond length Atoms Bond length N1C2 1.466(2) C6–C5 1.5011(18) N1C5 1.4909(16) N8–C11 1.424(16) C4–C5 1.5521(19) N7–N8 1.3336(15) C6N10 1.3534(18) N8–N9 1.3214(16) C6–N7 1.3312(18) C11C14 1.5346(16)

Table 52. Bond angles [°] for 2(1methyl1phenyl ethyl)5(R)pyrrolidine2yl1Htetrazole235 Atoms Angle C2N1C5 105.84(11) C6–C5–N1 108.53(10) N1–C5–C4 106.93(10) C6–C5–C4 112.53(11) N10–C6–N7 111.86(11) N7–C6–C5 124.28(11) N7–N8–N9 113.49(10) N8–C11–C12 108.14(10) N8–C11–C13 106.67(10) N8–C11–C14 108.74(10) C15–C14–C11 120.08(12)

Table 53. Torsion angles [°] for the 2(1methyl1phenyl ethyl)5(R)pyrrolidine2yl1Htetrazole 235 Atoms Angles [°] N1–C5–C6–N10 73.96(15) C6–N7–N8–N9 0.32(12) N8–N9–N10–C6 0.05(13) N9–N8–C11–C14 79.89(14) Theplanarityandthebondlengthsofthetetrazoleringarenotinfluencedbythepresence ofthecumylgroup. TheneighboringatomsofC11formaslightlydistortedtetrahedron (Table52).Thepyrrolidineringisfartherfromthetetrazoleringincomparisontotheun alkylated (R)5pyrrolidine2yl1Htetrazole 115 (Section 4.4.). The phenyl and the tetrazoleringsaretwistedwithrespecttooneanotherwithadihedralangleof42.48(8)°. The crystal packing is aided by intermolecular N −H⋅⋅⋅N hydrogen bonds between the pyrrolidinerings(Table54).

147 Chapter4.XRayDiscussion

Table 54. Hydrogen bonds [Å and °] for the 2(1methyl1phenylethyl)5(R) pyrrolidine2yl1Htetrazole 312 D-H···A d(D-H) d(H···A) d(D···A) <(DHA) N1–H1...N1#1 0.89(2) 2.448(19) 3.2658(13) 152.9(16)

Symmetrytransformationusedtogenerateequivalentatoms: #1x1/2,y+3/2,z+2 4.9. (S)2(2tert-Butyl2Htetrazol5yl)pyrrolidiniumtrifluoro acetate(244) BrownsinglecrystalssuitableforXrayanalysesareobtainedbyslowevaporation ofamethylenechloridesolution(Figure78;Chapter5.3).Compound 244crystallizesin themonoclinicspacegroupP2 1,witha=5.955(2)Å,b=7.704(2)Å,c=16.113(4)Å,β 3 3 =98.457(9)°, Z=2,V=731.2(4)Å ,D c =1.405g/cm ,R 1=0.0310,wR 2=0.0776 .X ray diffraction shows that the molecule of trifluoroacetic acid is coordinated to the nitrogenN1ofthepyrrolidinering(Figures78,79).The(S)2(2tbutyl2Htetrazol5yl) pyrrolidinium has the tetrazole and the pyrrolidine rings twisted with respect to one anotherbutwithatorsionanglesdifferenttothosefoundintheXRaystructuresofother pyrrolidinetetrazole derivatives (Sections 4.44.10). Within the limits of accuracy all bondlengthsagreewithexpectedvalues.Themaindistancesandanglesarementioned (Tables5557).

Figure 78. Structureof (S)2(2tert-butyl 2Htetrazol5yl) pyrrolidinium trifluoro acetate 244 in the crystal with thermal ellipsoidsdrawnat50%probabilitylevel Figure 79. (S)2(2tert-Butyl2Htetrazol5yl) pyrrolidiniumtrifluoroacetate244

148 Chapter4.XRayDiscussion

ThepyrrolidineringhasanenvelopeconformationonC3andthedistancebetweenthe tetrazoleandthepyrrolidineringsiscomparabletothatfoundfor 115and 237(Sections 4.4, 4.6) but shorter compared to 2(1methyl1phenylethyl)5(R)pyrrolidine2yl tetrazole(Section4.7).InthealkylresiduetheenvironmentofC11isaslightlydistorted tetrahedron (Table 55). The crystal packing is aided by intramolecular N −H⋅⋅⋅O and N−H⋅⋅⋅F hydrogen bonds and by intermolecular NH⋅⋅⋅O hydrogen bonds between the pyrrolidineringandthetrifluoroaceticacetatealongtheaaxis(Table50).

Table 55. Bond lengths [Å] for (R )2(2 Table 56. Bondangles[°]for (R )2(2tert- tert-butyl2Htetrazol5yl) pyrrolidinium butyl2Htetrazol5yl) pyrrolidinium trifluoroacetate244 trifluoroacetate244 Atoms Bond length Atoms Angle N1C2 1.505(2) C2–N1–C5 107.45(13) N1C5 1.5190(19) C6–C5–N1 109.20(12) C4–C5 1.532(2) N1–C5–C4 105.08(13) C6N10 1.348(2) N10–C6–N7 112.63(13) C6–N7 1.328(2) N7–N8–C11 122.59(13) C6–C5 1.495(2) C12–C11–C12 107.58(13) N8–N9 1.322(2) N8–N7 1.3292(18) C11–C14 1.515(2) Table 57. Torsion angles [°] for (R )2(2tert-butyl2H tetrazol5yl)pyrrolidiniumtrifluoroacetate244 Atoms Angle N1–C5–C6–N19 89.33(17) N10–C6–N7–N8 0.31(15) N8–N9–N10–C6 0.75(15) C6–N7–N8–N9 0.19(15) N7–N8–N9–N10 0.61(16) Table 58. Hydrogen bonds [Å and °] for (R )2(2tert-butyl2Htetrazol5yl) pyrrolidiniumtrifluoroacetate244 D-H···A d(D-H) d(H···A) d(D···A) <(DHA) N1H1B...O21 0.87(2) 1.88(2) 2.7463(18) 171(2) N1H1B...F16 0.87(2) 2.62(2) 3.0808(18) 113.9(17) N1H1A...O20#1 0.98(2) 1.76(2) 2.7331(19) 174.0(18) Symmetrytransformationusedtogenerateequivalentatoms: #1x+1,y,z

149 Chapter4.XRayDiscussion

4.10. 2Isopropyl5(R )pyrrolidine2yl2Htetrazolesquaric acid salt(250) BrownsinglecrystalssuitableforXrayanalysesareobtainedbyslowevaporation ofamethylenechloridesolution(Figure80;Chapter 5.3). Thiscompoundcrystallizesin the orthorhombic space group P2 12121, with a = 9.143(2) Å, b = 10.706(2) Å, c = 3 3 13.979(3)Å,Z=4,V=1368.3(5)Å ,D c =1.433g/cm ,R 1=0.0235,wR 2=0.0576.

Figure 80. Structure of 2isopropyl5(R ) pyrrolidine2yl2Htetrazolesquaricacidsalt 250 in the crystal with thermal ellipsoids drawnat50%probabilitylevel

Figure 81 . 2Isopropyl5(R )pyrrolidine2yl 2Htetrazolesquaricacidsalt 250

XRaydiffractionshowsthatO19inthecyclobutenemoietyisHbondedtoN1ofthe pyrrolidinering(Figure81).The2isopropyl5(R)pyrrolidine2yl2Htetrazolesquaric acidsalt hasthetetrazoleandthepyrrolidineringstwistedwithrespecttooneanother, but the torsion angle is different to those found in the Xray structures of the other pyrrolidinetetrazole derivatives (Sections 4.4.4.10)(Table 53). The dihedral angle between the squaric acid and the tetrazole ring is 14.42(8)°. Based on the method of CramerandPople, 314 thepyrrolidineringhasanenvelopeconformationonC4. Thedistancebetweenthepyrrolidineandthetetrazoleringsiscomparabletothatofthe (R)5pyrrolidine2yltetrazole 115 (Section4.4.)andthe1isopropyl(R)5pyrrolidine 2yl1Htetrazole 237 (Section4.7.).Withinthelimitsofaccuracyallbondlengthsand angelsagreewithexpectedvalues.Themaindistanceandanglesarementioned(Tables 5961). 150 Chapter4.XRayDiscussion

Table 59. Bond lengths [Å] for 2 Table 60. Bondangles[°]for2isopropyl isopropyl5(R )pyrrolidine2yl2H 5(R )pyrrolidine2yl2Htetrazolesquaric tetrazolesquaricacidsalt250 acidsalt250 Atoms Bond length Atoms Angle N1–C2 1.5180(16) C2N1C5 107.97(9) N1–C5 1.5235(16) C6–C5–N1 109.17(10) C5–C6 1.4961(16) N1–C5–C4 116.80(10) C6–N7 1.3275(16) C5–C6–N7 122.58(10) C6–N10 1.3470(16) N7C6–N10 112.82(10) N8–C11 1.4794(15) N7–N8–N9 114.04(10) C11–C12 1.5193(18) N8–C11–C12 109.21(10) C16–C17 1.4330(17) C16–C15–C18 88.10(9) C18–O19 1.2276(15) C16–C18–C17 88.95(9) C16–O21 1.2944(15) C15–C18 1.5073(17) C17–C18 1.4793(17)

Table 61. Torsionangles[°]for 250 Atoms Angles [°] N1–C5–C6–N10 95.02(13) N10–C6–N7–N8 0.98(12) C6–N7–N8–N9 0.88(12) N7–N8–N9–N10 0.47(13) C15–C16–C17–C18 2.14(9) C16–C17–C18–C15 2.07(9) The crystal packing is aided by intramolecular N −H⋅⋅⋅O hydrogen bonds between the pyrrolidineandthecyclobuteneringsandbyintermolecular O−H⋅⋅⋅Ohydrogenbonds betweenthecyclobuteneringsalongthebaxis(Table62).

Table 62. Hydrogen bonds [Å and °] for 2isopropyl5(R )pyrrolidine2yl2H tetrazolesquaricacidsalt250

D-H···A d(D-H) d(H···A) d(D···A) <(DHA) N1H1A...O19 0.919(18) 1.839(18) 2.7554(15) 175.1(17) N1H1B...O14#1 0.909(17) 2.005(17) 2.8487(14) 153.7(13) O21–H21...O20#2 1.04(2) 1.46(2) 2.4970(12) 173.0(2) Symmetrytransformationsusedtogenerateequivalentatoms: #1x+1,y+1/2,z+3/2#2x+2,y1/2,z+3/2

151 Chapter4.XRayDiscussion

4.11. 2[(1Methyl1phenylethyl)2Htetrazol5yl]pyrrolidinium saccharinate(248) Figure 82. Structure of 2[(1methyl1phenyl ethyl)2Htetrazol5yl] pyrrolidinium saccharinate 248 in the crystal with thermal ellipsoidsdrawnat50%probabilitylevel

Figure 83. ColorlesssinglecrystalssuitableforX rayanalysesareobtainedbyslowevaporation of a dichloromethane solution (Figure 82; Chapter 5.3). This compound crystallizes in thetriclinicspacegroupP1,witha=9.721(2)

Å, b = 9.821(3) Å, c = 12.530(3) Å, α = 99.4521(14)°, β = 91.691(13)°, γ = 112.443(14)°, 3 3 Z=2,V=1085.0(5)Å ,D c =1.348 g/cm ,R 1

248.I =0.0553,wR 2=0.1161.Theasymmetricunit has two molecules, each molecule has an hydrogen bond between the oxygen of the saccarinateandtheNHofthepyrrolidinering (Figure 83). The Xray structure analysis of the 2[(1methylphenylethyl)2Htetrazol5 yl]pyrrolidiniumsaccharinate248 showsthat the tetrazole and the pyrrolidine rings are twisted with respect to one another, but the 248.II torsionangles aredifferent to those foundin the other pyrrolidinetetrazole derivatives (Sections4.4.–4.10)(Table65).Thephenylandtetrazoleringshaveadihedralanglesof 89.52(14)°inmolecule 248.I and79.82(15)°inmolecule 248.II .Thesaccarinatemoiety andthephenylringhaveadihedralangleof67.14(13)°inmolecule 248.I and61.56(13)°

152 Chapter4.XRayDiscussion in molecule 248.II . The distance between the tetrazole and the pyrrolidine rings are comparabletothatfoundformolecule 235 (Table65). Withinthelimitsofaccuracyallbondlengthsandanglesagreewithexpectedvalues.The maindistancesandanglesarementioned(Tables6365).Thecrystalpackingisaidedby intramolecular N −H⋅⋅⋅O hydrogen bonds between the pyrrolidine ring and the saccarinateandbyintermolecularN −H⋅⋅⋅Nhydrogenbonds(Table66). Table 63. Bondlengths[Å] 248 Table 64. Angles[°]for 248 Atoms Bonds Length Atoms Angle N1–C2 1.497(5) C2N1C5 105.9(3) N1–C5 1.482(5) C6–C5–N1 110.8(3) C5–C6 1.486(5) N1–C5–C4 101.9(3) N8–N9 1.329(5) C6–C5–C4 117.7(3) N9–N10 1.333(4) N10–C6–N7 112.5(3) N9–C11 1.484(5) N7–C6–C5 124.6(3) C11–C12 1.531(6) N7–N8–N9 106.1(3) C11–C14 1.534(5) N9–C11–C12 105.3(3) C42–N41 1.504(5) N9–C11–C13 108.2(3) N41–C45 1.494(5) N9–C11–C14 107.8(3) C45–C46 1.497(5) C45–N41–C42 107.8(3) N48–N49 1.320(5) N41–C45–C46 110.2(3) N49–N50 1.334(4) N41–C45–C44 103.8(3) N49–C51 1.488(5) N47–N48–N49 106.2(3) C51–C54 1.528(6) N49–C51–C53 106.4(3) C51–C52 1.522(6) N49–C51–C52 107.8(3) N49–C51–C54 108.9(3)

Table 65. Torsion angles [°] for 2[(1methyl1phenylethyl) 2Htetrazol5yl]pyrrolidiniumsaccharinate248 Atoms Angle [°] N1–C5–C6–N10 169.8(3) N10–C6–N7–N8 0.3(4) C6–N7–N8–N9 1.0(4) N7–N8–N9–N10 1.4(4) N41–C45–C46–N50 151.3(3) N50–C46–N47–N48 0.1(4) C46–N47–N48–N49 0.2(4)

153 Chapter4.XRayDiscussion

Table 66.Hydrogenbonds[Åand °]for2[(1methyl1phenylethyl)2Htetrazol5yl] pyrrolidiniumsaccharinate 248

D-H···A d(D-H) d(H···A) d(D···A) <(DHA) N1H1A...O31 0.82(5) 2.07(5) 2.739(4) 139(4) N41–H41A...O71 0.96(5) 1.80(5) 2.650(4) 146(4) N1H1A...N47#1 0.82(5) 2.59(4) 3.012(5) 113(4) N1H1B...N60#1 0.89(6) 1.99(6) 2.866(5) 166(5) N41H41B...N20#2 0.86(5) 1.97(5) 2.773(5) 154(4) Symmetrytransformationsusedtogenerateequivalentatoms: #1x1,y,z+1#2x+1,y,z1

154 Chapter5.ExperimentalPart

Chapter 5. Expermental Part

Allchemicalswereobtainedeitherfromcommercialsuppliersorinternalsources andusedwithoutfurtherpurificationunlessotherwisestated.Thereagentsandsolvents arelistedineachchapteroftheexperimentalpart.Allreactionswerecarriedoutunderan atmosphere of nitrogen or argon. All the products were satisfactorily characterized by melting point, TLC, UV, IR, 1H and 13 C NMR, MS, HRMS and when possible, comparisonoftheiranalyticaldatahasbeenmadewithavailableliteraturedata.

Meltingpoints AllmeltingpointsweremeasuredinopenendglasscapillarytubesonaBüchi535 meltingpointapparatusandareuncorrected. ThinlayerChromatography ThinlayerchromatographyswereperformedonMerckprecoatedglass silicagel platesoftype60F 254 .Compoundswereidentifiedwitheitherultravioletlightand/or iodineonsilicageland/orbytreatmentoftheTLCplatewithninhydrin(5%solutionin ethanol)followedbyheating. FlashChromatography CompoundswerepurifiedonMercksilicagel60,particlesize0.0400.063mm,at room temperature with a pressure of ca . 0.3 bar and eluted with the solvent system indicated.

HighPerformanceLiquidChromatography HPLCanalysiswereperformedwithanAgilentSeries1100.Themobilephasewas

0.5%H3PO 4inwaterandacetonitrile,flow:2mL/minat40°C,injectionvolume:5.0 L,wavelength220nm.Column:Merck,ChromolithPerformanceRP18e1004.6mm.

155 Chapter5.ExperimentalPart

UV/VisSpectrometry UV/VisspectrawereobtainedusingaPerkinElmerLambda19UV/VIS/NIR spectrometer with the Perkin Elmer UV WinLabVersion 2.80.03 software or using a VarianCary300ScanUV/VISspectrophotometerwiththeVarianCaryWinUV3.00 software.Theperformanceofspectrophotometerintermsofwavelengthandabsorbance accuracyismonitoredonaregularbasisusingreferencematerials(holmiumglass).The spectracovertheUVaswellasthevisiblelightranges(210nmto400nmand400nmto 700nm,respectively).Thesubstancewasdissolvedinasolvent(methanol,ethanolor acetonitrile), measured using UVtransparent quartz cells with a 1 cm pathlengh and applying individual solventspecific baseline correction. For each peak, the molar absorptionisgiveninL/mol/cm. Opticalrotation OpticalrotationweremeasuredonaPerkinElmer polarimeter, Polarimeter341, at the sodium D line (589 nm) at 20 °C. The solvent and concentrations (% m/m) are indicated. Optical rotations were obtained by subtracting zero αvalue of the solvent from the αvalue of the sample solution. Before obtaining the αvalue, all solutions (samplesolutionsandzerovalue)wereequilibratedat20°Cfor15minutes.Theoptical

T rotationvaluewascalculatedwiththefollowingformula: [α ]λ

T α ∗V ∗100 = [α]λ ms ∗1∗ ()100 − LOD) T [α]λ =Specificopticalrotationatthewavelength λandtemperatureT; α=Measuredangleofrotationminusthezerovalue,withthecorresponding

sign in degrees; V = Volume of sample solution (mL); ms = Mass (g) of sample;1=Pathlengthofthecell(dm); LOD =Lossondryingofthesample inpercent(ifnotdetermined:tobesettozero) Infraredspectrometry(IR) Infraredspectraweremeasured asasolidfilmonaBrukerHyperion microscope coupledwithaBrukerTENSOR27FTIRspectrometerover a wave number range of 4000600cm 1.Eachsamplewasscanned32timeswitha2cm 1resolution.

156 Chapter5.ExperimentalPart

FTIRspectrometry FTIRspectraweremeasuredinsolutiononaMettlerToledoReactIR4000witha K6conduitDicompprobeoverawavenumberrangeof4000650cm 1.Eachsample wasscanned128timesevery2minutes. Ramanspectrometry TheFTRamanspectrumweremeasuredassolidonaBrukerRFS100FTRaman spectrometerequippedwithaliquidnitrogencooledgermaniumdetector.Theresolution was4cm 1and250 scanswereaccumulatedbyusingalaseroutputof 250,275or300 mW.Thespectrumwascorrectedforinstrumentalresponse.

Nuclearmagneticresonancespectrometry(NMR) NMRspectrawererecordedonaBrukerdpX400(operatingat400.13MHzfor 1H and100Mzfor 13 C)oraBrukerdpX500(operatingat500.00MHzfor1Hand125Mz for 13 C)oraBruknerdpX600(operatingat600.00MHzfor 1Hand150Mzfor 13 C)in thesolventsindicatedat300Kandchemicalshifts(inppm)werereferencedtoresidual 1 13 1 solventpeaks(CDCl 3:7.27ppmfor H,77.2ppmfor C; d6DMSO:2.50ppmfor H, 39.5 ppm for 13 C). Multiplicities are given as s = singlet, d = doublet, t = triplet, q = quartet, m=multiplet, sep =septetand br =broadsignal.

Massspectraldata(MS) MassspectraldatawererecordedonaWaterZQ2000Quadruple,electrospraymass spectrometeroperatinginpositiveornegativeionmodeasindicated,orwitha Varian1200LTripleQuadrupolemassspectrometer.

Highresolution(HRMS)andhighaccuracymassspectra High resolution and high accuracy mass spectra were acquired on a 9.4 Tesla BrukerAPEXIIIFourierTransformIonCyclotronResonanceMassSpectrometer(FT/ ICR MS) equipped with an electrospray ion source operated in both positive and negative ion mode; 32 spectra were accumulated and internally calibrated using the signalsfromtheAgilentEStunemixsolution.

157 Chapter5.ExperimentalPart

XRayanalyses Diffraction data for all compounds were collected at 100 K with a Bruker AXS

SMART6000CCDdetectoronathreecircleplatformgoniometerwithCu(K α)radiation fromafinefocussealedtubegeneratorequippedwitha graphitemonochromatoror a microfocusrotatinganodeequippedwithmultilayeroptics.Asemiempiricalabsorption correctionwasapplied,basedontheintensitiesofsymmetryrelatedreflectionsmeasured at different angular settings. (1) The structure was solved and refined on F 2 with the SHELXTL suite of programs. (2) Nonhydrogen atoms were refined with anisotropic displacement parameters, hydrogen atoms were located in DF maps and refined isotropicallyorinidealizedpositionsusingaridingmodel.Figuresweregeneratedwith PLATON (3)orMercury. (4)

Numerationofthestructures Inmostcases,thenumberingofthestructureisinagreementwiththeIUPACname generatedbythe Autonom ®program.Insomecases,wehaveusedarbitrarynumbering, whichisindependentfromtheIUPACnameofthemolecule.

(1)G.M.Sheldrick,SADABS,version2004/1,UniversityofGöttingen,Göttingen,Germany. (2)G.M.Sheldrick,SHELXTL,version6.12,BrukerAXSinc.Madison,Wisconsin,USA. (3) A. L. Spek, PLATON, a MultiPurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands(http://www.cryst.chem.uu.nl/platon). (4)C.F.Macrae,P.R.Edgington,P.McCabe,E.Pidcock,G.P.Shields,R.Taylor,M.Towler,J.vande Streek, J.Appl.Cryst. 2006 , 39 ,453. 158 Chapter5.ExperimentalPart

5.1. Novel Click Chemistry for the Synthesis of 5-Substituted Tetrazoles from Organoaluminumazides and Nitriles Experimental part

5.1.1. Reagents and Solvents

Allchemicalswereobtainedeitherfromcommercialsuppliersorinternalsources and used without further purification unless otherwise stated. The diethyl aluminum chloride was purchased from SigmaAldrich or Chemtura Organometallics (formerly Crompton GmbH). All reactions were carried out under an atmosphere of nitrogen or argon.Alltheproductsweresatisfactorilycharacterizedbymeltingpoint,TLC,UV,IR, 1Hand 13CNMR,MS,HRMSandwhenpossible,comparisonoftheiranalyticaldata hasbeenmadewithavailableliteraturedata.

5.1.1.1. Reagents Reagent Molecular MW Quality Formula (g/mol)

AceticAcid C4H4O2 60.05 Fluka;≥96%

1Adamantanecarbonitrile C11 H15 N 161.25 Aldrich;97%

Aluminumchlorideanhydrous AlCl 3 133.34 Fluka;≥99%(AT)

Aluminumisopropoxide C9H21 AlO 3 204.25 Fluka;>98%(Al)

Benzonitrile C7H5N 103.13 Aldrich; ≥99%

Benzylbromide C7H7Br 171.04 Fluka;≥98%(GC)

Benzylidenemalonitrile C10 H6N2 154.17 Across;98%

Bicyclo[4.2.0]octa1,3triene7 C9H7N 129.16 Novartis;87%(HPLC) carbonitrile

2Bromo1,3,2benzodioxaborole C6H4BBrO 2 198.82 Fluka;≥98%(AT)

2Bromobenzonitrile C7H4BrN 182.03 Fluka;≥99%(GC)

4’Bromomethylbiphenyl2 C14 H10 BrN 272.15 NovartisProduction carbonitrile

But2ynedioicacidmethylester C6H6O4 142.11 SEACLot2

ßChlorocatecholborane C6H4BClO 2 154.36 Aldrich;97&

2Chlorobenzonitrile C7H4ClN 137.57 Fluka;≥97%(GC)

159 Chapter5.ExperimentalPart

4Chlorobenzonitrile C7H4ClN 137.57 Fluka;≥97%(Cl)

CesiumhydroxideMonohydrate CsHO.H 2O 167.93 Fluka;≥95.0%(T)

Cinnamonitrile C9H5N 129.16 Fluka;≥97%(GC)

4Cyanobenzaldehyde C8H5NO 131.14 Fluka;≥97%(T)

4Cyanobenzophenone C14 H9NO 207.23 Lancaster;98%

4Cyanophenylacetonitrile C9H6N2 142.16 Aldrich;97%

2Cyanopyridine C6H4N2 104.11 Aldrich;99%

3Cyanopyridine C6H4N2 104.11 Fluka;≥97%(GC)

4Cyanopyridine C6H4N2 104.11 Fluka;~98%(GC)

(S)2Cyanopyrrolidine1 C13 H14 N2O2 230.27 Novartis carboxylicacidbenzylester

(R)2Cyanopyrrolidine1 C13 H14 N2O2 230.27 Novartis carboxylicacidbenzylester

(S)2Cyanopyrrolidine1 C10 H16 N2O2 196.25 Novartis carboxylicacid tert butylester

(R)2Tetrahydrofuran2carbonitrile C5H7NO 97.15 JülichChemicalFine LotH40183.01

Cyclohexene1carbonitrile C7H9N 107.16 Lancaster;98%

1,8Diazabicyclo[5.4.0]undec7ene C9H16 N2 152.24 Fluka;≥99.0%(GC)

1,2Dicyanobenzene C8H4N2 128.13 Aldrich;98%(GC)

2,6Pyridinedicarbonitrile C7H3N3 129.12 Aldrich;97%

Diethylaluminumchloride C4H10 AlCl 120.56 Aldrich;1.8Mintoluene ChemturaOrganometallics

Diisobutylaluminumchloride C8H18AlCl 176.67 Aldich;97%

Dimethylaluminumchloride C2H6 AlCl 92.51 Aldrich;1.0MinHexane

Dimethylcyanamide C3H6N2 70.09 Across;97%

2,2Diphenylpropionitrile C15 H13 N 207.28 AlfaAesar;97%

Ethylcyanoformate C4H5NO 2 99.09 Fluka;≥98%(GC)

2Fluorobenzonitrile C7H4FN 121.12 Fluka;≥98%(GC)

4Fluorobenzonitrile C7H4FN 121.12 Merck;>99%(GC)

Fumaronitrile C4H2N2 78.07 Lancaster;98+%

2Furonitrile C5H3NO 93.09 Lancaster;98+% Hydrochloricacid HCl 36.46 Fluka; 2N standardsolution Fluka;≥36.5%(T) 2Hydroxybenzonitrile C7H5NO 119 Fluka;≥99%(NT)

2Iodobenzonitrile C7H4NI 229.02 TransWorldChemicals 98 %

6Isopropyl4oxo4Hchromene3 C13 H11 NO 2 213.24 Novartis carbonitrile

DLLactonitrile C3H5NO 71.08 Fluka;>97.0%(T)

Mandelonitrile C8H7NO 133.15 Aldrich;Tech.

(R)(+)Mandelonitrile C8H7NO 133.15 Aldrich;97%

Malononitrile C3H2N2 66.06 Fluka;≥98.0%(GC)

5(4’Methylbiphenyl2yl)1H C14 H12 N4 236.27 Novartis tetrazole

160 Chapter5.ExperimentalPart

Methyl4formylbenzoate C9H8O3 164.16 Fluka;~95%(HPLC)

αMethylphenylacetonitrile C9H9N 131.18 AlfaAesar;97%

Methylphenylpropionate C10 H8O2 160.17 Aldrich;97%

Ninhydrin C9H6O4 178.14 Fluka;≥95.0%(UV)

R2(4Nitrobenezenesulfonyloxy) C18 H19 NO 7S 393.42 Novartis 4phenylbutyrricacidethylester

4Nitrobenzonitrile C7H5N2 148.12 Lancaster;97% Palladiumoncarbon Pd 106.4 Engelhard4505;Pd/C10%

αMethylbenzylcyanide C9H9N 131.17 Aldrich;96%

Phenylsulphonylacetonitile C8H7NO 2S 181.22 Lancaster;98%

Phenylthioacetonitrile C8H7NS 149.22 Fluka;≥95%(GC)

Potassiumcarbonate K2CO 3 138.27 Fluka;≥99%(AT)

Potassiumhydrogensulfate KHSO 4 136.17 RiedeldeHaen;Puriss.p.a. Potassiumhydroxide KOH 56.11 Fluka;≥86%(T) Potassiumthiocyanate CKSNS 97.18 Fluka;≥99%(AT)

Pyrazinecarbonitrile C5H3N3 105.1 Aldrich;99%

2,6Pyridinedicarbonitrile C7H3N3 129.12 Aldrich;97%

Pyrrole2carbonitrile C5H4N2 92.10 Lancaster;99%

Sodiumazide NaN 3 65.01 Aldich;99% Sodiumhydroxyde NaOH 40.00 Fluka;≥97.0%(T) Fluka;p.a.≥98%(T)

Sodiumnitrite NaNO 2 69.00 Aldrich;99.5%

Tetrabutylammoniumbromide C16 H13 BrN 322.38 Fluka;≥99%(Br)

Thiophene2carbonitrile C5H3NO 109.15 Lancaster;99%

oTolunitrile C8H7N 117.15 Merck;Forsynthesis

trans Cyclobutane1,2dicarbonitrile C6H6N2 106.13 Fluka;≥97%(GC)

Triethylaluminum C6H15 Al 114.17 Fluka;~1.8Mintoluene

2Trifluoromethylphenylacetonitrile C9H6F3N 185.15 Lancaster;97%

Trimethylsilylazide C3H9N3Si 115.21 Fluka;~97%(GC)

Zincchloride ZnCl 2 136.29 Fluka;≥98.0%(AT)

161 Chapter5.ExperimentalPart

5.1.1.2. Solvents

Solvents Quality Acetonitrile Merck;forLC ARMARChemicals; d3Acetonitrile99.5Atom%D 1Butanol Aldrich; ≥99.5% Dichloromethane Merck;foranalysis Fluka;99.5%(GC) Diethylether Fluka;puriss.overmolecularsieves Dimethylformamide Fluka;puriss.p.a., ≥99.8% Ethanol Fluka;absolute, ≥99.8%(V/V)(GC) Ethylacetate Fluka;99.5% Methanol Fluka;foranalysis Dichloromethane Fluka;puriss.overmolecularsieves

Toluene Fluka;puriss.overmolecularsieve(H 2O≤0.005%) Fluka;absolute,oversieve, ≥99.5%(GC)

162 Chapter5.ExperimentalPart

5.1.2. Synthesis of the Starting Material Benzylthiocyanate(16) N Br H2O,Bu4NBr5% S +KSCN reflux,2h 68 16 CASRegistryNumber 3012371 MolecularFormula C8H7NS MolecularWeight 149.22g/mol W.P.Reeves,M.R.White,R.G.Hilbrich,L.L.Biegert, Synth. MethodologyRef. Commun . 1977 , 6,509 a)C.R.Harrison,P.Hodge, Synthesis 1980 , 4,299;b)P.Molina, M.Alajarin,A.Ferao,M.J.Lidon,P.H.Fresneda,M.J.Vilarlana, Synthesis 1982 , 6 ,472;c)H.R.Snyder,J.C.Speck, J. Am. Chem. Soc . 1939 , 61 ,668;d)S.D.Ross,M.Finkelstein,R.C.Petersen, J. Am. Chem. Soc . 1961 , 83 ,4853;e)P.Y.Renard,H.Schweber,P. Vayron,L.Josien,A.Valleix,C.Mioskowki, Chem. Eur. J . 2002 , 8, AnalysisRef. 2910;f)H.L.Wheeler,H.F.Merraam, J. Am. Chem. Soc . 1901 , 23 , 283;g)J.F.King,T.Y.Tsang,M.M.SbdelMalik,N.C.Payne, J. Am. Chem. Soc . 1985, 107 , 3224; h) Y. Yamamoto, Y. Morita, Chem. Pharm. Bull. 1984, 32 ,2957;i)H.Maeda,T.Kawaguchi,M. Masaui, H. Ohmori, Chem. Pharm. Bull. 1990 , 38 , 1389; l) N. Iranpoor,H.Firouzabad,H.Shaterian, Syn. Lett. 2000 , 1,65 A100mL,threeneckedroundbottomedflask,equippedwithanoverheadmechanical stirrer, is charged, at r.t., with benzylbromide (11.88 mL, 100 mmol), potassium thiocynate (38.88 g, 200 mmol, solution 50 % in water), and tetrabutyl ammonium bromide(1.611g,5mmol).Theresultingmixtureisrefluxedat110°Cfortwohours. Themixtureiscooleddownatr.t.,andtheproduct is extracted three times with ethyl acetate(20mLportion).Thecombinedorganicphaseiswashedtwicewithwater(30mL portion).Thesolventisremoved,andthecrudeissubjectedtobulbtobulbdistillation 1 (110115°Cat5.0 •10 mbar)togivetheproductasayellowcrystallinematerial(14.44 g,97%ofyield).

Compoundcharacterizationdata: N 1 S 6 4 2 3 mp: 3740°C; TLC: Rf(hexane/AcOEt8:1)=0.3; HPLC: 7.98min; UV (EtOH):λ max , ,CH)), 2147 ( s)ע ,CH)), 2962 ( w)ע ,nm (ε): 222 (8000), 201 (1690); IR: ν 3063 ( w C=C)), 769( s,γ(CH,Ph)),698)ע ,C=C)), 1427( s)ע ,C=C)), 1455( s)ע ,C≡N)), 1493( w)ע

163 Chapter5.ExperimentalPart

1 1 (s,γ(Ph))cm ; HNMR (400MHz, d6DMSO):δ=4.35( s,2H,HC5),7.35( m,1H,H 13 C4 ),7.38( m,2H,HC3),7.40( m,2H,HC2); CNMR (125MHz, d6DMSO):δ=37.4

(CH 2,C 5),113,4(CN,C 6),128.7(CH,C 4),129.2(CH,C 2),129.5(CH,C 3),136.6(Cq, + + + C1); MS:m/z 149[M] ,129[MHCN] ,91[MSCN] . 4’Thiocyanatomethylbiphenyl2carbonitrile(70)

N N N Br S

Bu4NBr(5%) +KSCN Water,toluene reflux,4h 69 70

MolecularFormula C15 H10 N2S MolecularWeight 250.32g/mol W.P.Reeves,M.R.White,R.G.Hilbrich,L.L.Biegert, Synth. MethodologyRef. Commun . 1977 , 6,509 A100mL,threeneckedroundbottomedflask,ischaged,atr.t.,with4’bromomethyl biphenyl2carbonitrile (6.804 g, 25 mmol), dissolved in toluene (20 mL), potassium thiocynate(9.8mL,50mmol,solution50%),andtetrabutylammoniumbromide(403 mg,1.25mmol).Themixtureisrefluxedat110°Cforfourhours.Themixtureiscooled toroomtemperatureandtheorganicphaseisseparated,andwashedtwicewithwater(15 mL portion). The combined aqueous phase is extracted twice with toluene (10 mL portion).Thesolventisremoved,andtheproductiscrystallizedfromethylacetateand diethylethertogivetheproductasayellowcrystallinematerial(6.27g,99%yield).

Compoundcharacterizationdata:

N 11 9 N 12 S 8 13 10 7 1 6 2 3 5 4 mp: 8890°C; TLC: Rf(EtOAc/hexane1:3)=0.4;HPLC: 10.10min; UV (EtOH):

,CH)), 2218 ( vs)ע ,λmax ,nm(ε):287(5700), 255 (14340), 205 (4120); IR: ν 3037 ( w C=C)),851( m, γ(C)עC=C)),1478( s)ע ,C≡N,SCN)),1595( w)ע ,ArC≡N), 2150( m)ע 1 1 H,Ph)),773( s,γ(CH,Ph))cm ; HNMR (400MHz, d6DMSO):δ=4.40( s,2H,H

C11 ),7.55( m,2H,HC9),7.57( m,1H,HC3),7.61( m,2H,HC8),7.64( m,1H,HC5), 3 4 3 13 7.78( dt , J =7.8Hz, J =1.3Hz,1H,HC4),7.94( m, J =7.7Hz,1H,HC2); CNMR

164 Chapter5.ExperimentalPart

(125MHz, d6DMSO):δ=36.6(CH 2,C 11 ),110.1(Cq,C 1),113.1(Cq,C 12 ),118.6(Cq,

C13 ),128.3(CH,C 3),129.2(CH,C 9),129.4(CH,C 8),130.1(CH,C 5),133.4(CH,C 4),

133.8 (CH, C 2), 136.8 (Cq, C 10 ), 137.8 (Cq, C 7), 144.0 (Cq, C 6); HRMS: calc’d for + + [MNH 4] =268.0903,found268.0902(M(ppm)=0.2),calc’dfor[MNa] =273.0457, found273.0456(M(ppm)=0.4),calc’dfor[MK] + =289.0196,found289.0197(M (ppm)=0.2). 4(2,2Dicyanoethenyl)benzoicacidmethylester(73) N N O O ZnCl2 O N + O H 100°C,10min O N CH3 CH3 71 72 73 CASRegistryNumber 3129166 MolecularFormula C12 H8N2O2 MolecularWeight 212.21g/mol MethodologyRef. P.S.Rao,R.V.Venkataratnam, Tetrahedron Lett . 1991 , 32 ,5821 T.B.Posner,C.D.Dennis, J. Chem. Soc. PerkinTrans.2, 1976 , 6, AnalysisRef. 729 A 25 mL, three necked round bottomed flask is charged at room temperature, with malonitrile(1.980g,30mmol),methyl4formylbenzoate(4.923g,30mmol)andzinc chloride (403 mg, 3 mmol). The mixture is warmed and kept at 100 °C for fifteen minutes.Theresultingheterogenicmixtureiscooledtoroomtemperature,washedonce withaqueousmethanol(40mL,5%solution)andfilteredtogivetheproductasayellow crystallinematerial(5.99g,94%yield). Compoundcharacterizationdata : N 2 3 O N 8 9 O 5 1 4 7 CH 6 3 mp: 152160°C; TLC: Rf(toluene/EtOAc3:1)=0.68; HPLC:7.66min; UV (MeOH):

,((CH)ע,CH)), 2960( w)ע ,CH)), 3038( w)ע ,λmax ,nm(ε):306(25700); IR:ν3080( w ,C=C)), 1432 ( m)ע ,C=C)), 1561 ( s)ע ,C=O)), 1591 ( m)ע ,C≡N)), 1714 ( vs)ע ,s ) 2231 1 1 CO)),823( w,γ(CH,Ph)cm ; HNMR (400)ע ,CO)),1118( m)ע ,C=C)),1291( s)ע 3 3 MHz, d6DMSO):δ=3.69( s,3H,HC6),8.04( d, J2,3 =6.9Hz,2H,HC3),8.14( d, J2,3

165 Chapter5.ExperimentalPart

13 =6.9Hz,2H,HC2), 8.65 ( s, 1H, HC7); C NMR (125 MHz, d6DMSO): δ = 52.6

(CH 3,C 6),84.3(Cq,C 8),112.8(Cq,CN),113.9(Cq,CN),129.8(CH,C 3),130.5(CH, + C2),133.6(Cq,C 1),135.1(Cq,C 4),160.3(CH,C 7),165.2(Cq,C 5); MS:m/z 212[M] , + + 181[MOCH 3] ,153[MCOOCH 3] . 2,2Dibenzylmalonitrile(74) N N N Br DBU + DMF N 71 68 74 CASRegistryNumber 3779315 MolecularFormula C17 H14 N2 MolecularWeight 246.31g/mol MethodologyRef. T.Y.Tsai,K.S.Shia,H.J.Liu, Synlett 2003 , 1,97 a)J.J.Bloomfield, J. Org. Chem. 1961 , 26 ,4112;b)H.Normant,T. Cuvigny, Bull. Soc. Chim. Fr. 1965 , 1881; c) R. Sommer, W. P. Neumann, Angew. Chem. 1966 , 78 ,546;d)K.Friedrich,J.Rieser, AnalysisRef. Synthesis 1970 , 2,479;e) E.DiezBarra,A.DelaHoz,A.Moreno, P.SanchezVerdu, J. Chem. Soc. ,PerkinTrans.1, 1991 , 10 ,2589; f) E. DiezBarra, A. De la Hoz, A. Moreno, P. SanchezVerdu, J. Chem. Soc. , PerkinTrans.1,1991 , 10 ,2589 A 25 mL, three necked roundbottomed flask, is charged at room temperature, with malononitrile(330mg,5mmol)dissolvedinDMF(5mL),1.643mlofDBU(1.643mL, 12mmol)(exothermicfrom20to40°C) andbenzylbromide (1.3mL, 11mmol).The mixtureisstirredheighthoursat80°C.Themixtureisadded,at0°C,dropwisetoa solutionofHCl(1M)togiveanheterogeneousbrownmixture.Theproductisextracted threetimeswithethylacetate(15mLportion).Thecombinedorganicphaseiswashed wicewithHCl(1M,15mLportion).Thesolventisremovedtogivetheproductasa brownoilwhichsolidificatesatroomtemperature(1.32g,80%yield). Compoundcharacterizationdata: N 7 N

5 6 2 1 3 4

166 Chapter5.ExperimentalPart

mp: 118121°C; TLC: Rf(toluene/EtOAc/AcOH20:20:1)=0.84; HPLC: 11.08min;

UV (EtOH):λ max ,nm(ε):350(570),264(790),258(850),205(15440); IR: ν3080( w,

C=C)), 1497)ע ,C≡N)), 1587( w)ע ,CH 2)), 2192( w)ע ,CH)), 2935( w)ע ,CH)),309( w)ע 1 1 C=C)), 762( s,γ(CH,Ph)),702( s,γ(Ph))cm ; HNMR (500)ע ,C=C)), 1457( m)ע ,s) 13 MHz, d6DMSO):δ=3.49( s,CH 2,HC5),7.43( m,10H,HC24); CNMR (125MHz, d6DMSO): δ = 41.4 (CH 2, C 5), 41.9 (Cq,C 6),115.4 (Cq, C 7), 128.0 (CH, C 4), 128.3, + + 130.3(CH,C 2,3 ), 133.5(Cq,C 1); MS: m/z 246[MH] ,91[PhCH 2] .

167 Chapter5.ExperimentalPart

5.1.3. Synthesis of Tetrazoles and Triazoles with Dialkylaluminum Azides 5.1.3.1. Typical procedures for the syntesis of 5substituted tetrazoles

5.1.3.1.1. Typicalprocedureforthepreparationofdialkylaluminumazide Toluene R2AlCl+NaN3 R2AlN3+NaCl 0°Cto25°C 46h Scheme 137.Preparationofthedialkylaluminumazide Notes: diethylaluminum chloride can be used in different solvents and molarities by following the same general procedure. For example solutions of diethylaluminum chloridewereusedin1.8Mintoluene,in2.5Mintoluene,in2.7Minxylene.

A 100 ml, fournecked, oven dried roundbottomed flask equipped with an overhead mechanicalstirrer,ischarged,at0°C,underanatmosphereofargon, withofsodium azide (5.46 g, 84 mmol). Diethylaluminum chloride (46.7 mL, 84 mmol, 2.7 M in toluene)areaddedwithasyringe.After15minutes,thewhiteheterogeneousmixtureis gradually warmed to room temperature, and stirred for four to six hours. During the formationofthereagent,asuspensionofsodiumchlorideisformed.

5.1.3.1.2. TP1: Typical procedure for 13 dipolar cycloadditions between dialkylaluminumazideandnitrilesforthetetrazoleringformation Cycloaddition: N R2AlN3 NH R' C N R' Toluene N N 40to120°C Scheme 138.Synthesisof5substitutedtetrazole A 100 ml, fournecked, oven dried roundbottomed flask equipped with an overheadmechanicalstirrer,containingawhitesuspensionofdiethylaluminumazide(84

168 Chapter5.ExperimentalPart mol,2.7Mintoluene)ischarged,atroomtemperature,underatmosphereofargon,with phenylsulphonylacetonitrile (10.87g,60mmol)intwoequalportionsinintervalsoffive minutes.Themixtureisgraduallyheatedto55°C(externaltemperature)andstirredfor twohours. Workup:

HNO 2+HN 3(g) →N 2(g) +N 2O(g) +H 2O Equation 1 .Saferemovalofhydrazoicacid WhentheHPLCandtheTLCanalysisshow>98%conversionthereactionmixture iscooledto0°Cand,todestroytheexcessofazide,addedtoasolutionofNaOH(15%, 67mL,252mmol),containingsodiumnitrite(17.38g,252mmol)(pH13.5)(Equation 1).ThepHisadjustedto1.5with6MHCl.Thebiphasic mixture is transferred to a separatoryfunnel,andtheproductisextractedthree times with ethyl acetate (20 mL portion); the combined organic phase is washed once with water (20 mL), and then concentratedbyrotaryevaporation(45°C,210to50 mbar) to afford 13.0 g of crude productwhichisredissolvedinethylacetate(30mL),transferredtoaseparatoryfunnel, andextractedthreetimeswithpotassiumcarbonate(10%solution,25mLportion)tothe aqueous phase as the potassium salt (pH 11). The combined basic aqueous phase is cooledto0°Cunderstirringandcarefullytreatedwith6MHCltoadjustthepHto2.5, monitoredwithpHpaperorelectrode.Theproductis extracted three times with ethyl acetate(20mlportion).Thecombinedorganicphaseiswashedoncewithwater(30ml). Thesolventisremovedtogivethetetrazole 75 asayellowcrystallinematerialwhichis crystallizedfromethylacetate/toluene(10.23g,76%).

5.1.3.1.3. TP2:Typicalprocedurefortheprotectionofthehydroxylgroup forsynthesisofthecompounds95,100,101and102 A25mL,twonecked,ovendriedroundbottomedflaskequippedwithastirring bar,ischarged,underatmosphereofargon,withtriethylaluminum(5mL,9mmol,1.8M intoluene).Thesolutioniscooledto0°Candthemandelonitrile(0.88mL,7mmol)is carefullyaddedover15minutes(exothermicfrom0to40°C).Themixtureisstirredtwo hoursfrom0°Ctoroomtemperature.

169 Chapter5.ExperimentalPart

5.1.3.2. Synthesis of tetrazoles in the presence of sulfony, thio, thiocyanofunctionalgroups 5Phenylsulfonylmethyl1Htetrazole(75) O N N O N O O S Et AlN S N 2 3 N H Toluene r.t.to55°C 269 75 CASRegistryNumber 54971663 MolecularFormula C8H8N4O2S MolecularWeight 224.24g/mol AnalysisRef. J.Polanski,K.Jarzembeck, Pure Appl. Chem . 2002 , 74 ,1227 TP1:1.4equivalentofdiethylaluminumazide(2.5Mintoluene)areusedina60mmol scale experiment. The reaction is heated for three hours at 55 °C to give 10.23 g of productasa yellowcrystallinematerialaftercrystallizationfromtoluene(76%yield). Thesamereactionwasdonewith1.4equivalentofdiisobutylaluminumazidetoobtain thesameyield.

Compoundcharacterizationdata: N O O N S N 1 N 3 2 H 6 4 5 mp: 172174°C; TLC: Rf(toluene/EtOAc/AcOH20:20:1)=0.44; HPLC: 3.60min;

UV (acetonitrile):λ max ,nm(ε):271(ε=1610), 264(1870),217(17520),194(39300); ,NH)), 1555 ( w, tetrazole), 1447 ( m)ע , CH)), 27002500 ( brm)ע ,IR: ν 3000 ( m 1 1 sim (SO 2))cm ; HNMRע ,asim (SO 2)), 1151( sע ,C=C)), 1401( m,δsim (CH 2)), 1297( s)ע

(500MHz, d6DMSO):δ=5.22( s,2H,HC2),7.64( dd , J=8.8,7.0Hz,2H,HC5),7.77 13 (m,3H,HC4,6 ),17.05( br ,NH); CNMR (125MHz, d6DMSO):δ=50.3(CH 2,C 2),

128.0(CH,C 4),129.5(CH,C 5),134.5(CH,C 6),137.9(Cq,C 3),148.5(Cq,C 1); MS: m/z 223[MH ],141[MCH 2CN 4H] .

170 Chapter5.ExperimentalPart

5(Benzylthio)1H tetrazole(17)

N N N N S Et2AlN3 S N H Toluene r.t.to50°C 16 17 CASRegistryNumber 21871476 MolecularFormula C8H8N4S MolecularWeight 192.24g/mol a)W. G. Finnegan, R. A. Henry, R. Lofquist, J. Am. Chem. Soc . 1958 , 80 ,3908;b)E.B.W.LeBlanc,B.S.Banko, Synth. Commun. AnalysisRef. 1998 , 28 , 3591; c) Lieber Z. P. Demko, K. B. Sharpless, J. Org. Chem . 2001 , 66 ,7945,T.Enkoji, J. Org. Chem. 1961 , 26 ,4472 TP1:1.5equivalentofdithylaluminumazide(2.5Mintoluene)areusedina20mmol scaleexperiment.Thereactionisheatedforfourhoursand30minat45°Ctogivethe productasayellowcrystallinematerial(1.77g,46%yield). Compoundcharacterizationdata:

N N 5 N S N 1 6 H 4 2 3 mp:134136°C; TLC: R f(toluene/EtOAc/AcOH20:20:1)=0.28; HPLC: 6.28min;

, CH)), 28002200( brm)ע ,UV (acetonitrile):λ max ,nm(ε):201(30190); IR: ν 3050( w C=C))cm)ע ,C=C)), 1433( m)ע ,C=C)), 1454( m)ע ,NH)), 1532( m,tetrazole),1493( m)ע 1 1 3 ; HNMR (500MHz, d6DMSO)δ=4.50( s,2H,HC5),7.26( t, J3,4 =7.3Hz,1H,H 3 3 3 C4),7.31( t, J3,4 = J2,3 =7.3Hz,2H,ArH),7.39( d, J2,3 =7.3Hz,2H,ArH),16.59( br, 13 NH); CNMR (125MHz, d6DMSO)δ=36.4(CH 2,C 5),128.1(CH,C 4),129.0(CH, + C2),129.3(CH,C 3),137.1(Cq,C 1),153.7(Cq,C 6); MS:m/z 193[M+H] ,191[MH] , + 91 [MSCN 4H] ; XRay: the structure was confirmed by Xray analysis (See Xray discussion;Section4). Phenylsulfanylmethyl1Htetrazole(76)

N N N N S Et2AlN3 S N Toluene H r.t.to55°C,30h 270 76

171 Chapter5.ExperimentalPart

CASRegistryNumber 18527281 MolecularFormula C8H8N4S MolecularWeight 192.24g/mol a)R.L.Buchman,R.A.Portyka,BristolMyersCo.U.S. 1967 ,US 3337576;b)R.L.Buchman,V.Spancmanis,R.A.Portyka, J. Med. AnalysisRef. Chem. 1969 , 12 , 1001; c) G. Sedelmeier, Novartis Pharma AG, 2005 ,WO2005/14602A1 TP1:1.4equivalentofdiethylaluminumazide(2.5Mintoluene)areusedina6mmol scaleexperiment.Thereactionisheatedforthirtyhoursat55°Ctogivetheproductasa yellowsolideaftercrystallizationfromtoluene(990mg,86%yield). Compoundcharacterizationdata:

N N 6 S N N 1 5 H 4 2 3 mp:106108°C; TLC: Rf(toluene/AcOEt/AcOH20:20:1)=0.26; HPLC: 5.14 min;

,((CH)ע ,NH)), 3100( s)ע , UV (EtOH):λ max ,nm(ε):251(3570); IR: ν31002400( brs ,C=C)), 1471 ( w)ע ,CH), 19501750 ( w, overtones γ(CH, Ph)), 1571 ( s)ע s ) 2974 1 1 ,(C=C))cm ; HNMR(500MHz, d6DMSO):δ=4.54( s,2H,HC5)ע ,C=C)), 1439( s)ע 13 7.21 m,1H,HC4),7.30( m,2H,HC3),7.34( m,2H,HC2),16.40( br ,NH); CNMR

(125MHz, d6DMSO):δ=24.8(CH 2,C 5),126.7(CH,C 4),128.9(CH,Ar),129.2(CH, Ar),134.0(Cq,C 1),155.0(Cq,C 6); MS:m/z 191[MH] . 4’(1 HTetrazol5ylsulfanylmethyl)biphenyl2carbonitrile(77)

N N N N N N S N S H Et2AlN3 Xylene,r.t.,24h 70 77

MolecularFormula C15 H11 N5S MolecularWeight 293.35g/mol TP1: 1.5equivalentofdiethylaluminumazide(2.7Minxylene) are used in a 3 mmol scaleexperiment.Thereactionisstirredfortwentyfourhoursatroomtemperaturetogive theproductasanoffwhitecrystallinematerial(768mg,87%yield).

172 Chapter5.ExperimentalPart

Compoundcharacterizationdata:

N NH N 11 9 N N 12S 8 13 10 2 1 7 6 3 5 4 mp: 157160°C; TLC: Rf(toluene/EtOAc/AcOH20:20:1)=0.22; HPLC:7.88min;

NH)), 3062)ע,UV (MeOH):λ max ,nm(ε):287(5600),254(13570); IR:ν31002400( s C=C)),838)ע,C=C)),1482( s)ע,C≡N)),1521( s)ע,CH)), 2226( s)ע,CH)), 2923( s)ע,s) 1 1 (m,γ(CH,Ph)), 7 63( s,γ(CH,Ph))cm ; HNMR (400MHz, d6DMSO):δ=4.59( s,

2H,HC11 ),7.54( m,2H,HC9),7.55( m,2H,HC8),7.57( m,1H,HC4),7.61( m,1H,H 3 4 3 4 C6),7.76( dt , J =7.8, J3,5 =1.3Hz,1H,HC5),7.93( dd , J3,4 =8.6, J3,5 =1.3Hz,1H, 13 HC3),17.10( br ,NH); CNMR (125MHz, d6DMSO):δ=35.4(CH 2,C 11 ),110.1(Cq,

C1),118.5(Cq,C 13 ),128.3(CH,Ar),128.9(CH,Ar),129.3(CH,Ar),130.1(CH,Ar),

133.5(CH,C 6),133.9(CH,C 4),137.1(Cq,C 7),137.5(Cq,C 10 ),144.0(Cq,C 2),153.8 + + (Cq,C 12 );MS:m/z 294[M+H] ,292[MH] ;HRMS:calc’dfor[M+H] =294.0808 found294.0807(M(ppm)=0.3),calc’dfor[M+Na] + =316.0627found316.0627(M (ppm)=0.1). 5{4'[(1HTetrazol5ylthio)methyl]biphenyl2yl}1Htetrazole (78)

N N N N N N N N N N NH N S N S H H Et2AlN3 Xylene,100°C,64h 77 78

MolecularFormula C15 H12 N8S MolecularWeight 336.38g/mol TP1:2.8equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina1.73mmol scale experiment. The reaction is stirred for threedays from90to110°Ctogivethe productasayellowcrystallinematerial(540mg,93%yield).

173 Chapter5.ExperimentalPart

Compoundcharacterizationdata: N NH N N N 11 N NH N 12 S 10 13 2 1 9 7 6 8 3 5 4 mp: 180182°C; TLC:Rf(toluene/EtOAc/AcOH10:20:2)=0.30; HPLC:6.24min;

,((CH)ע,NH)),3060( s)ע, UV (MeOH):λ max ,nm(ε):203(3480);IR:ν32002350( brs ,C=C)), 1572 ( w, tetrazole), 1534 ( w)ע ,CH)), 1607 ( m)ע ,CH)), 2906 ( s)ע ,s ) 3031 C=C),840( m,γ(CH,Ph)),747)עC=C)),1487 s)ע,C=C)),1427( m)ע,tetrazole),1487( s 1 1 (s,γ(CH,Ph))cm ; HNMR (400MHz, d6DMSO):δ=4.5( s,2H,HC11 ),7.03( d, 3 3 J8,9 =8.2Hz,2H,HC8),7.34( d, J8,9 =8.2Hz2H,HC9),7.63( m,4H,HC36 ),16.50 13 (br ,NH); CNMR (125MHz, d6DMSO):δ=35.5(CH 2,C 11 ),123.1(Cq,C 1),127.9

(CH,Ar),128.9(CH,Ar),129.0(CH,Ar),130.6(CH,Ar),131.1(CH,C 4),136.0(Cq,

C10 ), 138.5 (Cq, C 7), 141.0 (Cq, C 2), 153.7 (Cq, C 13 ), 154.4 (Cq, C 12 ); MS: m/z 337 [MH] +,335[MH] ;HRMS: calc’dfor[MH] + =337.0978,found337.0978(M(ppm) <0.1),calc’dfor[M+Na] + =359.0798,found359.0798(M(ppm)<0.1). 5.1.3.3. Synthesisoftetrazolesinthepresenceofdoublebonds (E)3Phenyl2(2 Htetrazol5yl)acetonitrile(79)

N NH N N N Et2AlN3 Toluene N N 40°C,6h 33 79

MolecularFormula C10 H7N5 MolecularWeight 197.20g/mol TP1:2equivalentsofdiethylaluminumazide(2.5Mintoluene)areusedina2mmol scaleexperiment.Thereactionisstirredsixhoursat45°Ctogivetheproductasawhite crystallinematerial(381mg,97%yield).

174 Chapter5.ExperimentalPart

Compoundcharacterizationdata:

N NH 2 5 8 N 1 N 3 6 4 7 N mp: 189192°C;TLC : Rf(toluene/AcOEt/AcOH20:20:1)=0.20; HPLC :5.87min;

,((NH)ע , UV (MeOH): λ max , nm (ε): 305 (15550), 225 (7590); IR: ν 31002500 ( brs ,C≡N)), 1614 ( s)ע ,CH)), 2229 ( m)ע ,CH)), 2991 ( s)ע ,CH)), 3055 ( s)ע ,m ) 3109 ,((C=C)), 771( m,γ(CH,Ph)ע,C=C)),1555( m,tetrazole),1454( m)ע,C=C)),1589( s)ע 1 1 688( m,γ(Ph))cm ; HNMR (500MHz, d6DMSO):δ=7.60( m,3H,HC3,4 ),8.01( m, 13 2H,HC2),8.39( s,1H, HC5),16.80( br ,NH); CNMR (150MHz, d6DMSO)97.2

(Cq,C 6),115.6(Cq,C 7),128.8,129.3(CH,C 3,4 ),129.8(CH,C 2),132.2(Cq,C 1),148.1 + + (CH, C 5), 155.2 (Cq, C 8); MS: m/z 236 [M+K] , 198 [M+H] , 196 [MH] ; HRMS : calc’dfor[MH] =196.0629found196.0629(M(ppm)=0.2). 5[( Z)2Phenyl1(2 Htetrazol5yl)vinyl]1Htetrazole (80)

N NH N N N Et2AlN3 NH Toluene N N 60°C,53h N N 33 80

MolecularFormula C10 H8N8 MolecularWeight 240.23g/mol TP1:3equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina10mmol scale experiment. The reaction is stirred for twenty four hours at 65 °C to give the productasaoffwhitecrystallinematerial(1.8g,75%yield).

Compoundcharacterizationdata:

N NH 2 5 N 1 6 3 7 N 4 7' NH N N N mp: 203°C,onsetofexothermicdecomposition:204368°Cwithmaximumat211.5°C;

TLC: Rf(toluene/EtOAc/AcOH20:20:1)=0.04; HPLC: 4.04min;UV (MeOH):λ max , ,CH)),3007( s)ע,NH)), 3088( s)ע, nm(ε):289(1410),220(860); IR:ν31002500( brs

175 Chapter5.ExperimentalPart

C=C)), 761)ע,C=C)),1568( s,tetrazole),1453( w)ע,C=C)),1568( s)ע,CH)), 1638( s)ע 1 1 (s,γ(CH,Ph)),690( m,γ(Ph))cm ; HNMR (400MHz, d6DMSO):δ=7.07( m,2H, 13 HC2),7.35( m,3H,HC3,4 ),8.15( s,1H,HC5),17.00( br ,NH); CNMR(125MHz, d6

DMSO):δ=110.9(Cq,C 6),128.1(CH,C2),129.3(CH,C 3),130.0(CH,C 5),133.3(Cq, + C1),140.8(Cq,C 7,7’ ); MS:m/z 241[MH] ,239[MH] . 5(1Cyclohexen1yl)1Htetrazole(81)

N N N N Et2AlN3 N Toluene H 90°C,20h 271 81

CASRegistryNumber 188890713 MolecularFormula C7H10 N4 MolecularWeight 150.18g/mol O.Kazuyuki,T.Makoto,M.Tohru,O.Hiroyuki,OnoPharmaceutical Ref. Co.,Ltd.,Japan, 1997 ,EP761680A2 TP1:1.4equivalentsofdiethylaluminumazide(2.5Mintoluene)areusedina7mmol scaleexperiment.Thereactionisheatedfortwentyhoursat90°Ctogivetheproductasa whitecrystallinematerialafterdirectcrystallizationofthecrudefromamixtureofethyl acetate/toluene1:1(680mg,65%yield).

Compoundcharacterizationdata:

N N 6 7 N 5 N 1 H 4 2 3 mp: 151153°C; TLC:Rf(toluene/AcOEt/AcOH20:20:1)=0.32; HPLC: 4.43min;

C)ע,NH)), 3108( m)ע , UV (MeOH):λ max ,nm(ε):230(1100); IR:ν31002600( brs 1 ; C=C)),1556( s,tetrazole),1410( s,tetrazole)cm)ע,CH)),1651( s)ע,H)), 29722931( s 1 HNMR (500MHz, d6DMSO):δ=1.61( m,2H,HC4),1.70( m,2H,HC5),2.21( m, 13 2H, HC3), 2.45 ( m, 2H, HC6), 6.77 ( m, 1H, HC2), 16.20 ( br , NH); C NMR (125

MHz, d6DMSO):δ=21.1(CH 2,C 4),21.5(CH 2,C 5),24.8(CH 2,C 3),24.9(CH 2,C 6), + + 122.7(Cq,C 1),132.7(CH,C 2),155.5(C q,C 7);MS:m/z 151[MH] ,108[MHHN 3] , 149[MHN2] ; HRMS: calc’dfor[MH] =149.0833,found149.0833(M(ppm)= 0.1).

176 Chapter5.ExperimentalPart

5Styryl1Htetrazole(82)

N N NH N Et2AlN3 N Xylene 60°C,18h 272 82 CASRegistryNumber 220429710 MolecularFormula C9H8N4 MolecularWeight 172.19g/mol a) H. Detert, D. Schollmeier, Synthesis 1999 , 6, 999; b) Z. P. AnalysisRef. Demko, K. B. Sharpless, J. Org. Chem . 2001 , 66 , 7945; c) G. Sedelmeier,NovartisPharmaAG, 2005 ,WO2005/14602A1 TP1:1.3equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina10mmol scaleexperiment.Thereactionisstirredfor18hoursfrom50to70°Ctogivetheproduct asanoffwhite crystallinematerialobtainedaftercrystallizationfromethylacetate(1.667 g,97%yield).

Compoundcharacterizationdata: 5 N NH 1 N 6 7 N 4 2 3 mp:158160°C; TLC: Rf(toluene/EtOAc/AcOH20:20:1)=0.46;HPLC:6.26min;

UV (EtOH):λ max ,nm(ε):284(24660),221(12940),208(10160); IR:ν31002400( brs , ,((CH)), 19601800 ( w, overtones γ(CH, Ph)ע ,CH)), 3032 ( m)ע ,NH)), 3062 ( m)ע C=C)), 974( s,δ(CH,C=Ctrans),776)ע ,C=C)), 1559( s,tetrazole), 1420( s)ע , vs )1650 1 1 3 (s,γ(CH,Ph)),688( m,γ(Ph))cm ; HNMR (400MHz, d6DMSO):δ=7.35( d, J5,6 = 3 16.6Hz,1H,HC6), 7.44( m,3H,HC3,4 ), 7.66( d, J5,6 =16.6Hz,1H,HC5), 7.74( m,2H, 13 HC2),16.50( br ,NH); CNMR (125MHz, d6DMSO):δ=110.5(CH,C 6),127.5(CH,

C2), 129.0 (CH, C 3), 129.6 (CH, C 4), 134.9 (Cq, C 1), 137.8 (CH, C 5), 154.1 (Cq, C 7); + + + MS: m/z 173 [MH] , 130 [MHHN 3] ,186[MHHN3] ; HRMS : calc’d for [MH] = 171.0676,found171.0676(M(ppm)=0.1). Fumaryl2Htetrazole(83)

N N N Et AlN NH 2 3 N N N Xylene N N r.t.,1h30min HN 273 83

177 Chapter5.ExperimentalPart

CASRegistryNumber 18733249 MolecularFormula C4H4N8 MolecularWeight 164.13g/mol AnalysisRef. Z.P.Demko,K.B.Sharpless, J. Org. Chem . 2001 , 66 ,7945 TP1:1.6equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina6mmol scaleexperiment.Thereactionisstirredfortwohoursatroomtemperaturetogivethe productasalightbrown crystallinematerial(700mg,71%yield). Compoundcharacterizationdata:

N N NH N 2 N N 1 HN N mp: 275°C; TLC: Rf(toluene/EtOAc/AcOH20:20:1)=0.04;HPLC: 2.10min;UV

C)ע,NH)), 3098( s)ע ,(CH)ע, EtOH):λ max ,nm(ε):261(1520); IR: ν32002800( brs) 1 1 ,C=C))cm ; HNMR (500MHz)ע ,CH)), 1548( s,tetrazole),1427( m)ע ,H)), 3043( s 13 d6DMSO):δ=7.69( s,2H,HC1), 17.00( br ,NH); CNMR (125MHz, d6DMSO):δ= + + 119.1(CH,C 1),152.9(Cq,C 2); MS: m/z 165[MH] ,163[MH] ,136[MHN2] ,108 + [MHN2N2] ; HRMS: calc’d for [MH] = 163.0486, found 163.0486 (M (ppm) < 0.1). 5.1.3.4. Synthesisoftetrazolesfromalkylnitriles

trans Cyclobutane1,2di1Htetrazole(84) HN N N NH N N N N N N Et AlN + 2 3 + Toluene 90°C,30h HN N N N N NH NN NN (R,R)(S,S) 274 84

MolecularFormula C6H8N8 MolecularWeight 192.16g/mol TP1: 1.33 equivalents of diethylaluminum azide (1.8 M in toluene) are used in a 30 mmol scale experiment. The reaction is stirred for thirty hours at 90 °C to give the product as a white crystalline material after crystallization from ethyl acetate (3.47 g, 60%yield).

178 Chapter5.ExperimentalPart

Compoundcharacterizationdata: HN N N N 6 4 1 Racemic 3 2 5 HN N N N mp: 233236°C,onsetofexothermicdecomposition:235315°Cwithmaximumat265

N)ע,C; TLC: Rf(toluene/EtOAc/AcOH20:20:1,I 2)=0.19; IR: ν32502400( brs° ,NH)),1564( s,tetrazole), 1446( m,tetrazole), 1425( s)ע,CH)),2921( s)ע,H)),2958( s 1 1 tetrazole)cm ; HNMR (500MHz, d6DMSO):δ=2.42( m,4H,HC4,3 ),4.12( m,2H, 13 HC1,2 ), 16.45 ( br , NH); C NMR (125 MHz, d6DMSO): δ = 24.4 (CH 2, C 4,3 ), 34.2 + (CH,C 1,2 ),157.1(Cq,C 5,6 );MS: m/z 193[M+H] ,191[MH] ,148[MHHN 3]; HR MS: calc’dfor[MH] =190.0799found191.0800(M(ppm)=0.4). 5Bicyclo[4.2.0]octa1,3,5trien7yl1Htetrazole(85) N N N N Et2AlN3 NH Toluene 70°C,49h 275 85

CASRegistryNumber 188890757 MolecularFormula C9H8N4 MolecularWeight 172.19g/mol O.Kazuyuki,T.Makoto,M.Tohru,O.Hiroyuki,OnoPharmaceutical Ref. Co.,Ltd.,Japan, 1997 ,EP761680A2 TP1:1.5equivalenstofdiethylaluminumazide(1.8Mintoluene)areusedina10mmol scaleexperiment.Thereactionisheatedforfortyninehoursat70°Ctogivetheproduct asawhitecrystallinematerialafterdirectcrystallizationofthecrudefromethylacetate/ toluene(2.53g,64%yield). Compoundcharacterizationdata: N N N 6 9 1 N 5 8 H 4 2 7 3

179 Chapter5.ExperimentalPart

mp:154156°C; TLC: Rf(toluene/EtOAc/AcOH20:20:1)=0.24; HPLC: 4.72min;

,((CH)ע ,UV (EtOH):λ max ,nm(ε):271(1550),265(1720),259(1230); IR: ν3053( m C=C)), 1435)ע ,CH)), 1575( m,tetrazole), 1457( s)ע ,NH)), 2998( s)ע , brs )30002400 1 1 ,C=C)), 751( s,γ(CH,Ph)cm ; HNMR (500MHz, d6DMSO):δ=3.65( m,2H)ע ,w)

HC7),5.05( m,1H,HC8),7.21( m,2H,CH3,6 ),7.28( m,2H,HC3,4 ),16.30( br ,NH); 13 CNMR (125MHz, d6DMSO):δ=35.7(CH,C 8),36.2(CH 2,C 7),122.7,123.2(CH,

C3,6 ),127.5,128.4(CH,C 4,5 ),143.4(Cq,C 2),143.6(Cq,C 1),156.4(Cq,C 9);MS:m/z 171[MH] . 5(1Phenylethyl)2Htetrazole(86) CH CH3 3 Et AlN N 2 3 NH N N Xylene,55°C N 276 86

MolecularFormula C9H10 N4 MolecularWeight 174.21g/mol TP1:1.33equivalenstofdiethylaluminumazide(2.7Minxylene)areusedina30mmol scaleexperiment.Thereactionisheatedfortwentyfourhoursat60°Ctogivetheproduct asawhitecrystallinematerial(4.22g,81%yield). Compoundcharacterizationdata: 6 CH3 5 7 N 1 NH N 4 2 N 3 mp:9899°C; TLC: Rf(toluene/AcOEt/AcOH20:20:1)=0.44; HPLC:4.39min; UV

,CH)), 2977( s)ע ,NH)), 3104( s)ע , EtOH):λ max ,nm(ε): 258(23);IR:ν32002500( brs)

CH)), 19671670( w,overtonesγ(CH,Ph)), 1555( s,tetrazole), 1491)ע,CH 3)),2937( s)ע 1 1 C=C)), 755 ( s,γ(CH,Ph),706( s, γ(Ph)) cm ; H NMR (500)ע ,C=C)), 1453 ( s)ע ,s) 3 3 MHz, d6DMSO):δ=1.65( d, J5,6 =7.2Hz,3H,HC6),4.53( q, J5,6 =7.2Hz,1H,H 13 C5),7.25( m,3H,ArH),7.32( m,2H,ArH),16.18( br ,NH); CNMR (125MHz, d6

DMSO):δ=20.3(CH 3,C 6),34.6(CH,C 5),127.1(CH,C 2,4 ),128.8(CH,C 3),142.0(Cq, + + C1),158.6(Cq,C 7); MS: m/z 175[MH] ,173[MH] ,145[MHN2] ,132[MHNH 3] ; HRMS:calc’dfor[MH] =173.0833,found173.0833(M(ppm)=0.1).

180 Chapter5.ExperimentalPart

5(1Adamantyl)1Htetrazole(87) N N N N NH

Et2AlN3 toluene 90°C,3d 277 87

CASRegistryNumber 60798892 MolecularFormula C11 H16 N4 MolecularWeight 204.27g/mol a)T.J.Bleisch,S.A.Filla,P.L.Ornstein,EliLilly andCompany, Ref. USA, 2002 ,WO2002053556A2;b)C.P.Hegarty,H.C.Pietryk, AmericanHomeProductsCorp.,USA, 1977 ,US4032659. TP1:2.23equivalentsofdiethylaluminumazide(2.5Mintoluene)areusedina3mmol scaleexperiment.Thereactionisstirredforthreedaysat90110°Ctogivetheproductasa whitecrystallinematerial(500mg,82%yield).

Compoundcharacterizationdata: N N N NH 4 1 2 3 mp:250253°C; TLC:Rf(toluene/EtOAc/AcOH20:20:1,I 2)=0.38; IR: ν31002500 ,(CH)), 1560( w,tetrazole)ע ,CH)), 2909( s)ע ,CH)),2934( s)ע ,NH)), 2989( s)ע , brm) 1 1 1409( w,tetrazole)cm ; HNMR (500MHz, d6DMSO):δ=1.75(br m,6H,HC3),1.98 13 (br m, 6H, HC1), 2.05 (br m, 3H, HC2), 16.10 ( br , NH); C NMR (125 MHz, d6

DMSO):δ=27.3(CH 2,C 3),32.0(Cq,C 4),35.7(CH 2,C 1),40.4(CH,C 2),162.0(C q,C 5); MS: m/z 205 [MH] +, 203 [MH] ; HRMS: calc’d for [M+H] + = 205.1448, found 205.1447(M(ppm)=0.5),calc’dfor[M+Na] + =227.1267,found227.1266(M(ppm) =0.4). 5(2Trifluoromethyl)benzyl1Htetrazole(88)

F F F F F F N Et AlN N 2 3 N Xylene HN N 65°C,17h 278 88

181 Chapter5.ExperimentalPart

CASRegistryNumber 220429743 MolecularFormula C9H7N4F3 MolecularWeight 228.17g/mol T.Utsunomiya et. all ,NissanChem.Industries, 1999 ,Patentwritten Ref. inJapanese,WO9906380A1 TP1:1.5equivalentsofdiethylaluminumazide(2.5Mintoluene)ordimethylaluminum azide(1Minhexane)areusedina4mmolscaleexperiment.The reactionwasheated forseventeenhoursat65°Ctogivetheproductasayellowcrystallinematerial(730mg, 80%yield). Compoundcharacterizationdata: F F F 7 8 2 1 9 N 3 N HN 4 6 N 5 mp: 135137°C; TLC: Rf(toluene/EtOAc/AcOH20:20:1)=0.38; HPLC: 6.51min;

,((CH)ע ,UV (EtOH):λ max ,nm(ε): 271(120),264(135),257nm(130); IR: ν3134( w ,C=C),tetrazole), 1428( w)ע ,C=C)), 15691547( w)ע ,NH)),1586( w)ע , brs )30002450 1 1 CF 3)), 771( s,δ(Ph))cm ; HNMR (500MHz, d6DMSO):δ=4.45)ע ,C=C)), 1109( s)ע 3 3 3 (s,2H,HC8 ),7.49( d, J5,6 =7.6Hz,1H,HC6),7.54( t, J4,5 =7.6, J3,4 =7.8Hz,1H,H 3 3 C4),7.69( t, J =7.6Hz,1H,HC5),7.77( d, J3,4 =7.8Hz,1H,HC3),16.20( br ,NH); 13 CNMR (125MHz, d6DMSO):δ=26.3(CH 2,C 8),124.4(Cq,C 7),126.1(CH,C 3),

127.2(Cq,C 2),128.0(CH,C 4),132.3(CH,C 6),132.9 (CH,C 5), 133.6(Cq,C 1),154.5 + + + (Cq,C 9); MS: 229[MH] ,209[MHF] ,186[MHHN 3] ;HRMS: calc’dfor[MH] = 227.0550, found 227.0550 (M (ppm) = 0.2), calc’d for [M+CF 3COO] = 341.0479, found341.0480(M(ppm)=0.3). 5(1,1Diphenylethyl)2Htetrazole(89)

CH3 Et2AlN3 CH3 N xylene N NH 85120°C,18h N N 279 89 CASRegistryNumber 132979909 MolecularFormula C15 H14 N4 MolecularWeight 250.30g/mol J.V.Duncia,M.E.Pierce,J.B.Santella, III , J. Org. Chem . 1991 , AnalysisRef. 56 ,2395 182 Chapter5.ExperimentalPart

TP1:1.3equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina5mmol scaleexperiment.Thereactionisstirredforheighteenhoursfrom85to120°Ctogive theproductasawhitecrystallinematerial(550 mg,45%yield).

Compoundcharacterizationdata:

6 5 4 2 CH3 3 7 N 1 NH N N mp:138140°C; TLC: Rf(toluene/EtOAc/AcOH20:20:1)=0.54; HPLC: 8.70min;

C)ע,CH)), 3062( w)ע,UV (EtOH):λ max ,nm(ε): 259(520),196(52820); IR: ν3091( m

,CH 3)), 19001700 ( w)ע ,NH)), 2918 ( m)ע , CH)), 28002350 ( brm)ע ,H)), 3025 ( m C=C)), 1410)ע ,C=C)), 1447( m)ע ,overtonesγ(CH,Ph)), 1549( m,tetrazole)),1494( s 1 1 C=C)), 761( s,γ(CH,Ph)),698( s,γ(Ph))cm ; HNMR (500MHz, d6DMSO):δ)ע,m) 13 =2.18( s,3H,HC2),7.07( m,4H,ArH),7.30( m,6H,ArH),16.20( br ,NH); CNMR

(125MHz, d6DMSO):δ=28.2(CH 3,C 2),45.9(Cq,C 1),126.6(CH,C 6),127.1(CH, + Ar),127.9(CH,Ar),144.7(Cq,C 3); MS: m/z 251[MH] ; HRMS: calc’dfor[MH] = 173.0833,found173.0833(M(ppm)=0.1). 1,3Diphenyl2,2bis(5tetrazoyl)propane(90)

N N N N N N NH N N N NH N Et2AlN3 N Et2AlN3 N Xylene Xylene N H r.t.to75°C 18h

74 280 90 CASRegistryNumber 66012542 MolecularFormula C17 H16 N8 MolecularWeight 332.36g/mol AnalysisRef. H.Illy,CibaGeigyAG.,Switz.,Ger.Offen. 1978 ,DE2731323(A1) TP1: 1.6equivalentsofdiethylaluminumazide(2.7Min xylene) are used in a 1.88 mmolscaleexperiment.Thereactionisstiredforeighteenhoursfromroomtemperature to75°Ctogivetheproductasabrowncrystallinematerial(488mg,87%yield).

183 Chapter5.ExperimentalPart

Compoundcharacterizationdata:

N N N NH N N 7 5 N 1 2 N 6 H 3

4 mp: 217220°C; TLC:Rf(toluene/EtOAc/AcOH20:20:1)= 0.6 ;HPLC: 7.69min;

,((CH)ע ,NH)), 3089 ( s)ע , UV (EtOH): λ max , nm (ε): 259 (71); IR: ν 32002400 ( brs ,CH)), 19511740 ( w, overtones γ(CH)ע ,CH)), 2962 ( s)ע ,CH)), 3007 ( s)ע ,s ) 3028

,C=C)), 747( m,γ(CH,Ph),700( s)ע,C=C)), 1456( s)ע,Ph),1563( m,tetrazole),1497( m 1 1 γ(Ph))cm ; HNMR (500MHz, d6DMSO):δ=3.69( s,4H,HC5),6.56( m,4H,HC2), 13 7.05( m,6H,HC3,4 ),16.29( br ,NH); CNMR (125MHz, d6DMSO):δ=44.8(Cq,

C6), 45.2 (CH 2, C 5), 126.5 (CH, C 4), 127.6 (CH, C 2), 129.2 (CH, C 3), 134.6 (Cq, C 1), 153.0(Cq,C 7); MS: 331[MH] ,333[MH] . 5.1.3.5. Synthesisoftetrazolesfromaromaticnitriles

5Phenyl1Htetrazole(11)

N N N N Et AlN 2 3 N Xylene H 80°C,24h 10 11

CASRegistryNumber 18039424 MolecularFormula C7H6N4 MolecularWeight 146.15g/mol a)J.S.Mihina,R.M.Herbst, J. Org. Chem . 1950 , 15 ,1082;b)K. Sisido,K.Nabika,I.Tyuzo,S.Kozima, J. Organomet. Chem . 1971 , 33 , 337; c) J. Kaczmarek, Z. Grzonka, Pol. J. Chem . 1980 , 54 , 1297;d)B.S.Jursic,B.W.Leblanc, J. Heterocycl. Chem . 1998 , 35 , AnalysisRef. 405; e) Z. P. Demko, K. B. Sharpless, J. Org. Chem . 2001 , 66 , 7945;f)J.J.Shie,J.M.Fang, J. Org. Chem . 2003 , 68 ,1158;g)D. Amantini, R. Beleggia, F. Fringuelli, F. Pizzo, L. Vaccaro, J. Org. Chem . 2004 , 69 ,2896 TP1:1.3equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina5mmol scaleexperiment.Thereactionisstirredfortwentyfourhoursat80°Ctogivethe productasawhitecrystallinematerialobtainedaftercrystallizationfromethylacetate (730mg,99%yield).

184 Chapter5.ExperimentalPart

Compoundcharacterizationdata: N NH 2 1 N 3 5 N 4 mp:214216°C; TLC:Rf(toluene/AcOEt/AcOH20:20:1)=0.6; HPLC: 4.40min;

,CH)),3056( m)ע,UV (EtOH):λ max ,nm(ε): 239(14710),199(29680); IR: ν3078( m C=C)), 1487)ע C=C)), 1565( s,tetrazoleor)ע,NH)), 1609( s)ע, CH)), 30002400( brs)ע 1 1 C=C)),688( s,γ(Ph))cm ; HNMR (500MHz, d6DMSO):δ)ע ,C=C)),1466( s)ע ,s) 13 =7.58 ( m, 3H, HC3,4 ), 8.03 ( m, 2H, HC2), 16.80 ( br , NH); C NMR (125 MHz, d6

DMSO):δ=123.8(Cq,C 1),126.6(CH,Ar),129.0(CH,Ar),130.8(CH,C 4),154.7(Cq, + + C7); MS:m/z 147[MH] ,104[MHHN3] , HRMS:calc’dfor[MH] =145.0520,found 145.0520(M(ppm)=0.1). 5,5’(1,2Phenylene)bis2Htetrazole(91)

N N N NH Et2AlN3 N Xylene N N 90°C,3h N N N H 281 91 CASRegistryNumber 73096432 MolecularFormula C8H6N8 MolecularWeight 214.19g/mol a)J.Kaczmarek,Z.Grzonka, Pol. J. Chem . 1980 , 54 ,1297;b)W. Ried, S. AboulFetouh, Tetrahedron 1988 , 44 , 3399; c) Z. P. AnalysisRef. Demko, K. B. Sharpless, J. Org. Chem . 2001 , 66 , 7945; d) A. Fleming, F. Kelleher, M. F. Mahon, J. McGinley, V. Prajapati, Tetrahedron 2005 , 61 ,7002 TP1:1.4equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina5mmol scaleexperiment.Thereactionisstirredforthreehoursat90°Ctogivetheproductasan offwhitecrystallinematerial(800mg,75%yield). Compoundcharacterizationdata:

N N 2 1 NH 3 N 4 N N N NH

185 Chapter5.ExperimentalPart

mp: 225227°C; TLC: Rf(toluene/EtOAc/AcOH20:20:1)=0.07; HPLC: 3.09min;

,((CH)ע,NH)), 3114( s)ע,UV (EtOH):λ max ,nm(ε):206(21950); IR: ν32002400( brs ,C=C)), 1592 ( m)ע ,CH)), 19571780 ( w, overtones γ(CH, Ph)), 1606 ( m)ע ,s ) 3054 1 1 C=C)) cm ; H NMR (500)ע ,C=C)), 1453 ( s)ע ,C=C)), 1556 ( s, tetrazole), 1481 ( s)ע 13 MHz, d6DMSO):δ=7.80( m,2H,HC2),7.89( m,2H,HC3),16.60( br ,NH); CNMR

(125MHz, d6DMSO):δ=124.1(Cq,C 1),130.3(CH,C 3),130.9(CH,C 2),154.3(Cq, + C4); MS: m/z 215[MH] ; HRMS: calc’dfor[MH] =213.0643,found213.0643(M (ppm)<0.1). 5(oMethylphenyl)2Htetrazole(92) H N N N N N

CH3 Et AlN 2 3 CH3 Xylene 80°C,25h 58 92 CASRegistryNumber 51449866 MolecularFormula C8H8N4 MolecularWeight 160.07g/mol a)J.S.Mihina,R.M.Herbst, J. Org. Chem . 1950 , 15 ,1082;b)R. N.Butler,V.C.Garvin, J. Chem. Soc. , PerkinTrans.1:Organic and BioOrganic Chemistry (19721999), 1981 , 2, 390; c) L. A. AnalysisRef. Flippin, Tetrahedron Lett. 1991 , 32 ,6857;d)K.Koguro,T.Oga,S. Mitsui, R. Orita, Synthesis 1998 , 6, 910; e) B. S. Jursic, B. W. LeBlanc, J. Heterocycl. Chem . 1998 , 35 ,405 TP1:Oneequivalentofdiethylaluminumazide(2.7Minxylene)areusedina7mmol scale experiment. The reaction is stirred for twenty five hours at 80 °C to give the productasawhitecrystallinematerial(670mg,83%yield).

Compoundcharacterizationdata: H N N N N 7 8 1 2 CH 6 3 5 3 4 mp:150151°C; TLC:Rf(toluene/EtOAc/AcOH20:20:1)=0.46; HPLC: 4.43min;

,((CH)ע ,UV (EtOH): λ max , nm (ε): 273(776),234(9330),205(23790); IR: 3105 ( w

CH)), 1608)ע,asim (CH 3)),2843( sע,NH)), 2970( s)ע, CH)), 30002300( brs)ע,m )3062

186 Chapter5.ExperimentalPart

C=C)),746( s,γ(CH,Ph)cm 1;1HNMR (500)ע,C=C)), 1563( s,tetrazole), 1490( s)ע,m)

MHz, d6DMSO):δ=2.50( s,3H,HC8),7.38( m,1H,HC5),7.43( m,1H,HC3),7.48 13 (m,1H,HC4),7.68( m,1H,HC6),16.65( br ,NH); CNMR (125MHz, d6DMSO):δ=

20.5(CH 3,C 8),123.8(Cq,C 2),126.3(CH,C 5),129.4(CH,C 3),130.7(CH,C 4),131.3 + (CH,C 6),137.0(Cq,C 1),155.0(Cq,C 7); MS:m/z 159[MH] ,131[MHN2] ; HRMS: calc’dfor[MH] =159.0676,found159.0676(M(ppm)=0.2). 5[4(1 Htetrazol5ylmethyl)phenyl]1Htetrazole (93)

N N N N NH

Et2AlN3

Xylene 75°C,24h N N N N N H 282 93 CASRegistryNumber 66012622 MolecularFormula C9H8N8 MolecularWeight 228.22g/mol AnalysisRef. H.Illy,CibaGeigyA.G.,Switz.,Ger.Offen. 1978 ,DE2731323A1 TP1:2.1equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina1.4mmol scaleexperiment.Thereactionisstirredfortwentyfourhoursat75°Ctotheproductasa whitecrystallinematerial(305mg,95%yield).

Compoundcharacterizationdata: N N N NH 7 1 2 3 4 6 5 N N NH N mp: upto250°C; TLC: Rf(toluene/AcOEt/AcOH20:20:1)=0.24; HPLC: 3.44min;

,((CH)ע ,NH)), 3091( w)ע , UV (MeOH):λ max ,nm(ε):243(14580); IR:32002300( brs ,CH)), 1577 ( m, tetrazole), 1509 ( m)ע ,CH)), 2931 ( m)ע ,CH)), 2988 ( m)ע ,m ) 3018 1 1 ,(C=C))cm ; HNMR (500MHz, d6DMSO):δ=4.41( s,2H,HC5)ע ,ν(C=C)),1451( m

187 Chapter5.ExperimentalPart

3 3 13 7.51( d, J2,3 =8.3Hz,2H,HC3),8.02( d, J2,3 =8.3Hz,2H,HC2),16.60( br ,NH); C

NMR (125MHz, d6DMSO):δ=28.4(CH 2,C 5),127.3(CH,Ar),127.5(Cq,Ar),129.8 (CH,Ar),139.1(Cq,Ar),155.0(Cq,C 6,7 ); MS: m/z 227[MH] . 5(4Nitrophenyl)1Htetrazole(94) N N N N NH

Et2AlN3 Xylene 0°C,5min NO 2 NO2 283 94 CASRegistryNumber 16687608 MolecularFormula C7H5N5O2 MolecularWeight 191.15g/mol a)Z.P.Demko,K.B.Sharpless, J. Org. Chem . 2001 , 66 ,7945;b) AnalysisRef. E.H.Master,S.I.Khan,K.A.Poojary, Bioorg. Med. Chem. 2005 , 13 ,4891 TP1:1.5equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina5mmol scaleexperiment.Thereactionisstirredfiveminutesat0°C(additionofthestarting nitrileveryexhothermicwithgasevolution)togivetheproductasabrowncrystalline material(140mg,15%yield).

Compoundcharacterizationdata:

N N 2 1 N 3 N 5 H O N 2 4 mp: 194196°C; TLC:Rf(toluene/AcOEt/AcOH20:20:1)=0.16; HPLC: 4.34min;

,((CH)ע ,NH)),3105( m)ע , UV (EtOH):λ max ,nm(ε):280(11830); IR: ν32502400( brm

,NO 2)), 1339 ( s)ע ,C=C)), 1553 ( m, tetrazole), 1526 ( s)ע ,CH)), 1606 ( m)ע ,m ) 3079 1 1 3 ,(NO 2))cm ; HNMR (500MHz, d6DMSO):δ=8.30( d, J2,3 =12.0Hz,2H,HC2)ע 3 13 8.43( d, J2,3 =12.0Hz,2H,HC3),16.30( br ,NH); CNMR (125MHz, d6DMSO):δ=

124.2(CH,C 2),127.8(CH,C 3),130.5(Cq,C 4),148.2(Cq,C 1),152.9(Cq,C 5); MS: m/z 190[MH] ,162[MHN2] ,134[MHN2N2] . 188 Chapter5.ExperimentalPart

5(2Hydroxyphenyl)1Htetrazole(95) N N N N N NH

AlEt3 Et2AlN3 OH OAlEt2 OH Toluene Xylene 0°Ctor.t.,2h 80°C,2h30min 284 285 95

CASRegistryNumber 51449775 MolecularFormula C7H6N4O MolecularWeight 162.15g/mol a)J.Kaczmarek,Z.Grzonka, Polish J. Chem . 1980 , 54 ,1297;b)A. Kumar,R.Narayanan,H.Shechter, J. Org. Chem . 1996 , 61 ,4462; AnalysisRef. c)K.Koguro,T.Oga,S.Mitsui,R.Orita, Synthesis 1998 , 6,910;d) G.Sedelmeier,NovartisPharmaAG, 2005 ,WO2005/014602A1 Protectionofthehydroxylgroup:TP2,Cycloaddition:TP1: 1.1equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina4mmolscale experiment.Thereactionisstirredfortwohoursandthirtyminutesat80°Ctogivethe productasawhitecrystallinematerial(628mg,97%yield).Thesameexperimentisdone atroomtemperatureforfourhourstoobtainthesameyield. Compoundcharacterizationdata: N N N NH 7 1 OH 6 2 5 3 4 mp: 220222 °C; TLC: Rf (toluene / AcOEt / AcOH) = 0.46; HPLC: 3.67 min; UV

(EtOH): λ max , nm (ε): 298 (516), 253 (843), 244 (1190), 208 (2710); IR: ν 3254 ( s, ,CH)), 19641600 ( w, overtones γ(CH)ע ,NH)), 3065 ( s)ע , OH)), 33002500 ( brs)ע ,C=C)),748( s)ע,C=C)),1466( vs)ע,C=C)),1548( s,tetrazole), 1487( s)ע,Ph)), 1615( vs 1 1 3 γ(CH,Ph))cm ; HNMR (500MHz, d6DMSO):δ=7.01( m, J=8.0Hz,1H,HC5), 3 4 3 7.14( d, J=8.2Hz,1H,HC3),7.41( dt , J4,6 =1.5Hz, J =8.0Hz,1H,HC4),8.00( dd , 4 3 13 J4,6 =1.5Hz, J=8.0Hz,1H,HC6),11.00( br ,OH),16.00( br ,NH); CNMR (125

MHz, d6DMSO):δ=110.4(Cq,C 1),116.3(CH,C 5),119.7(CH,C 3),129.0(CH,C 6), + + 132.6(CH,C 4),151.6(Cq,C 7),155.3(C q,C 2); MS: m/z 161[MH] ,163[M+H] . 189 Chapter5.ExperimentalPart

5(2Fluorophenyl)2Htetrazole(96) HN N N N N Et AlN F 2 3 F Toluene 90°C,7h 135 96 CASRegistryNumber 50907192 MolecularFormula C7H5N4F MolecularWeight 164.14g/mol a) E. F. George,W. R. Riddell, Imperial Chemical Industries Ltd., UK, 1975 , US 3865570; b) R. K. Russell, W. V. Murray, J. Org. Chem . 1993 , 58 , 5023; c) P. Malladi, S. Kantevari, C. K. S. Nair, AnalysisRef. (Council of Scientific and Industrial Research, India) 2001 , US 6326498 B1; d) K. Srinivas, C. K. S. Nair, S. Ramesh, M. Pardhasaradh, Org. Prep. Proc. Int . 2004 , 36 ,69;e)G.Sedelmeier, NovartisPharmaAG, 2005 ,WO2005/14602A1 TP1: 1.3equivalentsofdiethylaluminumazide(1.8Mintoluene)areusedina15mmol scaleexperiment.Thereactionisstirredsevenhoursat90°Ctogivetheproductasa whitecrystallinematerial(2.348g,95%yield).Thesameexperimentwasdoneat55°C stirringthereactionfor39hourswiththesameyield. Compoundcharacterizationdata: HN N N N 7 1 F 6 2 5 3 4 mp: 158160°C; TLC: R f(toluene/EtOAc/AcOH20:20:1)=0.45; HPLC: 3.79min.;

UV (EtOH):λ max ,nm(ε):275(1610),236(12850),197(25630); IR: ν31002400( brs , ,CH)), 19001750( w,overtones γ(CH)), 1622( s)ע,CH)),3023( s)ע,NH)), 3063( m)ע ;CF)),752( s, γ(CH,Ph)cm 1)ע,C=C)), 1234( s)ע,C=C)), 1587( m,tetrazole),1494( s)ע 1 HNMR (500MHz, d6DMSO):δ=7.45( m,1H,HC5),7.50( m,1H,HC3),7.68( m, 13 1H, HC4), 8.06 ( m, 1H, HC6), 16.5 ( br , NH); C NMR (125 MHz, d6DMSO): δ =

112.5(Cq,C 1),116.6(CH,C 3),123.4(CH,C 5),130.2(CH,C 6),133.5(CH,C 4),158.1 + (Cq, C 7), 159.8 (Cq, C 1); MS: m/z 165 [MH] , 163 [MH] ,135[MHN2] , 122 [MH + HN 3] .

190 Chapter5.ExperimentalPart

5(2Chlorophenyl)2Htetrazole(97)

Et AlN 2 3 N Xylene HN N N Cl Cl 50°C,27h N 286 97 CASRegistryNumber 50907465 MolecularFormula C7H5ClN 4 MolecularWeight 180.60g/mol a)R.M.Herbst,K.R.Wilson, J. Org. Chem . 1957 , 22 ,1142;b)E. F. George, W. R. Riddell, Imperial Chemical Industries Ltd., UK, 1975 US 3865570; c) R. N. Butler, V. C. Garvin, J. Chem. Soc. , AnalysisRef. Perkin Trans. 1, 1981 , 2, 390; d) K. Srinivas, C. K. S. Nair, S. Ramesh, M. Pardhasaradhi, Org. Prec. Proc. Int . 2004 , 36 , 69; e) G.Sedelmeier,NovartisA.G.,Switz. 2005 ,WO2005014602A1 TP1: 1.3equivalentsofdiethylaluminumazide(2.7Minxylene) areusedina4mmol scale experiment. The reaction is stirred for twentysevenhoursat50°Ctogivethe productasawhitecrystallinematerial(680mg,95%yield). Compoundcharacterizationdata: N NH N N 7 1 2 Cl 6

5 3 4 mp:173175°C; TLC:Rf(toluene/EtOAc/AcOH20:20:1)=0.48; HPLC: 4.28min;

NH)), 3108)ע , UV(EtOH):λ max ,nm(ε):235(6770),204(2439); IR:ν32002400( sbr ,((C=C)ע ,CH)), 1603( s)ע ,CH)), 3004( m)ע ,CH)), 3034( m)ע ,CH)), 3061( m)ע ,w) 1 1 C=C)),748( s,γ(CH,Ph)cm ; HNMR (500MHz, d6)ע ,s,tetrazole), 1472( m )1564

DMSO):δ=7.55( m,1H,HC5),7.63( m,1H,HC4),7.71( m,1H,HC3),7.80( m,1H, 13 HC6),16.90( br ,NH); CNMR (125MHz, d6DMSO):δ=124.1(Cq,C 2),127.8(CH,

C5), 130.4 (CH, C 4), 131.7 (CH, C 3), 131.9 (Cq, C 1), 132.6 (CH, C 6); MS: m/z 181 + [MH] ,179[MH] ,151[MHN2] . 5(2Bromophenyl)1Htetrazole(26) N N N N NH

Br Br R2AlN3 Xylene 50°C,58H 25 26 191 Chapter5.ExperimentalPart

CASRegistryNumber 73096421 MolecularFormula C7H5N4Br MolecularWeight 225.5g/mol a)S.J.Wittember,B.G.Donner, J. Org. Chem . 1993 , 58 ,4139;b) J.W.Ellingboe,M.Antane,T.T.Nguyen,M.D.Collini,A.Schuyler, AnalysisRef. D.Hartupee,V.White,J.McCallum, J. Med. Chem. 1994 , 37 ,542; c)J.Boivin,S.Husinec,S.Z.Zard, Tetrahedron 1995 , 51 ,11737 TP1: 1.5equivalentsofdiethylaluminumazide(2.7Minxylene),or1.5equivalentsof dimethylaluminumazide(1Minhexane)areusedina3mmolscaleexperiment.The reactionisstirredforthirtyhoursat50°Ctogive the product as a white crystalline material(480mg,71%yield).

Compoundcharacterizationdata: N N N NH 7 1 Br 6 2 5 3 4 mp: 174176°C; TLC: Rf(toluene/EtOAc/AcOH20:20:1)=0.4; HPLC: 4.14min;

,((CH)ע,NH)), 3068( m)ע, UV (EtOH):λ max ,nm(ε):203(27320); IR: ν31002400( brs ,C=C)), 1476 ( s)ע ,CH)), 19881700 ( w, overtones γ(CH, Ph), 1605 ( s)ע ,m ) 3035 1 1 C=C)),1447( s,tetrazole),749( s,γ(CH,Ph)cm ; HNMR (500MHz, d6DMSO):δ)ע 3 3 =7.55( m, J=8.0Hz,2H,HC4,5 ),7.7( dd , J3,4 =8.0, J =4.0Hz,1H,HC3),7.85( dd , J 13 =8.0,4.0Hz,1H,HC6),16.70( br ,NH); CNMR (125MHz, d6DMSO):δ=121.4

(Cq,C 1),126.1(Cq,C 2),127.7(CH,C 5),131.6(CH,C 4),132.2(CH,C 3),133.1(CH, + + C6),154.2(Cq,C 7); MS: m/z 225[MH] ,197[MHN2] ,182[MHHN 3] . 5(2Iodophenyl)2Htetrazole(98) H N N N N N I Et2AlN3 I Xylene 50°C,5d 286 98 CASRegistryNumber 73096409 MolecularFormula C7H5N4I MolecularWeight 272.05g/mol a)J.Kaczmarek,H.Smagowski,Z.Grzonka, J. Chem. Soc., Perkin Trans. 2:PhysicalOrganicChemistry(19721999) 1979 , 12 ,1670; AnalysisRef. b)J.Kaczmarek,Z.Grzonka, Pol. J. Chem . 1980 , 54 ,1297;c)J. Boivin,S.Husinec,S.Z.Zard, Tetrahedron 1995 , 51 ,11737 192 Chapter5.ExperimentalPart

TP1: 1.3equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina3mmol scaleexperiment.Thereactionisstirredforthreedaysat50°Ctogivetheproductasa whitecrystallinematerial(690mg,85%yield).

Compoundcharacterizationdata: N NH N N 7 1 2 I 6 5 3 4 mp: 214216°C; TLC:Rf(toluene/AcOEt/AcOH20:20:1)=0.42; HPLC: 4.75min;

,((NH)ע, CH)), 30002300( brs)ע,UV (EtOH):λ max ,nm(ε): 204(20180); IR:ν3027( w ,C=C)),747( s,γ(CH)ע,C=C)), 1569( w,tetrazole),1473( s)ע ,CH)), 1601( s)ע,w )2996 1 1 3 Ph)cm ; HNMR (500MHz, d6DMSO):δ=7.34( m, J3,4 =8.03Hz, 1H,HC4),7.59 3 13 (m,2H,HC5,6 ),8.09( d, J3,4 =8.03Hz, 1H,HC3),17.00( br ,NH); CNMR (125MHz, d6DMSO):δ=97.6(Cq,C 2), 128.4 (CH, C 4), 130.5 (Cq, C 1), 131.2 (CH, C 5), 132.4 + (CH,C 6),139.7(CH,C 3),155.8(Cq,C 7);MS: m/z 273[M+H] ,271[MH] ,243[MH + N2] ; HRMS: calc’dfor[M+H] =272.9632,found272.9630(M(ppm)=0.5),calc’d for[M+Na] + =294.9451,found294.9450(M(ppm)=0.3). 5(4Chlorophenyl)1Htetrazole(1) N N N N NH

Et2AlN3 Toluene 90°C,24h Cl Cl 287 1 CASRegistryNumber 16687619 MolecularFormula C7H5N4Cl MolecularWeight 180.59g/mol a) E. F. George,W. R. Riddell, Imperial Chemical Industries Ltd., UK, 1975 ,US3865570;b)A.Antonowa,S.Hauptmann, Zeitschrift fuer Chemie 1976 , 16 , 17; c) J. Kaczmarek, Z. Grzonka, Pol. J. Chem . 1980 , 54 , 1297; d) N. SadlejSosnowska,W.P. Oziminski, AnalysisRef. A. Krowczynski, Chem. Phys . 2003 , 294 , 65; e) F. Lenda, F. Guenoun,B.Tazi,N.BenIarbi,H.Allouchi,J.Martinez,F.Lamaty, Eur. J. Org. Chem . 2005 , 2,326;f)G.Sedelmeier,NovartisPharma AG, 2005 ,WO2005/14602A1

193 Chapter5.ExperimentalPart

TP1: 1.57equivalentsofdiethylaluminumazide(2.5Mintoluene)areusedina40 mmolscaleexperiment.Thereactionisstirredtwentyfourhoursat90°Ctogivethe productasaoffwhitecrystallinematerial(7.09g,97%yield).

Compoundcharacterizationdata: HN N N N 5 1 2 3 4 Cl mp: 255257°C; TLC: Rf(toluene/EtOAc/AcOEt/AcOH20:20:1)=0.40; HPLC:

NH)), 3096)ע, 5.86min.;UV (EtOH):λmax ,nm(ε):248(34480); IR: ν32002400( brs ,((CH)), 19001750( w,overtones γ(CH,Ph)ע,CH)), 3000( m)ע,CH)),3071( m)ע,m) Ph)ע,C=C)),1096( s)ע,C=C)), 1436( s)ע,C=C)),1566( w,tetrazole),1488( s)ע,s )1611 1 1 3 Cl))cm ; HNMR (500MHz, d6DMSO):δ=7.69( m, J2,3 =8.8Hz,2H,HC2),8.04 3 13 (d, J2,3 =8.8Hz,2H,HC3),17.00( br ,NH); CNMR (125MHz, d6DMSO):δ=123.1

(Cq,C 1),128.7(CH,C 3),129.6(CH,C 2),135.9(Cq,C 4),154.8(Cq,C 5); MS:m/z 179 [MH] . 5(4Fluorophenyl)1Htetrazole(99) HN N N N N

Et2AlN3 Toluene 130°C,15h F F 288 99 CASRegistryNumber 50907216 MolecularFormula C7H5FN 4 MolecularWeight 164.14g/mol a) E. F. George,W. R. Riddell, Imperial Chemical Industries Ltd., UK, 1975 ,US3865570;b)N.E.Takach,E.M.Holt,N.W.Alcock, AnalysisRef. R.A.Henry,J.H.Nelson, J. Am. Chem. Soc . 1980 , 102 ,2968;c) B.Verheyde,W.Dehaen, J. Org. Chem . 2001 , 66 ,4062 TP1: 1.5equivalentsofdiethylaluminumazide(1.8Mintoluene)areusedina5mmol scaleexperiment.Thereactionisstirredfifteenfourhoursat130°Ctogivetheproduct as an off white crystalline material after crystallization from toluene (720 mg, 88 % yield).

194 Chapter5.ExperimentalPart

Compoundcharacterizationdata: HN N N N 5 1 2 3 4 F mp:209211°C; TLC:Rf(toluene/AcOEt/AcOH20:20:1)=0.41; HPLC: 4.73min;

CH)), 3000)ע,CH)),3073( w)ע,UV (EtOH):λ max ,nm(ε):240(5440); IR: ν 3091( w ,C=C)), 1572 ( w)ע ,NH)), 19001750 ( w, overtones γ(CH, Ph)), 1611 ( s)ע , brs ) 2300 C=C)), 843( s,γ(CH,Ph))cm 1;1HNMR (500)ע,C=C)), 1446( s)ע,tetrazole),1501( s 3 3 MHz, d6DMSO):δ=7.55( m, J2,3 =8.8Hz,2H,HC2),8.10( m, J2,3 =8.8Hz, 2H,H 13 C3),17.00( br ,NH); CNMR (125MHz, d6DMSO):δ=116.6(CH,C 2),121.0(Cq, C1), 129.4 (CH, C 3), 154.7 (Cq, C 5), 162.7 (Cq, C 4); HRMS: calc’d for [MH] = 163.0426,found163.0425(M(ppm)=0.1). 5.1.3.6. Synthesisoftetrazolesinthepresenceodhydroxygroup 1HTetrazole5methanolαmethyl(100)

OH OH Et2AlN3 H C N 3 N Xylene H3C N 0°Ctor.t.,24h N NH 289 100 CASRegistryNumber 155471606 MolecularFormula C3H6N4O MolecularWeight 114.05g/mol B.E. Fisher,A.J.Tomson,J.P.Horwitz, J. Org. Chem . 1959 , 24 , AnalysisRef. 1650 TP1: 1.3equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina10mmol scale experiment. The reaction is stirred for twenty four hours from 0 °C to room temperaturetogivetheproductasawhitecrystallinematerial(780mg,65%yield).

Compoundcharacterizationdata: OH 3 N H3C 2 N 1 N NH

195 Chapter5.ExperimentalPart

mp: 120122°C;TLC:Rf(toluene/EtOAc/AcOH20:20:1,CPS)=0.2; UV (EtOH):

C)ע,NH)), 2987( s)ע,OH)),30002400( brs)ע,λmax ,nm(ε): 273(ε=3); IR: ν3382( s CH)), 1580( m,(tetrazole)),1463( w,(tetrazole)),1445)ע,CH)), 2950( m)ע,H)), 2978( s 1 1 CO)) cm ; H NMR (500 MHz, d6)ע ,CO)), 1246 ( s)ע ,m, (tetrazole)), 1256 ( s) 3 3 DMSO):δ=1.48( d, J1,2 =6.5Hz,3H,HC1),5.08( q, J1,2 =6.5Hz,1H,HC2),6.01 13 (br ,OH),16.15( br , NH); C NMR (125 MHz, d6DMSO): δ = 22.6 (CH 3, C 1), 60.6 + (CH,C 2),144.0(Cq,C 3); MS: m/z 115[MH] ,113[MH] ; HRMS: calc’dfor[MH] =113.0469,found113.0469(M(ppm)=0.1),calc’d for [M+Cl] =149.0236,found 149.0236(M(ppm)=0.1). Phenyl(2 Htetrazol5yl)methanol(101)and( R)enantiomer(102) OH OH

Et2AlN3 N N xylene,45°C N N N H 290 101 CASRegistryNumber 40060762(racemic) MolecularFormula C8H8N4O MolecularWeight 176.18g/mol AnalysisRef. Z.P.Demko,K.B.Sharpless, J. Org. Chem . 2001 , 66 ,7945 Protectionofthehydroxylgroup:TP2,Cycloaddition:TP1 1.5equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina7mmolscale experiment. The reaction is stirred for one hour twenty minutes at 45 °C to give the product as a white crystalline material obtained after crystallization from ethyl acetate (1.04g,82.4%yield).Thesameexperimentisdonewiththepure( R)enantiomerina3.5 scaleexperimentat40°Cforonehourtogive610mgofproductwith99%ofyieldafter extractions.

Compoundcharacterizationdata:

OH 2 1 6 N 3 5 N N 4 NH mp: 157159°C; HPLC: 2.428min; TLC: Rf(toluene/EtOAc/AcOH20:20:1)=0.23;

25 Opticalrotation: (R)enantiomer : [α ]D =1.0(inMeOH,c=0.70); UV (EtOH):λ max ,

CH)), 3000)ע,CH)), 3066( s)ע,OH)), 3092( s)ע, nm(ε): 258(ε=25); IR: ν3426( brs

196 Chapter5.ExperimentalPart

,C=C)), 1434( w)ע ,C=C)), 1456 ( w)ע ,CH)), 1495 ( w)ע ,NH)), 2950( s)ע , brs )23000 ;CO)), 754( m,γ(CH,Ph)),696( s,γ(Ph))cm 1)ע,CO)), 1041( m)ע,C=C)), 1059( s)ע 1 HNMR (500MHz, d6DMSO):δ=6.11( d, J=4Hz,1H,HC5),6.75( br ,1H,OH), 13 7.30( m,1H,HC4),7.35( m,2H,HC3),7.41( m,2H,HC2),16.40( br ,NH); CNMR

(125MHz, d6DMSO):δ=66.3(CH,C 5),126.3(CH,C 2),128.0(CH,C 4),128.4(CH, + + C3),140.9(Cq,C 1),158.8(Cq,C 6); MS: m/z 177[MH] ,175[MH] ,159[MHH2O] , + 131[MHH2ON2] ; HRMS: calc’dfor[MH] =175.0625,found175.0625(M(ppm) =0.1). 5.1.3.7. Synthesisof5substitutedheteroaromatictetrazoles

2(2 HTetrazol5yl)pyridine(103)

N N N NH Et2AlN3 N N Xylene N 0°Ctor.t.,3h 291 103 CASRegistryNumber 33893899 MolecularFormula C6H5N5 MolecularWeight 147.14g/mol a)J.M.McManus,R.M.Herbst, J. Org. Chem . 1959 , 24 ,1462;b) AnalysisRef. Z.P.Demko,K.B.Sharpless, J. Org. Chem . 2001 , 66 ,7945;c)J. J.Shie,J.M.Fang, J. Org. Chem . 2003 , 68 ,1158 TP1: 1.3equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina5mmol scaleexperiment.Thereactionisstirredforthreehoursfrom0°Ctoroomtemperature. ThemixtureisquenchedwithHCl(2M)andthepHadjustedwithpotassiumcarbonate topH6,theaqueousphaseissaturatedwithsolidNaClandextractedwithethylacetate togivetheproductasawhitecrystallinematerial(490,mg67%yield).

Compoundcharacterizationdata:

N N 3 2 NH 4 7 N N 5 1 6 mp:210212°C; TLC:Rf(toluene/EtOAc/AcOH10:20:1)=0.07; HPLC:2.23min;

C)ע,CH)),3065( s)ע,UV (EtOH):λ max ,nm(ε):273(6450),233(11490); IR:ν3092( s ,((C=C)ע ,C=C)), 1603 ( s)ע ,NH)), 1640 ( w)ע ,CH)), 30002400 ( brs)ע ,H)), 3032 ( s

197 Chapter5.ExperimentalPart

1558( s,tetrazole),796( s,δ(pyrindine),744( s,δ(pyrindine)cm 1;1HNMR (500MHz, 3 3 4 3 d6DMSO):δ=7.62( ddd , J5,6 =4.8, J4,5 =7.7, J3,5 =1.3Hz,1H,HC5),8.07( dt , J= 4 3 4 5 7.7, J4,6 =1.7Hz,1H,HC4),8.21( ddd , J3,4 =7.8, J3,5 =1.3, J3,6 =1.0Hz,1H,HC3), 3 4 5 13 8.77( ddd , J5,6 =4.8, J4,6 =1.7, J3,6 =1.0Hz,1H,HC6),17.15( br ,NH); CNMR

(125MHz, d6DMSO):δ=122.2(CH,C 5),125.7(CH,C 4),137.8(CH,C ),143.2(Cq, + + C2),149.6(CH,C 6),154.3(Cq,C 7); MS:m/z 148[MH] ,146[MH] ,120[MHN2] , 118[MHN2] ; HRMS:calc’dfor[MH] =146.0472,found146.0472(M(ppm)= 0.1). 3(2 HTetrazol5yl)pyridine(104)

N N N NH Et2AlN3 N Xylene N N 0°Ctor.t.,3h 292 104 CASRegistryNumber 3250746 MolecularFormula C6H5N5 MolecularWeight 147.14g/mol a)J.M.McManus,R.M.Herbst, J. Org. Chem . 1959 , 24 ,1462;b) M. Alterman, A. Hallberg, J. Org. Chem . 2000 , 65 , 7984; c) D. AnalysisRef. Amantini, R. Beleggia, F. Fringuelli, F. Pizzo, L. Vaccaro, J. Org. Chem . 2004 , 69 ,2896;d)T.T.Denton,X.Zhang,J.R.Cashman, J. Med. Chem. 2005 , 48 ,224 TP1: 1.3equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina5mmol scaleexperiment.Thereactionisstirredforthreehoursfrom0°Ctoroomtemperature. ThemixtureisquenchedwithHCl(2M)andthepHadjustedwithpotassiumcarbonate topH6,theaqueousphaseissaturatedwithsolidNaClandextractedtogivetheproduct as a white crystalline material after crystallization from a mixture of ethyl acetate / ethanol(570mg,78%yield). Compoundcharacterizationdata:

N N 4 7 NH 5 N 3 6 N 2 1 mp:226228°C; TLC: Rf(toluene/AcOEt/AcOH10:20:2)=0.04; HPLC:1.72min;

UV (EtOH): λ max , nm (ε): 272(2190),266(2190),233(7650); IR: ν 32002400 ( brs , C=C)), 1583)ע ,CH)), 1610( s)ע ,CH)), 3036( s)ע ,CH)),3063( s)ע ,NH)), 3086( s)ע

198 Chapter5.ExperimentalPart

1 1 C=C)) cm ; H NMR (500 MHz, d6)ע ,C=C)), 1528 ( m, tetrazole), 1485 ( m)ע ,m) 3 3 3 4 DMSO):δ=7.69( ddd , J5,6 =4.9, J4,5 =7.9Hz,1H,HC5),8.51( m, J4,5 =7.9, J4,6 = 3 4 1.7Hz,1H,HC4),8.77( dd , J5,6 =4.9, J4,6 =1.7Hz,1H,HC6),9.28( m,1H,HC2), 13 16.70( br ,NH); CNMR (125MHz, d6DMSO):δ=121.2(Cq,C 3),124.6(CH,C 5), + 135.3(CH,C 4),147.1(CH,C 2),151.1(CH,C 6),153.6(Cq,C 7); MS:m/z 148[MH] , + 146 [MH] , 105 [MHHN 3] ; HRMS: calc’d for [MH] =146.0472,found146.0472 (M(ppm)=0.1). 4(2 HTetrazol5yl)pyridine(105)

N N N NH Et2AlN3 N N Xylene N 0°Ctort,3h 293 105 CASRegistryNumber 14389129 MolecularFormula C6H5N5 MolecularWeight 147.14g/mol a)J.M.McManus,R.M.Herbst, J. Org. Chem . 1959 , 24 ,1462;b) AnalysisRef. H.Detert,D.Schollmeier, Synthesis 1999 , 6,999 TP1: 1.3equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina5mmol scaleexperiment.Thereactionisstirredforthreehoursfrom0°Ctoroomtemperature. ThemixtureisquenchedwithHCl(2M),andthepHadjustedwithpotassiumcarbonate topH6,theaqueousphaseissaturatedwithsolidNaClandextractedtogivetheproduct asawhitecrystallinematerialobtainedaftercrystallizationfromethanol(700mg,95% yield).

Compoundcharacterizationdata:

N N 5 NH N 4 N 1 3 2 mp: 255258°C; TLC: Rf(toluene/EtOAc/AcOH10:20:1)=0.04; HPLC: 1.38min;

,((CH)ע ,NH)), 3040( m)ע ,UV (EtOH):λ max ,nm(ε):253(234); IR: ν32003000( br s 1 1 C=C)) cm ; H NMR (500MHz, d6)ע ,C=C)), 1580 ( s, tetrazole), 1448 ( s)ע ,s ) 1619 3 3 DMSO):δ=7.78( d, J2,3 =6.0Hz,2H,HC3),8.51( d, J2,3 =6.0Hz,2H,HC2),16.30 13 (br ,NH); CNMR (125MHz, d6DMSO):δ=120.9(CH,C 3),139.4(Cq,C 4),149.8 + (CH,C 2),158.9(Cq,C 5); MS: m/z 146[MH] ,118[MHN2] . 199 Chapter5.ExperimentalPart

2,6Bis(2 Htetrazol5yl)pyridine(106)

Et2AlN3 Xylene N N N N N N 0°C,1h HN N N NN NH 294 106 CASRegistryNumber 68790487 MolecularFormula C7H5N9 MolecularWeight 215.18g/mol a)J.M.McManus,R.M.Herbst, J. Org. Chem. 1959 , 24 ,1462;b) AnalysisRef. M.Duati,S.Tasca,F.C.Lynch,H.Bohlen,J.G.Vos,S.Stagni,M. D.Ward, Inorg. Chem . 2003 , 42 ,8377 TP1: 3equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina2mmol scale experiment. The reaction is stirred for one hourat0°C.Themixturereactionis quenchedwithHCl(2M)andthepHadjustedwithpotassiumcarbonatetopH6,the aqueousphaseissaturatedwithsolidNaClandextractedtogivetheproductasanoff whitecrystallinematerial(360mg,84%yield). Compoundcharacterizationdata:

3 2 N 4 N N HN 1 N NN N NH mp:upto260°C; TLC: Rf(toluene/EtOAc/AcOH10:20:1)=0.03 ;UV (MeOH):λ max , nm(ε):281(3360),273(3500),266(3170),221(9380);HPLC: 3.61min;IR: ν3200 C)ע ,CH)),3043( s)ע ,CH)), 3080( s)ע ,CH)),3092( s)ע ,NH)),3119( s)ע , brs )2600 1 1 CH)), 1557(s,tetrazole),1455( s,(C=C))cm ; HNMR (500MHz, d6)ע ,H)), 3015( s 13 DMSO):δ=8.33( m,3H,HC13),16.80( br ,NH); CNMR (125MHz, d6DMSO):δ= 132.6(CH,C 2),133.8(Cq,C 1),140.3(CH,C 3),162.0(Cq,C 4); MS: m/z 214[MH] . 2(1 HTetrazol5yl)pyrazine(107) N N N N N N Et2AlN3 N H toluene N 40to0°C3h N 295 107 CASRegistryNumber 16289546 MolecularFormula C5H4N6 MolecularWeight 148.13g/mol AnalysisRef. a)G.F.Holland,J.N.Pereira, J. Med. Chem . 1967 , 10 ,149;b)G.

200 Chapter5.ExperimentalPart

A. Wächter, M. C. Davis, A. R. Martin, S. G. Franzblau, J. Med. Chem . 1998 , 41 , 2436; c) Z. P. Demko, K. B. Sharpless, J. Org. Chem . 2001 , 66 ,7945 TP1: One equivalent of diisobutylaluminum azide (1.8 M in toluene) are used in a 4 mmolscaleexperiment.Thereactionisstirredforthreehoursfrom40to0°C.The mixture reaction is quenched with HCl (2 M) and the pH adjusted with potassium carbonate to pH 6, the aqueous phase is saturated with solid NaCl and the product extractedtogivetogivetheproductasanoffwhitecrystallinematerial obtainedafter crystallizationfromethylacetate(380mg,64%yield).

Compoundcharacterizationdata: N 1 N N N 2 6 N 7 H 5 3 N 4 mp:178180°C;TLC: Rf(toluene/EtOAc/AcOH20:20:1)=0.06; HPLC:2.00min;

C)ע ,CH)),3097( w)ע ,UV(EtOH):λ max ,nm(ε):276(9940),227(9800); IR: ν3139( w ,(C=C)),1572( w,tetrazole)ע ,NH)), 1603( w)ע , CH)), 30002300( brm)ע ,H)), 3075( m 1 1 1572( w,pyridine)cm ; HNMR (500MHz, d6DMSO):δ=8.87( m, J =4.0Hz,1H, 13 HC3), 9.39 ( d, J = 4.0 Hz, 2H, HC5,6 ), 17.50 ( br , NH); C NMR (125 MHz, d6

DMSO):δ=139.7(Cq,C 2),142.9(CH,Ar),144.4(CH,Ar),146.3(CH,Ar),153.2(C q, C7); MS: m/z 147 [MH] ; HRMS: calc’d for [MH] = 147.04247, found 147.04247 (M(ppm)=0.3). 5Furan2yl1Htetrazole(108)

Et2AlN3 N N N O Xylene O HN N r.t.to55°C,12h 296 108 CASRegistryNumber 23650331 MolecularFormula C5H4N4O MolecularWeight 136.11g/mol a) E. F. George,W. R. Riddell, Imperial Chemical Industries Ltd., UK 1975 ,US3865570;b)A.Antonowa,S.Hauptmann, Zeitschrift fuer Chemie 1976 , 16 ,17;c)J.J.Shie,J.M.Fang, J. Org. Chem . AnalysisRef. 2003 , 68 ,1158;d)D.Amantini,R.Beleggia,F.Fringuelli,F.Pizzo, L. Vaccaro, J. Org. Chem . 2004 , 69 , 2896; e) F. Lenda, F. Guenoun,B.Tazi,N.BenIarbi,H.Allouchi,J.Martinez,F.Lamaty, Eur. J. Org. Chem . 2005 , 2,326

201 Chapter5.ExperimentalPart

TP1: 1.2 equivalentsofdiethylaluminumazide(2.7Minxylene) areusedina 5mmol scaleexperiment.Thereactionisstirredfortwelvehoursat55°Ctogivetheproductasa yellowcrystallinematerial(591mg,87%yield).

Compoundcharacterizationdata: 3 2 5 N 4 NH O 1 N N mp: 198200°C; TLC: Rf(toluene/EtOAc/AcOH20:20:1)=0.31; HPLC:2.86min;

CH)), 3022)ע,CH)), 3073( w)ע,UV (EtOH):λ max ,nm(ε):255(14490); IR: ν3108( s ,C=C)), 1541 ( s, tetrazole)), 1488 ( w)ע ,NH)), 1642 ( s)ע ,CH)), 30002300 ( brs)ע ,m) 1 1 3 ,(C=C))cm ; HNMR (500MHz, d6DMSO):δ=6.70( dd , J2,3 =3.5Hz,1H,HC3)ע 3 4 7.26( dd , J2,3 =3.5, J2,4 =1.7Hz,1H,HC2),8.02( dd , J=1.7Hz,1H,HC4),17.10( br , 13 NH); CNMR (125MHz, d6DMSO):δ=112.1(CH,C 3),112.6(CH,C 2),139.5(Cq, + + C1),145.6(CH,C 4),154.2(Cq,C 5); MS: m/z 137[MH] ,135[MH] ,94[MHHN 3] ; HRMS:calc’dfor[MH] =135.0312,found135.0312(M(ppm)<0.1).

5Thiophen2yl1Htetrazole(109)

Et AlN N N 2 3 N S Xylene S HN N r.t.to55°C,12h 297 109 CASRegistryNumber 59541581 MolecularFormula C5H4N4S MolecularWeight 152.18g/mol a)B.Decroix,P.Dubus,J.Morel,P.Pastour, Bull. Soc. Chim. Fr. 1976 ,621;b)A.Antonowa,S.Hauptmann, Zeitschrift fuer Chemie AnalysisRef. 1976 , 16 , 17; c) J.J. Shie, J.M. Fang, J. Org. Chem . 2003 , 68 , 1158;d)F.Lenda,F.Guenoun,B.Tazi,N.BenIarbi,H.Allouchi,J. Martinez,F.Lamaty, Eur. J. Org. Chem . 2005 ,2,326 TP1: 1.2 equivalentsofdiethylaluminumazide(2.7Minxylene) areusedina 5mmol scaleexperiment.Thereactionisstirredfortwelvehoursat55°Ctogivetheproductasa yellowcrystallinematerialobtainedaftercrystallizationfromamixtureofethylacetate/ toluene(616mg,81%yield).

Compoundcharacterizationdata:

3 2 N 4 5 N S 1 HN N 202 Chapter5.ExperimentalPart

mp: 206207°C; TLC: Rf(toluene/EtOAc/AcOH20:20:1)=0.40; HPLC: 3.73min;

,CH)), 3030( m)ע,CH)),3076( s)ע,UV (EtOH):λ max ,nm(ε):266(237); IR: ν3110( m ,C=C)), 1507 ( m, tetrazole), 1410 ( s)ע ,NH)), 1594 ( s)ע , CH)), 30002300 ( brs)ע 1 1 3 3 ,C=C))cm ; HNMR (500MHz, d6DMSO):δ=7.28( dd , J2,3 =3.7, J3,4 =5.0Hz)ע 3 4 3 4 1H,HC3),7.79( dd , J2,3 =3.7, J2,4 =1.2Hz,1H,HC2),7.86( dd , J3,4 =5.0, J2,4 =1.2 13 Hz,1H,HC4),16.90( br ,NH); CNMR (125MHz, d6DMSO):δ=125.4(Cq,C 1), + 128.6(CH,C 3),129.1(CH,C 2),130.4(CH,C 4),151.3(Cq,C 5); MS: m/z 153[MH] , + 151[MH] ,110[MHHN 3] , XRay: thestructurewasconfirmedbyXrayanalysis(See XrayDiscussion;Chapter4). 5(1 HPyrrol2yl)2Htetrazole(110)

Et2AlN3 N NH N N Xylene N H H N N r.t.,10h 298 110 CASRegistryNumber 31602661 MolecularFormula C5H5N5 MolecularWeight 135.13g/mol a) A. Antonowa, S. Hauptmann, Zeitschrift für Chemie , 1976 , 16 , AnalysisRef. 17; b) F. Lenda, F. Guenoun, B. Tazi, N. BenIarbi, H. Allouchi, J. Martinez,F.Lamaty, Eur. J. Org. Chem . 2005 , 2,326 TP1: 2.3equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina3mmol scale experiment. The reaction is stirred for twenty four hours from 0 °C to room temperaturetogivetheproductasanoffwhitecrystallinematerial(670mg,82%yield).

Compoundcharacterizationdata: 3 2 1 N 4 NH N 5 H N N mp: 230232°C; TLC: Rf(toluene/EtOAc/AcOH20:20:1)=0.41; HPLC: 2.26min;

C)ע ,NH,pyrrole)), 3072( w)ע ,UV (MeOH):λ max ,nm(ε): 262(4850); IR: ν3300( s ,C=C)), 1540( m)ע ,NH,tetrazole), 1636( s)ע , CH)), 30002300( brm)ע ,H)), 3015( m 1 1 tetrazole), 1469( s,tetrazole)cm ; HNMR (500MHz, d6DMSO):δ=6.23( m,1H,H 13 C3), 6.81 ( m, 1H, HC2), 7.01 ( m, 1H, HC4), 12.00 ( br , NH), 16.50 ( br , NH); C

NMR (125MHz, d6DMSO):δ=109.6(CH,C 3),111.0(CH,C 2),115.5(Cq,C 1),122.5 + (CH,C 4),149.0(Cq,C 5); MS: m/z 136[MH] ,134[MH] ,106[MHN2] .

203 Chapter5.ExperimentalPart

5.1.3.8. Synthesis of tetrazoles in the presence of amides, amines, estersandethers

2(2 HTetrazol5yl)pyrrolidine1carboxylicacid tert butylester(111)

H H N CN Et2AlN3 NH N N Toluene N N O O O 50°C,30h O 299 111 CASRegistryNumber 867326861 MolecularFormula C10 H17 N5O2 MolecularWeight 239g/mol a)T.Nowak,A.P.Thomas,Astrazeneca, 2005 ,WO2005040159 A1; b) M. G. Palermo, S. K. Sharma, C. Straub, R.M. Wang, L. Zawel,Y.Zhang,Z.Chen,Y.Wang,F.Yang,W.Wrona,G.Liu,M. AnalysisRef. G.Charest,F.He,NovartisAG, 2005 ,WO2005097791A1;c)V. Aureggi, G. Sedelmeier, Novartis Pharma AG, 2007 , WO 2007/009716 TP1: 1.2equivalentsofdiethylaluminumazide(2.5Mintoluene)areusedina5mmol scaleexperiment.Thereactionisstirredforthirtyhoursat40°C.Theworkupisdoneby using directly a solution of KHSO 4(10%solution)topH5insteadHCl,toavoidthe cleavageoftheBocgrouptogivetheproductasawhitecrystallinematerial(680mg,57 %yield). The aqueous phase after workup is evaporated and stirred 4h with ethanol. The suspensionisfilteredandthesolventremovedtogivethedeprotected2( S) (1 Htetrazol 5yl)pyrrolidine asawhitecrystallinematerial(139mg,25%yield). Compoundcharacterizationdata:

3 2 1 H N 4 NH N 5 6 N N O O 7 8 mp: 122°C; TLC: Rf(toluene/etylacetate/AcOH20:20:1)=0.22; Opticalrotation: ,CH)), 1669( vs)ע,NH)), 2977( s)ע ,α] D=75.68°(inMeOH,c=0.63); IR: ν3416( w] CO))cm)ע,CN)),1372( m,δ(CH 3)), 1160( s)ע,C=O)),1553( m,tetrazole), 1423(v s)ע 1 1 ; HNMR (500MHz, d6DMSO,300K)Rotamers(1:1):δ=1.12,1.37( s,9H,HC8),

1.90( m,2H,HC3),2.1( m,1H,HC2),3.40( m,2H,HC4),5.08( m,1H,HC1),16.37

(br ,NH);(500MHz, d6DMSO,393K):δ=1.29( s,9H,HC8),1.91( m,3H,HC2,3 ), 204 Chapter5.ExperimentalPart

13 2.34( m,1H,HC2),3.49( m,2H,HC4),5.10( m,1H,HC1); CNMR (150MHz, d6

DMSO,300K)Rotamers(1:1):δ=23.0,23.1(CH2,C 3),27.7,28.1(CH 3,C 8)31.7,32.9

(CH 2,C 2),46.2,46.4(Cq,C 7),51.3,51.6(CH 2,C 4),79.1,78.8(CH,C 1),152.8,153.5 + + (Cq,C 5),158.6,159.3(Cq,C 6); MS:m/z 240[MH] ,238[MH] ,140[MHBoc] .

(R)-2(2 Htetrazol5yl)pyrrolidine1carboxylic acid benzyl ester (113) and ( S enantiomer112)

H H H N Et AlN N CN 2 3 N N Xylene N N O O 50°C,9h O O

120 112 (R)enantiomer:839711738 CASRegistryNumber (S)enantiomer:33876209 MolecularFormula C13 H15 N5O2 MolecularWeight 273.30g/mol a)R.G.Almquist,W.R.Chao,C.JenningsWhite, J. Med. Chem. 1985 , 28 ,1067;b)Z.P.Demko,K.B.Sharpless, Org. Lett . 4, 2002 , 2525;c)N.Momiyama,H.Torii,S.Saito,H.Yamamoto, Proc. Natl. Acad. Sci. U.S.A . 2004 , 101 ,5374;d)A.J.A.Cobb,D.M.Shaw,D. AnalysisRef. A.Longbottom,J.B.Gold,S.V.Ley,Org.Bio.Chem. 2005 , 3,84; e)V.Franckevicius,K.R.Knudsen,M.Ladlow,D.A.Longbottom, S. V. Ley, Synlett 2006 , 6, 889; f) V. Aureggi, G. Sedelmeier, NovartisPharmaAG, 2007 ,WO2007/009716 TP1: 1.3equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina50mmol scaleexperiment.Thereactionisstirredforninehoursat50°Ctogivetheproductasa whitecrystallinematerial(13.9 g,96%yield).The( R)andthe( S)enantiomersgavethe sameyield.

Compoundcharacterizationdata: 3 2 1 H H 4 N N 5 N 6 N N O O 8 7 11 9 10 mp: 8486°C,onsetofexothermicdecomposition:204291.38°Cwithmaximumat253

°C; TLC: Rf (toluene / EtOAc / AcOH 20:20:1) = 0.22; HPLC: 5.46 min; Optical

205 Chapter5.ExperimentalPart

25 rotation: Renantiomer : [α ]D =+50.1°(inMeOH,c=1.00),+49.7°(inEtOH,c=1),

+85.3°(inCHCl 3,c=1.00),+41.8°(inDMSO,c=1.00),+65.4°(inDMF,c=0.99);

25 Senantiomer : [α ]D =89.0°(inCHCl 3,c=1.00); UV (acetonitrile):λ max ,nm(ε):258

C)ע ,NH)), 2973( w)ע , CH)), 30002300( brm)ע ,CH)),3035( w)ע ,IR:ν3074( w ;(23) C=C)),1443)ע,C=O)),1552( m,tetrazole), 1499( w)ע,CH)), 1694( vs)ע,H)), 2944( w CO)), 693 ( w, γ (Ph)) cm 1; 1H NMR (500)ע ,CN)), 1132 ( s)ע ,C=C)), 1404 ( s)ע ,s)

MHz, d6DMSO,300K)Majorrotamer:δ=1.95( m,3H,HC2,3 ),2.33( m,1H,HC3),

3.51( m,2H,HC4),4.98( m,2H,HC7),5.18( m,1H,HC1),7.32( m,5H,HC911 ),16.20

(br ,NH);(500MHz, d6DMSO,394K):δ=1.95( m,3H,HC2,3 ),2.33( m,1H,HC3),

3.51( m,2H,HC4),4.98( m,2H,HC7),5.18( m,1H,HC1),7.32( m,5H,HC911 ),16.20 13 (br ,NH); CNMR (125MHz, d6DMSO,300K)Rotamers(1:1):δ=24.2(CH2,C 3),

32.0,33.1(CH 2,C 2),46.7,47.21(CH 2,C 4),52.2(CH,C 1),66.3,66.6(CH 2,C 7),127.3

(CH,Ar),127.9(CH,Ar),128.8(CH,Ar),137.0(Cq,C 8),153.9(Cq,C 6),154.5(Cq, + C5);MS: m/z 274[MH] ,272[MH] . 2( S)(Tetrazol5yl)pyrrolidine(114)and((R)enatiomer115)

H N H N NH NH N N N N H N N PG 114 (S)enantiomer:33878705 CASRegistryNumber (R)enantiomer:702700796 MolecularFormula C5H9N5 MolecularWeight 139.16g/mol a) R. G. Almquist, W.R. Chao, C. JennigsWhite, J. Med. Chem. 1985 ,28 ,1067;b)N.Momiyama,H.Torii,S.Saito,H.Yamamoto, PNAS 2004 , 101 ,5374;c)A.Cobb,D.M.Shaw,D.A.Longbottom, J.B.Gold,S.V.Ley, Org. Biom. Chem . 2005 , 3,84;d)A.Hartikka, AnalysisRef. P. I. Ardvisson, Eur . J. Org. Chem. 2005 , 20 , 4287; e) V. Franckevicius,K.R.Knudsen,M.Ladlow,D.A.Longbottom,S.V. Ley Synlett . 2006 , 6, 889; f) V. Aureggi, G. Sedelmeier, Novartis PharmaAG, 2007 ,WO2007/009716 Method1:

H N H N NH H2,Pd/C10% NH N N N N H N N EtOH O O r.t.,34h 114

112

206 Chapter5.ExperimentalPart

(S)2(Tetrazol5yl)pyrrolidine1carboxylicacidbenzylester (15.33g,56.1mmol)and palladiumoncarbon(150g,10wt%)inethanol(250mL)arestirredunderhydrogenat roomtemperatureforfourtosixhoursatroomtemperature.Thecatalystisremovedby filtrationthroughcelite,andtheceliteiswashedsequentiallytwicewithethanol(15mL portion),twicewithaceticacid(8mLportion),andtwicewithwater(10mLportion). Thefiltrateisconcentratedunderreducedpressurewitharotaryevaporatortogivethe product(7.56g,97%yield).Theproductiscrystallizedfromaceticacid/ethanol(15 mL,1:2)togivethepureproductasawhitecrystallinematerial(7.3g,94%ofyield). The( R)and( S)enatiomersgavethesameyield.

Method2:

H H N NH N CN N N 1equiv.Et2AlN3 N 1equiv.Et2AlN3 H N O NH O O Xylene O Xylene N 55°C,9h 85°C,9h H N N

120 112 114

TP1: 2equivalentsofdiethylaluminumazide(2.5Mintoluene,or2.7Minxylene)are usedina10mmolscaleexperiment.Thereactionisstirredforninehoursat55°C,then iswarmedat8590°Candstirredforadditionalninehours.Themixtureisquenched withHCl(2M),thepHadjustedwithpotassiumcarbonatetopH6.5andthesolventis removed.Ethanolisaddedandthemixtureisstirredfortwotosixhours.Themixtureis filteredandthesolventremoved.Thecrudeiscrystallizedfromethanoltogive1.4gof product as a white crystalline material in ≥ 98 % yield. The product contains some inorganicmaterial.

Method3:

H N H N NH 1.Et AlN NH N 2 3 N N N H N N 2.HCl(6N) O O

111 114 TP1: 1.4equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina20mmol scale experiment. The reaction is stirred for eight hours at 50 °C. The mixture is

207 Chapter5.ExperimentalPart quenchedat0°CwithHCl(6M)topH1andstirredoverthenight.ThepHisadjusted withsolidpotassiumcarbonatetopH6.5andthesolventisremoved.Ethanolisadded andthemixtureisstirredfortwotosixhours.Themixtureisfilteredandthesolvent removed to give 2.8 g of product. The crude is crystallized from ethanol to give the productasawhitecrystallinematerial(2.26g,81%yield).Theproductcontainssome inorganicmaterial.

Compoundcharacterizationdata:

4 3 H N 5 NH N 2 6 H N N 1

Exothermicrange: 269365°C(maximum:275°C);TLC: Rf( nBuOH/water/AcOH

25 3:3:1,ninhydrin)=0.25; Opticalrotation: (S)enantiomer : [α ]D =10.5°(inMeOH,c

25 25 =0.63),(R)enantiomer :[α ]D =2.6°(inwater,c=1.00),[α ]D =+11.0°(inMeOH,c=

25 25 1.00), [α ]D =+18.5°(inDMSO,c=1.00), [α ]D =13.2°(inAcOH,c=1.00); IR: ν 30002600( brs ,ν(NH)),2768( s,ν(CH)),1557( w,tetrazole ) 1462( w,tetrazole ) cm 1;1H

NMR (500MHz, d6DMSO):δ=2.05( m,3H,HC3,4 ),2.33( m,1H,HC4),3.26( m,2H, 3 HC5),4.77( dd , J2,3 =8.2,7.3Hz,1H,HC2),9.19(NH 2:zwitterionicformconfirmed 13 byXray); CNMR (125MHz, d6DMSO):δ=23.2(CH 2,C 4),29.9(CH 2,C 3),44.3 + + (CH 2,C 5),54.2(CH,C 2),171.1(Cq,C 6); MS:m/z 139[M] ,111[MN2] ,83[CH 2CN 4 + + + H] , 70 [CHN 4 H] , 43 [NHCNH 2] ; XRay: zwitterionic form confirmed by Xray analysis(SeeXrayDiscussion;Chapter4). N,N Dimethyl2Htetrazol5amine(116)

N N NH H3C Et2AlN3 H C N N 3 N Xylene N CH 3 r.t.,2h CH3 300 116 CASRegistryNumber 5422457 MolecularFormula C3H7N5 MolecularWeight 113.12g/mol a)W.G.Finnegan,R.A.Henry,E.Lieber, J. Org. Chem. 1953 , 18 , AnalysisRef. 779;b)N.SadlejSosnowska, J. Phys. Org. Chem . 2004 , 17 ,303 TP1: 1.5equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina5mmol scaleexperiment.Thereactionisstirredfortwohoursatroomtemperature.Themixture

208 Chapter5.ExperimentalPart is quenched with HCl (2 M), the pH adjusted to 6 with potassium carbonate (10 % solution) and the aqueous phase saturated with solid sodium chloride. The product is extractedwithethylacetatetogivetheproductasawhitecrystallinematerial(400mg, 71%yield). Compoundcharacterizationdata: N NH 1 2 H C N 3 N N CH3 mp: 206208 °C; TLC: Rf(toluene/AcOEt/AcOH20:20:1,ninhydrin)=0.06; UV

,((CH)ע ,NH)), 2933 ( s)ע , MeOH): λ max , nm (ε): 228 (1430); IR: ν 30002400 ( brs) 1 1 1555( w,tetrazole), 1492( w,tetrazole), 1427( s,tetrazole),1343( w,δ(CH 3)) cm ; H 13 NMR (500 MHz, d6DMSO): δ = 2.96 ( s, 6H, HC1), 16.0 ( br , NH); C NMR (125 + MHz, d6DMSO):δ=39.6(CH 3,C 1),163.6(Cq,C 2); MS: m/z 114[MH] ,112[MH] . Ethyl2Htetrazole5carboxylate(117) O O Et2AlN3 N O O N Toluene N r.t.,1h N NH 136 117 CASRegistryNumber 55408101 MolecularFormula C4H6N4O2 MolecularWeight 142.09g/mol a) E. OlivieriMandala, Gazz. Chim. Ital . 1911 , 41 , 59; b) M. S. Poonian, E. F. Nowoswiat, J. F. Blount, T. H. Williams, R. G. Pitcher, M. J. Kramer, J. Med. Chem . 1976 , 19 , 286; c) J. Diago Meseguer,A.L.PalomoColl,J.R.FernandezLizarbe,A.Zugaza AnalysisRef. Bilbao, Synthesis 1980 , 7,547;d)P.M.O’Brien,D.R.Slislovich,J. A. Picard, H. T. Lee, C. F. Purchase, B. D. Roth, A. D.White, M. Anderson, S. B. Muller, J. Med. Chem . 1996 , 39 , 2354; e) N. Nazaré, V. Laux, A. Bauer, M. Wagner, Aventis Pharma, 2 004 EP1479679A1 TP1: 1.3equivalentsofdiethylaluminumazide(2.5Mintoluene)areusedina10mmol scale experiment. The reaction is stirred one hours at room temperature to give the productasanoffwhitecrystallinematerial(1.33g,94%yield).

Compoundcharacterizationdata: O 3 1 N O 4 2 N N NH

209 Chapter5.ExperimentalPart

mp: 9294°C; TLC: Rf(toluene/AcOEt/AcOH20:20:1)=0.19; HPLC:1.98min; IR: CH)), 2844)ע ,CH)), 2882( w)ע ,CH)),2916( w)ע ,NH)), 2948( w)ע , ν30002400( brm ,C=O)), 1543 ( m, tetrazole), 1470 ( w, tetrazole), 1455 ( w)ע ,CH)), 1750 ( vs)ע ,m) 1 1 CO))cm ; HNMR (500MHz, d6DMSO):δ)ע,tetrazole),1445( w,tetrazole),1223( s 3 3 13 =1.35( t, J3,4 =7.1Hz,3H,HC4),4.41( q, J3,4 =7.1Hz,2H,HC3),16.5( br ,NH); C

NMR (125MHz, d6DMSO):δ=13.9(CH 3,C 4),62.3(CH 2,C 3),150.7(Cq,C 1),156.6 + + + + (Cq, C 2); MS: m/z 142 [M] , 127 [MCH 3] , 115 [MHN2] , 97 [MOC 2H5] , 69 + [CN 4H] ;HRMS: calc’dfor[MH] =141.0418found141.0418(M(ppm)<0.1). 4[(E)2Cyano2(1Htetrazol5yl)vinyl]benzoicacidmethylester(118) N HN N N N Et2AlN3

Xylene N MeO C N MeO C 2 r.t.,3d 2 73 118

MolecularFormula C12 H9N5O2 MolecularWeight 255.24g/mol TP1: 1.6equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina10mmol scale experiment. The reaction is stirred for three days at room temperature to give the productaftercrystallizationfromtolueneasanoffwhitecrystallinematerial(1.38g,54% yield). Compoundcharacterizationdata: N

7 8 N NH O 1 6 N N O 9 4 5 2 3 CH3 10 mp: 204206°C; TLC: Rf(toluene/EtOAc/AcH20:40:1)=0.23; HPLC:6.30min; CH)), 2224)ע,NH)),3089( w)ע,UV(MeOH):λ max ,nm(ε):312(21010); IR:ν3270( s ,((C=C)ע,C=C)),1565( w,tetrazole),1434 (s)ע,C=O)),1615( m)ע,C≡N)), 1715( vs)ע,w) 1 1 ,CO))cm ; HNMR (400MHz, d6DMSO):δ=3.89( s,3H)ע,CO)),1114( s)ע,s )1291 13 HC10 ),8.11( m,4H,HC2,3 ),8.41( s,1H,HC5),16.50( br ,NH); CNMR (150MHz, d6DMSO):δ=52.5(CH 3,C 10 ),101.0(Cq,C 6),115.7(Cq,CN),129.7(CH,ArH),129.8

(CH,ArH),131.6(Cq,C 1),136.9(Cq,C 4),144.8(CH,C 5),156.0(Cq,C 8),165.5(Cq, 210 Chapter5.ExperimentalPart

+ C9); MS: m/z 256 [MH] , 254 [MH] ; HRMS: calc’d for [MH] =254.06835found 254.06832(M(ppm)=0.1). (R)5(Tetrahydrofuran2yl)2Htetrazole(119)

H Et2AlN3 H N CN NH O Toluene O N N 40°C,3h 301 119

MolecularFormula C5H8N4O MolecularWeight 140.15g/mol TP1: 1.3equivalentsofdiethylaluminumazide(1.8Mintoluene)areusedina10mmol scaleexperiment.Thereactionisstirredforthreehoursat40°C.Thecrudewasdirectly crystallizatedfromethylacetatetogivetheproductasawhitecrystallinematerial(1.28 g,92%yield).

Compoundcharacterizationdata: 3 2 H N 4 NH O 1 5 N N mp: 108109 °C; TLC: Rf (toluene / EtOAc / AcOH 20:20:1, CPS) = 0.16; Optical

25 rotation: [α ]D =9.0°(inMeOH,c=0.96); UV (acetonitrile):λ max ,nm(ε):279(3); IR: ν 32002400 ( sbr , ν(NH)), 2979 ( s, ν(CH)), 1559 ( w, tetrazole), 1538 ( m, tetrazole), 1 1 1086( s,ν(CO))cm ; HNMR (400MHz, d6DMSO):δ=1.95( m,2H,HC3),2.20( m, 13 2H, HC2), 3.86 ( m, 2H, HC4), 5.24 ( dd , 1H, HC1), 16.22 ( br , NH); C NMR (125

MHz, d6DMSO): δ = 25.4 (CH 2, C 3), 31.4 (CH 2, C 2), 68.4 (CH 2, C 4), 70.8 (CH, C 1), + 157.5(Cq,C 6); MS: m/z 141[MH] ,139[MH] ; XRay: thestructurewasconfirmedby Xrayanalysis(SeeXrayDiscussion;Chapter4).

211 Chapter5.ExperimentalPart

5.1.3.9. Synthesisoftetrazolesinthepresenceofcarbonylgroups

6Isopropyl3(1 Htetrazol5yl)chromen4one(122)and2ethyl6isopropyl3(1 H tetrazol5yl)chroman4one(123)

O O O Et2AlN3 N + N CN Toluene NH N r.t.,30h O O N N O N N H 121 122 123 CASRegistryNumber 122 :50743594 MolecularFormula 122 :C 13 H12 N4O2 123 :C 15 H16 N4O2 MolecularWeight 122 :256.26g/mol 123:284.32g/mol 122 : A. Nohara, H. Kuriki, T. Saijo, H. Sugihara, M. Kanno, Y. AnalysisRef. Sanno, J. Med. Chem . 1977 , 20 ,141 TP1: 2.8equivalentsofdiethylaluminumazide(2.5Mintoluene)ordiethylaluminum azide(2.7Minxylene)areusedina4mmolscaleexperiment.Thereactionisstirredfor twentyfourhoursatroomtemperature.Theproductafterextractionischromatographed (elution system: toluene / EtOAc / AcOH 50:10:1) to give 1.026 g of product (95 % yield)asayellowcrystallinematerials(589mgofP1,and425mgofP2)withP1/P2in ratio3:2. The same experiment was done with 1.3 equivalents of diethylaluminum azide (in xylene2.7M)ina6mmolscaleexperimenttoobtain1.54gofproduct(96%yield)asa yellowcrystallinematerialwithP1/P2inratio2:1.

Compoundcharacterizationdata 6Isopropyl3(1 Htetrazol5yl)chromen4one 122 : 6 1 O 5 9 11 7 10 N 4 3 2 8 N O HN 12 N mp: 210214 °C; TLC: Rf(toluene/AcOEt/AcOH50:10:1)=0.3; HPLC: 7.57 min;

,NH)),3103( w)ע ,UV (MeOH):λ max ,nm(ε):307(5570),244(21620); IR: ν3221( s

,((CH)ע ,CH)), 2869 ( w)ע ,asim (CH 3)), 2927 ( wע ,CH)), 2963 ( m)ע ,CH)), 3027 ( w)ע ,C=C)), 1298 ( m)ע ,C=C)), 1458 ( s)ע ,C=C)), 1480 ( s)ע ,C=O)), 1538 ( s)ע , vs ) 1644 1 1 3 δ(CH 3))cm ; HNMR (500MHz, d6DMSO):δ=1.30( d, J11,12 =6.9Hz,6H,HC12 ), 3 3 3.10( sep , J11,12 =6.9Hz,1H,HC11 ),7.75( d, J5,6 =8.6Hz, 1H,HC6),7.85( m,1H, 4 13 HC5),8.02( d, J3,5 =2.2Hz,1H,HC3),9.22( s,1H,HC9),16.60( br ,NH); CNMR

212 Chapter5.ExperimentalPart

(150MHz, d6DMSO):δ=23.7(CH 3,C 12 ),33.0(CH,C 11 ),110.1(Cq,C 8),118.9(CH,

C6), 121.7 (CH, C 3), 122.9 (Cq, C 2), 133.9 (CH, C 5), 147.0 (Cq, C 4), 154.2 (Cq, C 1), + 158.4(CH,C 9),173.4(Cq,C 7); MS: m/z 257[M+H] ,255[MH] . 2Ethyl6isopropyl3(1 Htetrazol5yl)chroman4one 123 :

6 14 1 O 9 5 13 11 7 10 N 4 3 2 8 N O N N 12 H mp: 190194°C; TLC: Rf(toluene/AcOEt/AcOH50:20:1)=0.5; HPLC: 9.42min; ,CH)),2933( m)ע ,CH)),2958( m)ע ,CH)),2775( w)ע ,NH)),3063( w)ע ,IR: ν3262( s C=C)),1483)ע ,C=C)),1523( s)ע ,C=O)),1573( m)ע , CH)),1632( vs)ע ,CH)),2873( w)ע 1 1 3 C=C)),1306( m,δ(CH 3))cm ; HNMR (500MHz, d6DMSO):δ=1.25( d, J11,12)ע ,s) 3 3 =6.9Hz,6H,HC12 ),1.32( t, J13,14 =7.0Hz,3H,HC14 ),2.95( q, J13,14 =7.0Hz,2H, 3 3 HC13 ),3.10( sep , J11,12 =6.9Hz,1H,HC11 ),7.69( d, J5,6 =8.8Hz,1H,HC6),7.8( dd , 3 4 4 J5,6 =8.8, J3,5 =2.3Hz,1H,HC5),7.92( d, J3,5 =2.3Hz,1H,HC3),16.50( br ,NH); 13 CNMR (150MHz, d6DMSO):δ=11.5(CH 3,C 14 ),23.2(CH 3,C 12 ),23.7(CH 3,C 12 ),

26.5(CH 3,C 13 ),32.9(CH,C 11 ),118.0(CH q,C 8),118.4(CH,C 6),121.5(Cq,C 2),121.6

(CH,C 3),133.8(CH,C 5),146.7(Cq,C 4),153.8(Cq,C 1),159.2(Cq,C 10 ),172.6(Cq, + C9),174.3(Cq,C 7);MS:m/z 285[M+H] ,283[MH] . 1[4(2 HTetrazol5yl)phenyl]propan1ol (125) and 4(1 Htetrazol5yl) benzenemethanol(126) H H N N N N N N N Et AlN 2 3 N N O Xylene HO + HO 50°C,24h H 124 125 126 CASRegistryNumber 126 :501126029 MolecularFormula 125 :C10 H12 N4O 126 :C 8H8N4O MolecularWeight 125 :204.23g/mol 126 :176.07g/mol 126 :C.Betschart,K.Hayakawa,O.Irie,J.Sakaki,G.Iwasaki,R. Ref. Lattmann, M. Missbach, N. Teno, Novartis A.G., Switz., Novartis PharmaG.m.b.H,2003 ,WO2003020721A1

213 Chapter5.ExperimentalPart

TP1: 3equivalentsofdiethylaluminumazide(2.7Minxylene) areusedina10mmol scaleexperiment.Thereactionisstirredfortwentyfourhoursat50°Ctogiveamixture ofproducts 125 and 126 (1.68g,85%yield),inratio 125 : 126 ofca7:3.TheproductP1 isisolatedviacrystallizationofthecrudefromethylacetate/toluene1:1(710mg,35% yield;pure92%basedonHPLC).Themotherliquorischromatographedtoisolate880 mgofproduct 126(elutionsystem:toluene/ethylacetate/AcOH40:20:1)(50%yield). Compoundcharacterizationdata: 1[4(2 HTetrazol5yl)phenyl]propan1ol( 125 )

N N 2 1 N 3 8 N 4 H HO 5 6 7 mp: 153154 °C; TLC: Rf(toluene/EtOAc/AcOH20:20:1)=0.18; HPLC: 4.40min;

N)ע , OH)), 31002300( brs)ע, UV (MeOH):λ max ,nm(ε): 246(18420); IR: ν3334( brs ,CH)), 1618 ( m)ע ,CH)), 2873 ( s)ע ,CH)), 2934( s)ע ,CH)), 2974( s)ע ,H)), 3063( m (CO)),750 ( m,γ(CH,Ph)ע ,C=C)), 1052( s)ע ,C=C)),1569( m,tetrazole), 1505( m)ע 1 1 3 3 cm ; HNMR (600MHz, d6DMSO):δ=0.84( t, J6,7 =7.3Hz,3H,HC7),1.64( q, J6,7 3 =7.3Hz,2H,HC6)4.54( m,1H,HC5),5.31( m,1H,OH),7.54( d, J2,3 =8.2Hz,2H,H 3 13 C3),7.99( d, J2,3 =8.2Hz,2H,HC2),16.40( br ,NH); CNMR (150MHz, d6DMSO):

δ=9.6(CH 3,C 7),31.9(CH 2,C 6),73.0(CH,C 5),126.6(CH,C 2),126.8(CH,C 3),149.6 + (Cq, C 8); MS: m/z 205 [MH] , 203 [MH] , 203 [MH CH 3OH] ; HRMS: calc’d for [MH] =203.0938,found203.0938(M(ppm)<0.1).

4(2 HTetrazol5yl)benzenemethanol( 126 ) H N N 2 N 3 1 6 N 4 HO 5 mp: 197200°C; TLC: Rf(toluene/EtOAc/AcOH20:20:1)=0.11; HPLC:3.01min;

CH)),3064)ע ,OH)), 3099( s)ע UV (MeOH):λ max ,nm(ε):245(13620); IR: ν3228( brs ,CH)), 1619 ( s)ע ,NH)), 2925 ( s)ע , CH)), 30002450 ( brs)ע ,CH)), 3027 ( s)ע ,s) CO)), 740( m,γ(CH,Ph)cm)ע ,C=C)), 1017( s)ע ,C=C)), 1436( m)ע ,C=C)),1583( m)ע 1 1 ; HNMR (500MHz, d6DMSO):δ=4.59( s,2H,HC5),5.37( br ,1H,OH),7.54( d, 3 3 13 J2,3 =8.2Hz,2H,HC3),8.02( d, J2,3 =8.2Hz,2H,HC2),16.83( br ,NH); CNMR

214 Chapter5.ExperimentalPart

(125MHz, d6DMSO):δ=62.4(CH 2,C 5),122.4(Cq,C 1),126.8(CH,C 2),127.1(CH, C3),146.1(Cq,C 4),155.1(Cq,C 7); MS: m/z 175[MH] ,147[MHN2] . Phenyl[4(1 Htetrazol5yl)phenyl]methanol(128)

O OH

Et 2AlN 3 Xylene N 0°Ctor.t. N N 127 15h 128 N N H MolecularFormula C14 H12 N4O MolecularWeight 204.56g/mol TP1: 1.1equivalentsofdiethylaluminumazide(2.7Minxylene)areusedina2mmol scaleexperiment.Thereactionisstirredoverthenightfrom0°Ctoroomtemperatureto givetheproductasalightbrown crystallinematerial(190mg,38%yield). Compoundcharacterizationdata: OH 7 3 6 2 4 8 1 5 9 N 10 NH N N mp:upto250°C; TLC: Rf(toluene/EtOAc/AcH20:20:1)=0.45; HPLC: 6.22min;

,((NH)ע , OH)), 31002500( brs)ע , UV (EtOH):λ max ,nm(ε):250(400);IR: ν3473( brm ,C=C)), 1577 ( w, tetrazole), 1496 ( m)ע ,CH)), 1655 ( m)ע ,CH)), 3027 ( s)ע ,m ) 3087 CO)), 762( m,γ(CH,Ph)),701( s,γ(Ph)cm 1; 1H)ע ,C=C)), 1024( m)ע ,C=C)),1438( s)ע

NMR (400MHz, d6DMSO):δ=5.79( s,1H,HC1),6.08( br ,1H,OH),7.24( m,1H,H 3 C9),7.32( m,2H,ArH),7.41( m,2H,ArH),7.60( d, J3,4 =8.2Hz,2H,HC3),8.00( d, 3 13 J3,4 =8.2Hz,2H,HC2),16.90( br , NH); CNMR (125MHz, d6DMSO):δ=73.6

(CH,C 1), 122.2(Cq,C 5),125.9(CH,Ar),126.5(CH,Ar),126.6(CH,C 9),126.7(CH,

Ar),127.8(CH,Ar),144.7(Cq,C 6),148.4(Cq,C 2),154.3(Cq,C 10 ); MS: m/z 251[M H] .

215 Chapter5.ExperimentalPart

5.1.3.10. Synthesisoftriazoles

1H[1,2,3]triazole4,5dicarboxylicacidmethylester(130) N HN N O O Et2AlN3 O Toluene O H C O O 50°Ctor.t,5h 3 CH3 O O CH H3C 3 129 130 CASRegistryNumber 707948 MolecularFormula C6H7N3O4 MolecularWeight 185.14g/mol a) J. J. Looker, J. Org. Chem . 1965 , 30 , 638; b) L. Fisera, F. Povazanec, P. Zalupsky, J. Kovac, D. Pavlovic, Collect. Czech. AnalysisRef. Chem. Commun. 1983 , 48 , 3144; c) K. Harju, M. Vahermo, I. Mutikainen,J.YliKauhaluoma, J. Comb. Chem . 2003 , 5,826 TP1: Oneequivalentofdiethylaluminumazide(1.8Mintoluene)areusedina3mmol scale experiment. The reaction is stirred for five hoursfrom–50to0°Ctogivethe productasayellowcrystallinematerial(400mg,72%yield) .

Compoundcharacterizationdata: N HN N O 2 O 1 O O H3C CH3 3 mp: 121123°C; TLC: Rf(toluene/EtOAc/AcOH20:20:1)=0.28; HPLC: 2.90min;

CH 3)), 1741)ע,NH)), 2968( w)ע, UV (MeOH):λ max ,nm(ε):215(674); IR:ν3240( sbr 1 1 ;(C=O))cm ; HNMR (500MHz, d6DMSO)3.86( s,6H,HC3),16.27( br ,NH)ע,vs) 13 C NMR (125 MHz, d6DMSO): δ =52.7 (CH 3, C 3), 138.6 (Cq, C 2), 160.3 (Cq, C 1); MS: m/z 184 [MH] ; HRMS : calc’d for [MH] = 184.0364, found 184.0364 (M (ppm)=0.1). 5Phenyl1H[1,2,3]triazole4carboxylicacidmethylester(132) N N NH O XN 3 O Solvent O CH3 O CH3 131 132 216 Chapter5.ExperimentalPart

CASRegistryNumber 40235356 MolecularFormula C10 H9N3O2 MolecularWeight 203.20g/mol a) G. Beck,Gerhard, D. Guenther, Farbwerke Hoechst A.G. Ger. AnalysisRef. Offen. 1973 ,DE2138522;b)G.Beck,D.Guenther, Chem. Ber. 1973 , 106 ,2758 Method1: N O N NH Et2AlN3 O Xylene O CH3 O CH 3 131 132 TP1: 1.1equivalentsofdiethylaluminumazide(2.7Minxylene)isusedina2mmol scale experiment. The reaction is stirred for three days at room temperature to give the productasayellowcrystallinematerial(230mg,57%yield).

Method2: N N NH O NaN 3 O DMF O CH 3 O CH 3 131 132

TP1: 1.1equivalentsofsodiumazideinDMFisusedina4mmolscaleexperiment.The reactionisstirredforoneandhalfhourat70°Ctogivetheproductasayellowcrystalline material(570mg,70%yield).

Compoundcharacterizationdata: N HN N O 3 4 2 71 5 O H C 6 3 8 mp: 106108°C; TLC: Rf(toluene/AcOEt/AcOH20:20:1)=0.52; HPLC: 3.62min;

UV (MeOH):λ max ,nm(ε):243(990);IR:ν3460( w,overtonesester),33002900( brs , C=C)),1480)ע,C=O)),1533( w)ע,CH)), 1743( s)ע,CH)), 2967( m)ע,NH)), 3037( m)ע CO)),755( s,γ(CH,Ph)),684( m,γ(Ph))cm 1; 1HNMR (400)ע,C=C)),1275( m)ע,s)

MHz, d6DMSO):δ=3.81( s,3H,HC8),7.43( m,3H,HC5,6 ),7.73( m,2H,HC4),15.85 13 (br ,NH); CNMR (125MHz, d6DMSO):δ=51.7(CH 3,C 8),118.8(Cq,C 3),127.9 (CH,Ar),128.6(CH,Ar),128.9(CH,C 6),161.0(Cq,C 7);MS:m/z 202[MH] .

217 Chapter5.ExperimentalPart

5.1.3.11. Synthesisofalternativeazides [1,3,2]Benzodioxaborole2azido(134)

O Me3SiN3 O B Cl B N N N O CH2Cl2,78°C O 133 134

CASRegistryNumber 258331214 MolecularFormula C6H4BN 3O2 MolecularWeight 160.93g/mol W. Fraenk, T. Habereder, H. Nöth, K. Polborn, T. M. Klapötke, J. AnalysisRef. Chem. Soc. Dalton Trans. 1999 ,23 ,4283 A5mL,oneneckedroundbottomedflask,ischargedwithßchlorocatecholborane(462 mg, 3 mmol) dissolved in dichloromethane (1 mL) and treated, at 78°C, with trimethylsilylazide (0.6 mL, 4.5 mmol). The solution is gradually warmed to room temperature,andstirredfortwohours.Thesolventandtheexcessoftrimethylsilylazide areremovedtogive950mgofwhitecrystallinematerial.Theproductishydrolyzedafter fewminutes.Thesameexperimentwasdonewiththe2bromo1,3,2benzodioxaboroleto obtainthesameresult.

Compoundcharacterizationdata:

–1 mp: 6869°C; FTIR: ν2169 sν(BN3)cm . Diisopropoxydealuminumazide(139)

O O O AlCl3 3NaN3 2 Al Al Cl 3 Al N N N +3NaCl O O 0°Ctor.t. Toluene O O r.t. 137 138 139

Asolutionofaluminumisopropoxyde(4.085g,20mmol)intoluene(11ml)istreated,at 0 °C, with aluminum chloride (1.33 g, 10 mmol). The mixture is warmed at room temperatureandstirredoverthenight.Themixtureistreatedwithgranularsodiumazide (1.95g,30mmol)at0°C,andthangraduallywarmedatroomtemperatureandstirred overthenight.Thewithsuspensioniscentrifugedtoobtainanuppersolutionandtwo solidlayers. NOPRODUCTISOLATED!!

218 Chapter5.ExperimentalPart

5.1.3.12. Tetrazolatesalts

5(4’Methylbiphenyl2yl)tetrazolepotassiumsalt(140)

N N N N H C N NH N N 3 H3C K KOH MeOH,r.t. 22 140

CASRegistryNumber 860644275 MolecularFormula C14 H11 N4K MolecularWeight 274.36g/mol M.Lusina,T.Cindric,J.Tomaic,M.Peko,L.Pozaic,N.Musulin, J. Ref. Pharm. 2005 , 291 ,127 5(4’Methylbiphenyl2yl)1Htetrazole(4.725g,20mmol),KOH(1.122g,20mmol) are dissolved in methanol (26 mL) and stirred two hours at room temperature. The solventisremovedtogive5.44gofproductin≥99%yield.

Compoundcharacterizationdata:

6' N N K H3C N N 4' 7 1 2 3' 1' 3 2' 6 4 5 mp: upto260°C; TLC: Rf(toluene/AcOEt/AcOH20:20:1)=0.7;HPLC: 7.19min.;

,CH)), 3025 (m)ע ,UV (MeOH):λ max ,nm(ε):249(1290),202(3810); IR: ν 3052( w C=C)),1422)ע ,C=C)),1458( s)ע ,CH)), 1505( m)ע ,CH)), 2863( m)ע ,CH)), 2919( w)ע 1 1 C=C)), 826 ( s,γ(CH,Ph)),765( s, γ(CH, Ph)) cm ; H NMR (500MHz, d6)ע ,m)

DMSO):δ=2.25( s,3H,HC6’ ),6.95( m,4H,HC2’,3’ ),7.32( m,3H,HC4,5,6 ),7.49(m, 13 1H, HC3); C NMR (125 MHz, d6DMSO): δ = 20.6 (CH 3, C 6’ ), 126.4 (CH, C 2’ ),

127.58(CH,C 3' ),128.0(CH,C 4),128.9(CH,C 6),129.9(CH,C 3),130.5(CH,C 5),132.0

(Cq,C 2),135.1(Cq,C 1’ ),138.8(Cq,C 1),140.5(Cq,C 4),160.4(Cq,C 7);MS:m/z 235 [MK] ,207[MKN2] 219 Chapter5.ExperimentalPart

5(4Chlorophenyl)tetrazolecesiumsalt(2)

N N N N + N NH N N [Cs]

CsOH.H2O MeOH r.t. Cl Cl 1 2

MolecularFormula C7H4ClN 4Cs MolecularWeight 312.49g/mol A 25 ml, one necked roundbottomed flask is charged, at room temperature, with 4 chlorophenyltetrazole 1(542mg,3mmol)andcesiumhydroxidemonohydrate(504mg, 3mmol)inmethanol(5mL).Themixtureisstirredatroomtemperatureforonehour. Thesolventisremovedandtheproductisdriedinvacuumforfourhoursat30°Cto giveawhitecrystallinematerialin≥99%yield(940mg).

Compoundcharacterizationdata: N N + N N [Cs] 5 1 2 3 4 Cl mp: upto250 °C; TLC:Rf(toluene/AcOEt/AcOH20:20:1)=0.39; HPLC:5.12min;

C=C)),1422)ע,CH)), 1439( s)ע, UV (MeOH):λ max ,nm(ε):248(9650); IR: ν3262( brs 1 1 :(CCl)), 841( s,γ(CH,Ph)cm ; HNMR (500MHz, d6DMSO)ע ,C=C)), 1093( s)ע,s) 3 3 13 δ=7.41( d, J2,3 =8.6Hz,2H,HC2),7.96( d, J2,3 =8.6Hz,2H,HC3); CNMR (125

MHz, d6DMSO):δ=127.3(CH,C 2),128.4(CH,C 3),131.2(Cq,C 4),131.5(CH,C 1), + 159.7(Cq,C 5); MS: m/z 181[MHCs] .

220 Chapter5.ExperimentalPart

5.1.3.13. Nucleophilicsubstitutionwithtetrazoles

(S)2[5(4Chlorophenyl)tetrazol2yl]4phenylbuthyricacidethylester(143)and (S)2[5(4Chlorophenyl)tetrazol1yl]4phenylbuthyricacidethylester(144) Cl NO2

KN N N N N N N Cl N S O Acetonitrile N N N O + N O + O 60°C,32h O O

O O O Cl

141 142 143 144

N1Isomer N2Isomer

MolecularFormula 143 :C 19 H19 ClN 4O2 144 :C 19 H19 ClN 4O2 MolecularWeight 143 :370.84g/mol 144 :370.84g/mol A25mL,threeneckedroundbottomedflask,ischarged,atroomtemperature,with5(4 chlorophenyl)1Htetrazole 1 (722 mg, 4 mmol), methanol (10 mL) and potassium hydroxide(225mg,4mmol).Themixtureisstirredonehouratroomtemperature.The solvent is removed, the resulting crystalline material is dried one hour in vacuum and addedatroomtemperaturetoasolutioncontaining ( R)2(nitrobenzenesulfonyloxy)4 phenylbutyricacidethylester141 (1.179g,3mmol)inacetonitrile(7mL).Thereaction isstirredthirtytwohoursat60°C.Thesolventisremovedtogivethecrude(2.05g) which is redissolved in ethyl acetate (30 mL) and extracted twice with potassium carbonate(10%solution,20mLportion).Thesolventisremovedtogive1.01gofa colorlessoilwhichischromatographed(elutionsystem:hexane/ethylacetate9:1)togive the pure N1isomer 143 (150mg,13% yield)andtheN2isomer 144 (900mg,79 % yield)asoils. Compoundcharacterizationdata: N1Isomer (143 )

14 13 N N 15 12 Cl N N 11 H O 3 2 1 4 O 5 9 10 8 6 7

221 Chapter5.ExperimentalPart

1 TLC: Rf (hexane / EtOAc 9:1) = 0.06; HPLC: 11.53 min; H NMR (500 MHz, d6 3 DMSO)Majorrotamer(ratio1:6)δ=1.11( t, J9,10 =7.06Hz,3H,HC10 ),2.61( m,4H, 3 3 HC3,4 ),4.21( q, J9,10 =7.1Hz, 2H,HC9),5.49( dd , J2,3 =7.1,7.3Hz,1H,HC2),7.01 3 13 (m,2H,HC6),7.18( m,3H,HC7,8 ),7.63( m, J13,14 =8.8Hz,4H,HC13,14 ); CNMR

(125MHz, d6DMSO):δ=13.7(CH 3,C 10 ),30.8(CH 2,C 3),31.9(CH 2,C 4),59.5(CH 2,

C9),62.4(CH,C 2),122.0(Cq,C 5),126.3(CH,C 8),128.2(CH,C 6),128.5(CH,C 7),129.5

(CH,C 13 ),130.8(CH,C 14 ),136.5(Cq,Ar),139.6(Cq,Ar),154.4(Cq,C 11 ),167.6(Cq, + C1); MS: m/z 371[MH] . N2Isomer( 144 ) Cl 15'

14' 11' 13' N 12' N N N H O 3' 2' 6' 5' O1' 7' 4' 9' 10' 8'

TLC:Rf(hexane/EtOAc9:1)=0.18; HPLC: 13.38min; UV (MeOH):λ max ,nm(ε):248 ,((CH)ע,CH)), 2937( m)ע,CH)), 2982( m)ע,CH)),3028( w)ע,IR: ν3063( w ;(2210) C)ע,C=C)), 1204( s)ע,C=C)), 1456( s)ע,C=C)), 1497( w)ע,C=O)), 1607( s)ע, vs )1749 1 1 PhCl)), 758( s,γ(CH,Ph)),701( s,γ(Ph))cm ; HNMR (500MHz, d6)ע,O)), 1092( s 3 3 DMSO):δ=1.15( t, J9’,10’ =7.3Hz,3H,HC10’ ),2.60( m,4H,HC3’,4’ ),4.18( q, J9’,10’ =

7.3Hz,2H,HC9’ ),5.99( m,1H,HC2’ ),7.14( m,3H,HC6’,8’ ),7.25( m,2H,HC7’ ),7.62 3 3 13 (d, J13’,14’ =9.0Hz,2H,HC14’ ),8.08( d, J13’,14’ =9.0Hz,2H,HC13’ ); CNMR (125

MHz, d6DMSO):δ=13.9(CH 3,C 10’ ),31.3(CH 2,C 3’ ),31.8(CH 2,C 4’ ),62.5(CH 2,C 9’ ),

64.9(CH,C 2’ ),125.2(Cq,C5’ ),126.2(CH,C 8’ ),128.3(CH,C 6 ),128.4(CH,C 7’ ),128.6

(CH,C 13’ ),129.4(CH,C 14’ ),135.4(Cq,Ar),139.8(Cq,Ar),163.4(Cq,C 11 ),167.3(Cq, + C1); MS: m/z 371[MH] .

222 Chapter5.ExperimentalPart

5.2. Alkylation of Tetrazole Rings

5.2.1. Reagents and solvents

Allchemicalswereobtainedeitherfromcommercialsuppliersorinternalsources andusedwithoutfurtherpurificationunlessotherwisestated.Allreactionswerecarried out under an atmosphere of nitrogen or argon. All the products were satisfactorily characterizedbymeltingpoint,TLC,UV,IR, 1Hand 13 CNMR,MS,HRMSandwhen possible,comparisonoftheiranalyticaldatahasbeenmadewithavailableliteraturedata.

5.2.1.1. Reagents

Reagent Molecular MW Quality Formula (g/mol)

Benzhydrylbromide C13 H11 Br 247.1 Lancaster;95%

Benzylbromide C7H7Br 171.04 Fluka;≥98%(GC)

Chlorotriphenylmethane C19 H15 Cl 278.78 Lancaster;98+% Hydrochloricacid HCl 36.5 Fluka; 2N standardsolution Fluka;≥32%(T)

2Iodopropane C3H7I 169.99 Fluka;≥97%(GC)

Methyl4formylbenzoate C9H8O3 164.16 Fluka;~95%(HPLC)

3Methyl1p-tolyltriazene C8H11 N3 149.19 Aldrich;98%

Piperidine C5H11 N 85.16 Fluka;~98%(GC) Potassiumhydrogencarbonate KOH 56.11 Fluka;≥86%(T)

Potassiumcarbonate K2CO 3 138.27 Fluka;≥99%(AT)

Triethylamine C6H15 N 101.19 Fluka;≥99.5%

223 Chapter5.ExperimentalPart

5.2.1.2. Solvents Solvents Quality Acetone Fluka;≥99.5%(GC) Acetonitrile Merck;forLC ARMARChemicals; d3Acetonitrile99.5Atom%D Chloroform Fluka; ≥99.5%(GC) ARMARChemicals;CDCl 3100Atom%D,stab.withAg Dichloromethane Merck;foranalysis Fluka;99.5%(GC)

Dimethylsulfoxide ARMARChemicals; d6DMSO99.9Atom%D 1,4Dioxane Fluka;puriss.p.a., ≥99.5% Ethylacetate Fluka;99.5% Heptane Fluka; ≥99.0%(GC) Hexane Fluka; ≥99.0%(GC) Isopropylacetate Fluka; ≥99.0%(GC) Methylenchloride Fluka;puriss.overmolecularsieves Tetrahydrofuran Fluka;puriss.p.a., ≥99.5%(GC) Toluene Fluka;absoluteovermolecularsieves, ≥99.5%(GC)

224 Chapter5.ExperimentalPart

5.2.2. Synthesis of the Starting Materials

4[2Benzensulfonyl2(1 Htetrazol5yl)vinyl]benzoicacidmethylester(165)

N CHO N O O N O O N S N S N N Piperidine20% N H + H Dioxane reflux,15h COOCH3 75 72 165 COOCH3

MolecularFormula C17 H14 N4O4S MolecularWeight 370.39g/mol A200mLfourneckedbottomedflask,equippedwithanoverheadmechanicalstirrerand awaterremovedsystem,ischargedatroomtemperature,with5phenylsulfonylmethyl 1Htetrazole 75(6.727g,30mmol),methyl4formylbenzoate(7.387g,45mmol)and piperidine (511 mg, 6 mmol) dissolved in dioxane (90 mL). The mixture is gradually warmedtorefluxing130°C(externaltemperature)andstirred15hours.Thesolutionis cooledtoroomtemperatureandthesolventisremovedtogive21.8gofcrudeasabrown oil.Thecrudeisdissolvedwithasolutionofethylacetateandtoluene(1:1)andwashed threetimeswithHCl(2M)toremovethepiperidineintheaqueousphase.Thecollective aqueous phase is washed twice with ethyl acetate (30 mL portion). The solvent is removed, the brown oil is redissolved in ethyl acetate (40 mL) and the product is extracted three times with a solution of KHCO 3 (15 % solution, 30mL portion). The combinedaqueousphaseiswashedtwicewithethylacetate(30mLportion).Thebasic aqueousphaseiscooledto0°CandtreatedwithHCl(6M)topH2.5monitoredwithan electrodeorapHpaper.Theproductisextractedfourtimeswithethylacetate(30mL portion).Thesolventisremovedandtheproductiscrystallizedfromethylacetatetogive 3.4g,with30%ofyield.

225 Chapter5.ExperimentalPart

Compoundcharacterizationdata:

O N N 2 O S 5 N 3 6 N 1 H 7 4 8 9 11 10 COOCH3 12 13 mp: 180182°C; TLC:Rf(toluene/EtOAc/AcOH20:20:1)=0.16; HPLC:11.26min

,NH)), 3069 ( w)ע , UV (acetonitrile): λ max , nm (ε): 286 (2180); IR: ν 31002400 ( brw

asim (SO 2)), 1291עC=C)), 1308( s)ע ,C=C)), 1434( s)ע ,C=O)),1631( s)ע,CH)), 1724( vs)ע 1 1 :(CO))cm ; HNMR (500MHz, d6DMSO)ע ,sim (SO 2)),1085( sע ,CO)),1152( s)ע,s)

δ=3.81( s,3H,HC13 ),7.21( m,2H,HC9),7.63( m,2H,HC3),7.76( m,1H,HC4),7.77 13 (m,2H,HC2),7.86( m,2H,HC10 ),8.44( s,1H,HC7),16.80( br ,NH); CNMR (125

MHz, d6DMSO):δ=52.6(CH 3,C 13 ),128.7(CH,C 2),129.9(CH,C 10 ),130.1(CH,C 3),

130.6(Cq,C 5),130.7(CH,C 9),132.0(Cq,C 11 ),134.9(CH,C 4),136.1(Cq,C 8),138.4 (Cq,C 1),144.9(CH,C 7),165.8(C=O,C 12 ); MS: m/z 369 [MH] ,141 [PhSO 2] ; HR MS: calc’d for [MH] + = 371.0809, found 371.0809 (M (ppm) < 0.1), calc’d for [M+Na] +=393.0628,found393.0628(M(ppm)<0.1).

226 Chapter5.ExperimentalPart

5.2.3. Alkylation of the Tetrazole Ring

(R)-2(Isopropyltetrazole5yl)pyrrolidine1carboxylicacidbenzylester(161,162)

N NH H N H H N N I N K2CO3 N N + N N N N + N N O Acetonitrile N r.t.,3d O O O O O

302 113 161 162

CASRegistryNumber N1isomer:920748498N2isomer:920748476 MolecularFormula C16 H21 N5O2 MolecularWeight 315.17g/mol V. Aureggi, G. Sedelmeier, Novartis Pharma AG, 2007 , WO AnalysisRef. 2007/009716 A200mL,threeneckedbottomedflask,ischargedatroomtemperaturewith (R) 2(1 H tetrazol5yl)pyrrolidine1carboxylicacidbenzylester (12.3g,45mmol),inacetonitrile (130 mL) and potassium carbonate (24.84 g, 180 mmol). After five minutes 2 iodopropaneisadded(9.28mL,90mmol)andthemixtureisstirredforthreedays.The mixtureistransferredintoa500mLflaskandtheacetonitrileisremovedwiththerotary evaporator.Water(40mL)isadded(pH8.5)andtheproductisextractedfourtimeswith ethylacetate(50mLportion).Thecombinedorganicphaseiswashedoncewithwater (40mL).ThesolventisremovedtogiveanorangeoilwhichcontainsboththeN1and the N2isomers (N2/N1isomer 72:28 based on HPLC analysis). The crude is chromatographed (eluent: ethyl acetate / hexane 1:3) to give 9.163 g of pure N2 regioisomer 161(65%yield)andN1isomer 162(28%yield)ascolorlessoils.

227 Chapter5.ExperimentalPart

Compoundcharacterizationdata: N1Isomer( 162 ) 12 13 3 2 H N 4 N N 1 5 N 6 N OO 9 7 8 10

11

TLC: Rf(hexane/EtOAc3:1)=0.12; HPLC:8.53min; UV (EtOH):λ max ,nm(ε):258 (22),205(1010); IR:ν3064( w,ν(CH)),3034( w,ν(CH)),2984( w,ν(CH)),1704( s,

ν(C=O)),1447( m,ν(C=C)),1415( s,ν(CN)),1357( s,δ(CH 3)),1123( s,ν(CO)),699 1 1 (w,γ(Ph))cm ; HNMR (400MHz, d6DMSO,300K)Rotamers(1:1):δ=1.30,1.53( 3 dd , J12,13 =6.5Hz,6H,HC13 ),1.90( m,2H,HC3),2.2( m,2H,HC2),3.58( m,2H,H 3 C4),4.90( m,3H,HC7,12 ),5.31( dd , J1,2 =8.0,8.1Hz,1H,HC1),6.97( m,1H,HC11 ),

7.35( m,4H,HC9,10 );(400MHz, d6DMSO,394K):δ=1.45( d,6H,HC13 ),1.95( m,

2H,HC3),2.25( m,2H,HC2),3.58( m,2H,HC4),4.80( m,1H,HC12 ),4.93( s,1H,H 13 C7),5.25( m,1H,HC1),7.12( m,2H,ArH),7.28( m,3H,ArH); CNMR (125MHz, d6

DMSO,300K)Rotamers(1:1):δ=21.7,22.2(CH 3,C 13 ),22.5,23.9(CH 2,C 3),31.4,32.3

(CH 2, C 2), 46.3, 46.8 (CH 2, C 4), 49.9, 50.1 (CH 2, C 7), 50.1, 50.3 (CH, C 12 ), 66.2, 66.3

(CH,C 1),127.4,127.5(CH,Ar),127.8,127.9(CH,C 11 ),128.3,128,4(CH,Ar),136.2, + 136.7(Cq,C 8),153.2,153.9(Cq,C 5),155.5,155.9(Cq,C 6); MS: m/z 316[MH] ; HR MS: calc’dfor[MH] + =316.1768,found316.1767(M(ppm)=0.2);calc’dfor[M+Na] + =338.1588,found338.1586(M(ppm)=0.4). N2Isomer( 161 ) 13' 3' 2' 12' H N 4' N N 1' 6' 5' N N O O 7' 8' 9' 10'

11'

TLC: Rf(hexane/EtOAc3:1)=0.25; HPLC:7.65min; UV (EtOH):λ max ,nm(ε):205 (1321); IR:3064( w,ν(CH)),3033( w,ν(CH)),2984( w,ν(CH)),2955( w,ν(CH)),

1707( s,ν(C=O)),1448( m,ν(C=C)),1412( s,ν(CN)),1356( s,δ(CH 3)),1116( s,ν(C 1 1 O)), 698 ( w, γ(Ph)) cm ; H NMR (400 MHz, d6DMSO, 300 K) Rotamers (1:1): δ =

228 Chapter5.ExperimentalPart

3 1.45,1.51( dd , J12’,13’ =6.5Hz,6H,HC13’ ),1.95( m,3H,HC2’,3’ ),2.33( m,1H,HC2’ ), 3 3.53( m,2H,HC4’ ),4.95( m,3H,HC7’,12’ ),5.18( dd , J1’,2’ =8.0Hz,1H,HC1’ ),7.02( m,

1H,HC11’ ),7.29( m,4H,HC9’,10’ );(400MHz, d6DMSO,394K):δ=1.51( dd ,6H,H

C13’ ),1.98( m,3H,HC2’,3’ ),2.35( m,1H,HC2’ ),3.53( m,2H,HC4’ ),4.97( m,3H,H 13 C7’,12’ ),5.18( m,1H,HC1’ ),7.18( m,2H,ArH),7.25( m,3H,ArH); CNMR (125MHz, d6DMSO,300K)Rotamers(1:1):δ=21.7,21.8(CH 3,C 13’ ),23.5,23.7(CH 2,C 3’ ),31.9,

32.8(CH 2,C 2’ ),46.2,46.7(CH 2,C 4’ ),52.5,53.1(CH 2,C 7’ ),55.9(CH,C 12’ ),65.7,65.9

(CH,C 1’ ),126.8,127.4(CH,Ar),127.6,127.8(CH,C 11’ ),128.1,128,4(CH,Ar),136.7, + 136.9(Cq,C 8’ ),153.6,153.8(Cq,C 5’ ),167.2,167.6(Cq,C 6’ ); MS: m/z 316[MH] ,272 + + [MHCO 2] ; HRMS: calc’dfor[MH] =316.1768,found316.1768(M(ppm)=0.1); calc’dfor[M+Na] + =338.1588,found338.1587(M(ppm)=0.3).

( R)2(2Trityl2Htetrazol5yl)pyrrolidine1carboxylicacidbenzylester(164 )

H H N N NH N N N N N N Cl N + Et3N O O THF O O r.t.,2h

113 163 164

MolecularFormula C32 H29 N5O2 MolecularWeight 515.62g/mol A25mL,threeneckedroundbottomedflask,ischargedatroomtemperature,with(R)2 (1 Htetrazol5yl)pyrrolidine1carboxylicacidbenzylester 113 (546mg,2mmol)and chlorotriphenylmethane(613mg,2.2.mmol)inTHF(8mL).Thesolutionisthentreated withtriethylamine(0.362mL,2.6mmol)andstirredatroomtemperaturefortwohours. Themixtureisfiltered,thesolventisremovedandthecrude(1.15g,colorlessgel)is chromatographed(elutionsystem:heptane/ethylacetate5:1)togivetheproduct 164asa colorlessoil(1.03g,77%ofyield).

229 Chapter5.ExperimentalPart

Compoundcharacterizationdata: 16 15 14 3 2 13 H N 12 4 N N 1 6 5 N N O O 7 8 9 10

11

TLC: Rf(heptane/EtOAc5:1)=0.1; HPLC: 12.72min; UV (MeOH):λ max ,nm(ε):259 ,((CH)ע ,CH)), 2978 ( w)ע ,CH)), 3033 ( w)ע ,CH)), 3062 ( w)ע ,IR: ν 3090 ( w ;(76) ,C=O)), 1494 ( m)ע ,CH)), 19601800 ( w, overtones γ(CH, Ph)), 1703 ( s)ע ,w ) 2953 CN)), 748( s,γ(CH,Ph)) ,699( s,γ(Ph))cm 1; 1H)ע ,C=C)), 1414( s)ע ,C=C)),1448( s)ע

NMR (400MHz, d 6DMSO)Majorrotamers(ratio2:3):δ=1.93( m,3H,HC2,3 ),2.34 3 (m,1H,HC2),3.48( m,2H,HC4),4.98( m,2H,HC7),5.22( dd , J1,2 =6.8,7.0Hz,1H, 13 HC1), 6.95 ( m, 6H, ArH), 7.30 ( m, 14H, ArH); C NMR (125 MHz, d 6DMSO)

Rotamers(ratio2:3):δ=22.7,23.5(CH 2,C 3),31.9,32.8(CH 2,C 2),46.2,46.8(CH 2,C 4),

52.5,53.1(CH,C 1),65.8,65.9(CH 2,C 7),82.2(Cq,C 12 ),126.8(CH,ArH),124.4,127.5

(CH, Ar), 127.9 (CH, ArH), 128.1, 128.3 (CH, ArH), 129.5, 129.6 (CH, C 14 ), 136.6,

136.9(Cq,C 8),140.9,140.9(Cq,C 13 ),153.5,153.8(Cq,C 6),166.8,167.1(Cq,C 5); MS: m/z 538[M+Na] +; HRMS: calc’dfor[M+Na] + =538.2214,found538.2212(M(ppm) =0.3);calc’dfor[M+K] + =554.1953,found554.1953(M(ppm)=0.1). 5.2.3.1. Benzylationofthetetrazolering

4[2Benzenesulfonyl2(benzyltetrazol5yl)vinyl]benzoicacidmethylester(166, 167)

Br N N N O N O O N O N O N O S N S S N N K2CO3 N N H + + Acetone,r.t.

COOCH3 COOCH3 COOCH3 N2IsomerN1Isomer 165 68 166 167

230 Chapter5.ExperimentalPart

MolecularFormula C24 H20 N4O4S MolecularWeight 460.51g/mol A25mL,threeneckedroundbottomedflask,ischargedatroomtemperature,with4[2 benzensulfonyl2(1 Htetrazol5yl)vinyl]benzoic acid methyl ester 165 (741 mg, 2 mmol),dissolvedinacetone(7.5mL).Thesolutionistreatedwithpotassiumcarbonate (553mg,4mmol)andbenzylbromide(410mg,2.4mmol).Themixtureisstirredover thenight.Theacetoneisremovedbyrotaryevaporator,waterisadded(10mL)andthe productisextractedthreetimeswithisopropylacetate(15mLportion).Thecollective organicphaseiswashedoncewithwater(15mL).Thesolventisremovedtogive1.06g ofcrude.Theproductisflashchromatographed(toluene/ethylacetate14:1)togive640 mgasamixtureofN1andN2isomersinratio1:1with69%ofyield.

Compoundcharacterizationdata:

16 17 18 14 15 N N N O N 2 O O O 1 N S N 3 S 5 N 13 N 4 6 8 7 9 11 12 10 COOCH COOCH3 3 N2 Isomer N1 Isomer mmp: 5355°C;TLC: Rf(toluene/EtOAc5:1)=0.23; HPLC:16.07;16.34min; UV

(EtOH):λmax ,nm(ε):289(25650),201(41850); IR: ν3419( wovertones(C=O)), 3100 ,((C=C,Ph)ע ,C=C)), 1434( s)עC=O)),1631( s)ע ,CH)),1724( s)ע ,CH)), 2855( w)ע ,w) 1 1 CO)) cm ; H)ע ,sim (SO 2)), 1085 ( sע ,CO)), 1152 ( s)ע ,asim (SO 2)), 1291 ( sע ,s ) 1308

NMR (500MHz, d 6DMSO):δ=3.86( s,3H,HC12 ,N1isomer),3.87(s,3H,HC12 ,N2 isomer),5.23( br ,1H,HC14 ,N1isomer),5.53( br ,1H,HC14 ,N1isomer),5.94( s,2H,

HC14 , N2isomer), 7.1 ( m, 6H, HC8,16 , N1 and N2isomers), 7.40 ( m, 1H, ArH, N1 isomer),7.58( m,1H,ArH,N2isomer),7.75( m,6H,ArH,N1andN2isomers),8.46( s,

1H, HC6, N2isomer B), 8.57 ( s, 1H, HC6, N1isomer); (500 MHz, d6DMSO, 353

K)3.86( s,3H,HC12 ,N1isomer),3.87( s,3H,HC12 ,N2isomer),5.21( br ,2H,HC14 ,

N1isomer),5.96( s,2H,HC14 ,N2isomer),7.1( m,6H,HC8,16 ,N2andN2isomers), 7.40( m,1H,ArH,N1isomer),7.58( m,1H,ArH,N2isomer),7.75( m,6H,ArH,N1and 13 N2isomers), 8.45 ( s, 1H, HC6,N2isomer),8.57( s, 1H, HC6, N1isomer); C NMR

(125MHz, d6DMSO)Morerelevantdata:δ=51.9(CH 3,C 12 ,N1andN2isomers),50.8

231 Chapter5.ExperimentalPart

(CH 2, C 14 , N1isomer), 56.7 (CH 2, C 14 , N2isomer), 128.2 (CH, Ar), 128.5 (CH, Ar), 129.3(CH,Ar),130.0(CH,Ar),130.4(CH,Ar),130.8(CH,Ar),131.4(CH,Ar),134.4

(CH,Ar),135.1(Cq,Ar),145.0(CH,C 6,N2isomer),148.0(CH,C 6,N1isomer),165.6 + (Cq, C 11 ); MS: m/z 369 [MH] , 141 [PhSO 2] ; HRMS: calc’d for [MH] = 371.0809, found371.0809(M(ppm)<0.1),calc’dfor[M+Na] + =393.0628,found393.0628(M (ppm)<0.1). (S)tert butyl2(benzyltetrazol5yl)pyrrolidine1carboxylate(168,169)

PhCH Br H 2 H H N H N N N K2CO3 N N N N N + N N N N Acetone,r.t. N N O O O O O

N1IsomerN2Isomer 111 168 169

MolecularFormula C17 H23 N5O2 MolecularWeight 329.19g/mol A25mL,threeneckedroundbottomedflask,ischarged,atroomtemperature,withthe bocpyrrolidinetetrazole 111 (956mg,4mml)inacetone(9mL),benzylbromide(820 mg,4.8mmol)andpotassiumcarbonate(1.106g,8mmol).Themixtureisstirredoverthe nightatroomtemperature.Themixtureisquenchedwithwater(20mL)andtheproduct extractedfourtimeswithethylacetate(25mLportion).Thesolventisremovedtogive 1.320gofcrudewhichischromatographed(elutionsystem:hexane/ethylacetate3:1)to affordthethe650mgofN2isomer169 (49%yield)and580mgofN1isomer 168(44% yield)asyellowoils.

232 Chapter5.ExperimentalPart

Compoundcharacterizationdata: N1Isomer( 168 ) 12 11 13 10 3 2 9 1 H N 4 N N 5 6 N N O O 7 8

TLC: Rf(hexane/EtOAc3:1)=0.6; HPLC: 9.56min; UV (MeOH):λ max ,nm(ε):257

,((CH)ע ,asim (CH 3)),2930( wע,CH)), 2977( m)ע ,CH)), 3034( w)ע ,IR: ν3066( w ;(342)

C)ע ,CN)),1367( s, δ (CH 3)3),1163( s)ע , C=C)),1396( vs)ע ,C=O)),1456( s)ע , vs )1696 1 1 O))cm ; HNMR (500MHz, d6DMSO,394K):δ=1.27( s,9H,HC8), 1.85( m,1H,H

C3), 1.90( m,1H,HC3), 2.05( m,1H,HC2), 2.18( m,1H,HC2), 3.48( m,2H,HC4), 5.17 13 (m,1H,HC1), 5.66( m,2H,HC9), 7.28( m,2H,HC11 ),7.34( m,3H,HC12,13 ); CNMR

(150MHz, d6DMSO,300K)Majorrotamer:δ=22.8(CH 2,C 3),27.7(CH 3,C 8),32.0

(CH 2,C 2),46.2(CH 2,C 4),50.0(CH,C 1),50.9(CH 2,C 9),79.9(Cq,C 7),128.0(CH,C 11 ),

128.5(CH,C 13 ),128.9(CH,Ar),134.5(Cq,C 10 ),157.2(Cq,C 6),168.7(Cq,C 5); MS: m/z 330[MH] +,230[MHBoc] +; HRMS: calc’dfor[MH] + =330.1925,found330.1925(M (ppm)=0.1),calc’dfor[M+Na] + =352.1744,found352.1744(M(ppm)=0.1). N2Isomer( 169 ) 3' 2' 1' H N 9' 4' N N 5' 10' 13' 6' N N O 11' 12' O 7' 8'

CH)),3035)ע ,TLC: Rf(hexane/EtOAc3:1)=0.75; HPLC: 10.38min; IR: ν3067( w ,((CN)ע ,C=C)), 1395( s)ע ,C=O)), 1456( m)ע , CH)), 1698( vs)ע ,CH)), 2977( m)ע ,w) 1 1 CO)) cm ; H NMR (400 MHz, d6DMSO) Major)ע ,s, δ(CH 3)3), 1163 ( s) 1367 rotamer:δ=0.98( s,9H,HC8’ ), 2.05( m,4H,HC2’,3’ ), 3.45( m,2H,HC4’ ), 4.95( m,1H, 13 HC1’ ), 5.90 ( s, 2H, HC9’ ), 7.34 ( m, 5H, HC11’13’ ); C NMR (150MHz, d6DMSO)

Major rotamer: δ = 22.9 (CH 2, C 3’ ), 27.6 (CH 3,C 8’ ), 32.8 (CH 2, C 2’ ), 46.2 (CH 2, C 4’ ),

52.5(CH,C 1’ ),55.7(CH 2,C 9’ ),78.4(Cq,C 7’ ),128.4(CH,Ar),128.5(CH,C 13’ ),129.2 + (CH,Ar),134.2(Cq,C 10’ ),157.8(Cq,C 6’ ),168.7(Cq,C 5’ ); MS: m/z 330[MH] ,230 [MHBoc] +

233 Chapter5.ExperimentalPart

5.2.4. Methylation of the Tetrazole Ring

5.2.4.1. TP3: Typical procedure for the methylation of the tetrazole ring

CH3 H CH N 3 N N N H3C N N N N N N H N N N N + N R CH2Cl2,r.t.,2h R R CH3 N2Isomer N1Isomer Scheme 139.Methylationofthetetrazolering A 25 mL, three necked round bottomed flask, is charged at 0 °C, under atmosphere of argon, with 2fluorophenyltetrazole (821 mg, 5 mmol) dissolved in dichloromethane (10 mL) and treated with 3methyl1ptolyltriazene (1.119 g, 7.5 mmol).Themixtureisgraduallywarmedatroomtemperatureandstirredfortwohours. WhentheHPLCandtheTLCanalysisshow>98%conversionthereactionmixtureis cooledto0°CandquenchedwithHCl(2M,10mL).Thebiphasicmixtureistransferred toaseparatoryfunnelandtheproductisextractedthreetimeswithdichloromethane(10 mL portion) ; the combined organic phase is washed three times HCl (2 M, 10 mL portion).Thesolventisremovedtogive740mgofapinkcrystalline materialandthe crudeischromatographed(elutionsystem:hexane/ ethyl acetate 3:1) to give the N2 isomer(520mg,82.5%yield)andtheN1isomer(110mg,17.5%yield). 5(2Fluorophenyl)Nmethyltetrazole(145,146)

H3C HN N N N N N N N N N N N CH3 CH3 H C N N N F 3 H F F +

CH2Cl2,r.t.,2h N2Isomer N1Isomer 96 146 145

MolecularFormula C8H7FN 4 MolecularWeight 178.17g/mol TP3: 1.5 equivalents of 3methyl1ptolyltriazene are used in a 5 mmol scale experiment.Thereactionisstirredtwohoursatroomtemperaturetogive740mgofpink

234 Chapter5.ExperimentalPart crystalline material (N2/N1isomer = 71:29 based on HPLC analysis). The crude is chromatographedtogive520mgofN2isomer146 asanorangesolid(58%yield)and 110mgofN1isomer 145asanorangeoil(12%yield).

Compoundcharacterizationdata: N1Isomer( 145 ) N N N N 8 CH3 7 2 F 3 1 4 6 5 mp: 7477°C; TLC: Rf(hexane/AcOEt3:1) =0.16; HPLC: 6.37min; UV (EtOH):

,CH 3)), 1623( m)ע,CH)), 2961( w)ע,λmax ,nm(ε): 269(1250),224(8570); IR: ν3073( w ;CF))cm 1)ע,C=C)), 1223( s)ע,C=C)),1436( s)ע,C=C)), 1585( w,tetrazole),1480( s)ע

((CF)ע ,sim (CH 3)), 1526( m,tetrazole),1223( wע ,CH)), 2961( w)ע ,Raman: 3080( w 1 1 cm ; HNMR (500MHz, d6DMSO):δ=4.03( s,3H,HC8),7.46( m,2H,HC4,6 ),7.72 13 (m,2H,HC3,5 ); CNMR (125MHz, d6DMSO):δ=34.0(CH 3,C 8),113.2(Cq,C 2),

117.3(CH,C 6),126.2(CH,C 4),129.5(CH,C 3),132.8(CH,C 5),153.7(Cq,C 7),160.7 + (Cq,C 1); MS: m/z 179[MH] ; N2Isomer( 146 ) 8' H3C N N N N 2' 7' F 3' 1' 4' 6' 5' mp: 7074°C; TLC: Rf(hexane/AcOEt3:1)=0.37; HPLC: 8.90min; UV (EtOH):

,CH), 2961 ( w)ע ,λmax , nm (ε): 283 (1400), 275 (1880), 234 (14450); IR: ν 3068 ( w

C=C)),1436)ע,CH 3), 20001700( w,overtonesγ(CH,Ph)), 1546( w,tetrazole),1482( s)ע 1 sim (CH 3)),1545ע,CH), 2964( w)ע,CF))cm ; Raman: 3070( w)ע,C=C)), 1219( s)ע,s) 1 1 (w,tetrazole))cm ; HNMR (500MHz, d6DMSO):δ=4.45( s,3H,HC8’ ),7.38( m, 13 2H,HC4’,6’ ),7.58( m,1H,HC5’ ),8.03( dt , J =1.7,7.5Hz,1H,HC3’ ); CNMR (125

MHz, d6DMSO):δ=38.3(CH 3,C 8’ ),113.5(Cq,C 2’ ),117.2(CH,C 6’ ),126.0(CH,C 4’ ), + 132.1(CH,C 3’ ),134.0(CH,C 5’ ),162.1(Cq,C 7’ ),163.3(Cq,C 1); MS: m/z 179[MH] ;

235 Chapter5.ExperimentalPart

HRMS:calc’dfor[MH] + =179.07275,found179.0727(M(ppm)=0.6),calc’dfor [M+Na] +=201.0547,found201.0546(M(ppm)=0.7). 5(4Chlorophenyl)Nmethyltetrazole(147,148)

CH3 N N N CH3 N N N H C N N N N 3 H N N N N N H + CH Cl r.t.,2h CH3 Cl 2 2, Cl Cl N1Isomer N2Isomer 1 147 148 CASRegistryNumber 147 :77455528; 148 :69746356 MolecularFormula C8H7ClN 4 MolecularWeight 194.62g/mol a)C.W.Roberts,G.F.Fanta,J.D.Martin, J. Org. Chem. 1959 , 24 , AnalysisRef. 654; b)R.N.Butler,V. C.Garvin, J. Chem. Soc. ,PerkinTrans.1: OrganicandBioOrganicChemistry 1981 , 2,390 TP3: 1.5 equivalents of 3methyl1ptolyltriazene are used in a 4 mmol scale experiment. The reaction is stirred two hours at room temperature to give 600 mg of browncrystallinematerial(N2/N1isomer=75:25basedonHPLCanalysis).Thecrude ischromatographed(elutionsystemhexane/ethylacetate5:1)togive340mgofN2 isomer 148(44%yield)and100mgofN1isomer 147(13%yield).

Compoundcharacterizationdata: N1Isomer( 147 )

N N 2 N 3 1 5 N CH3 Cl 4 6 mp: 120°C; TLC: Rf(hexane/AcOEt4:1)=0.08; HPLC: 5.61min; UV (MeOH):λ max , CH)), 3016)ע,CH)), 3036( w)ע,CH)),3076( w)ע,nm(ε):234(1570); IR:ν3100( w

,((C=C)ע ,C=C)), 1470 ( s)ע ,CH 3)), 1604 ( s)ע ,CH)), 2962 ( w)ע ,CH)), 3100 ( w)ע ,w) PhCl))cm 1;Raman: 1535( w,tetrazole)cm 1; 1HNMR)ע ,C=C)), 1094( s)ע,s )1454 3 (500MHz, d6DMSO):δ=4.15( s,3H,HC6),7.68( d, J2,3 =8.4Hz,2H,HC3),7.86( d, 3 13 J2,3 =8.4Hz,2H,HC2); CNMR (125MHz, d6DMSO)35.1(CH 3,C 6),122.7(Cq,

C4), 129.3 (CH, C 3), 130.6 (CH, C 2), 136.1 (Cq, C 1), 153.2 (Cq, C 5); MS: m/z 195 + [MH] ,138[MHHN 3] .

236 Chapter5.ExperimentalPart

N2Isomer( 148 ) 6' CH3 N N 2' N 1' 3' 5' N

Cl 4' mp: 108°C; TLC: Rf(hexane/AcOEt4:1)=0.31;HPLC: 8.21min; UV (MeOH):λ max , ,CH)), 2953 ( w)ע ,CH)), 3035 ( w)ע ,nm (ε): 201 (3000), 246 (2030); IR: ν 3062 ( w

C=C)), 1452)ע,C=C)), 1466( s)ע,CH 3)), 1607( m)ע,CH 3)), 2855( w)ע,CH 3)),2925( w)ע PhCl))cm 1;Raman: 1526( w,tetrazole)cm 1; 1HNMR (500)ע ,C=C)), 1089( s)ע ,s) 3 MHz, d6DMSO):δ=4.41( s,3H,HC6’ ),7.61( d, J2’,3’ =8.5Hz,2H,HC3’),8.03( d, 3 13 J2’,3’ =8.5Hz,2H,HC2’ ); CNMR (125MHz, d6DMSO):δ=40.1(CH 3,C 6’ ),125.8

(Cq,C 4’ ),128.1(CH,C 3’ ),129.5(CH,C 2’ ),135.2(Cq,C 1’ ),163.2(Cq,C 5’ ); MS: m/z 195[MH] +. 4[2Benzenesulphonyl2(methyltetrazol5yl)vinyl]benzoic acid methyl ester (177,178)

CH3 N N N O O N O O N O O N N N N S CH3 S S N H C N N N N N H 3 H CH3 +

CH2Cl2,r.t.,15min

COOCH3 COOCH3 COOCH3 N1Isomer N2Isomer 165 178 177

MolecularFormula C8H7FN 4 MolecularWeight 384.39g/mol TP3: 1.3 equivalents of 3methyl1ptolyltriazene are used in a 3 mmol scale experiment.Thereactionisstirredfifteenminutesatroomtemperaturetogive1.09gof browncrystallinematerial(N2/N1isomer=57:43basedonHPLCanalysis).Thecrude ischromatographedtogive757mgofN2isomer177 (66%yield)and161mgofN1 isomer 178(14%yield).

237 Chapter5.ExperimentalPart

Compoundcharacterizationdata: N1Isomer( 178 ) N O O N 2 N S 5 3 N 1 13 CH14 4 6 3 7 8 10 9 COOCH3 11 12 mp: 158160°C; TLC: Rf(hexane/AcOEt3:2)=0.26; HPLC:9.35min; UV (EtOH):

,CH 3)), 20001750 ( w)ע ,CH)), 2950 ( w)ע ,λmax ,nm(ε):288(27890); IR: ν 3050 ( w ,C=C)), 1321( s)ע ,C=C)),1446( s)ע ,C=O)),1641( s)ע ,overtonesγ(CH,Ph)), 1727(v s 1 ,((C=O)ע ,sim (SO 2)) cm ; Raman: ν 1720 ( wע ,CO)), 1148 ( s)ע ,asim (SO 2)), 1285 ( sע 1 1 C=C)), 1517( w,tetrazole)cm ; HNMR (500MHz, d6)ע ,C=C)),1610( s)ע ,s )1642 3 DMSO):δ=3.75( s,3H,HC12 ),3.83(s,3H,HC14 ),7.19( d, J8,9 =8.4Hz,2H,HC8), 3 3 7.67( dd , J =7.7Hz,2H,HC3),7.81( m,3H,HC2,4 ),7.91( d, J8,9 =8.4Hz,2H,HC9), 13 8.60( s,1H,HC6); CNMR (125MHz, d6DMSO):δ=40.5(CH 3,C 14 ),52.8(CH 3,

C12 ),127.2(CH,C 2),128.8(CH,C 9),130.3(CH,Cq,C 3,5 ),130.6(CH,C 8),132.5(Cq,

C10 ),135.3(CH,C 4),135.4(Cq,C 7),137.9(Cq,C 1),147.2(CH,C 6),147.8(Cq,C 13 ), + 165.7(Cq,C 11 ); HRMS: calc’dfor[MH] =385.0965,found385.0967(M(ppm)= 0.4),calc’dfor[M+Na] + =407.0785,found407.0786(M(ppm)=0.4). N2Isomer( 177 )

14 CH3 O N N 2' O S 5' N 3' N 1' 13' 4' 6' 7' 8' 10' 9' COOCH3 11' 12' mp: 156158°C; TLC: Rf(hexane/AcOEt3:2)=0.19; HPLC:9.54min.;UV (EtOH):

,((CH)), 20001800( w,overtonesγ(CH,Ph)ע,λmax ,nm(ε):286(25620);IR: ν2951( w

,asim (SO 2)), 1287 ( sע ,C=C)), 1326 ( s)ע ,C=C)), 1447 ( w)ע ,C=O)), 1639 ( m)ע ,s ) 1715 1 ,C=C)),1639( s)ע,C=O)), 1641( s)ע,sim (SO 2))cm ;Raman: 1718( wע ,CO)),1158 (s)ע 1 1 (C=C)),1509( w,tetrazole)cm ; HNMR (500MHz, d6DMSO):δ=3.83( s,3H,H 3 3 C12’ ),4.40( s,3H,HC14’ ),7.31( d, J8’,9’ =8.4Hz,2H,HC8’ ),7.65( dd , J =7.7,8Hz, 3 2H,HC3’ ),7.75( t, J =7.7Hz,1H,HC4’ ),7.86( m,4H,HC2’,9’ ),8.43( s,1H,HC6’ );

238 Chapter5.ExperimentalPart

13 C NMR (125 MHz, d6DMSO): δ = 34.4 (CH 3, C 14’ ), 52.9 (CH 3, C 12’ ), 128.8 (CH,

C2’ ),129.8(CH,C 9’ ),130.0(CH,C 3’ ),130.9(CH,C 8’ ),131.7(Cq,C 10’ ),131.8(Cq,C 5’ ),

134.8(CH,C 4’ ),136.3(Cq,C 7’ ),138.8(Cq,C 1’ ),144.8(CH,C 6’ ),156.9(Cq,C 13’ ),165.9 + (Cq,C 11’ ); HRMS: calc’dfor[MH] =385.0965,found385.0965(M(ppm)<0.1), calc’dfor[M+Na] + =407.0785,found407.0785(M(ppm)<0.1); XRay: thestructure oftheN2isomerwasconfirmedbyXrayanalysis(SeeXraydiscussion;Chapter4). 4[1Ethylidene2(Nmethylterazol5yl)penta2,4dienyl]benzoicacidmethyl ester(149,150)

H3C N N N N N N N NH CH3 N N HOOC H C N N N H3COOC CH H3COOC N N 3 H 3 + CH2Cl2,r.t.,15min

N1Isomer N2Isomer 187 149 150

MolecularFormula C16 H14 N4O2 MolecularWeight 294.26g/mol TP3: 1.25 equivalents of 3methyl1ptolyltriazene are used in a 4 mmol scale experiment. The reaction is stirred four hours at room temperature to give 1.03 g of browncrystallinematerial(N2/N1isomer=73:27basedonHPLCanalysis).Thecrude ischromatographedtogive620mgofN2isomer150asabrownoil(53%yield),and 200mgofN1isomer149asawhitecrystallinematerial(17%yield). Compoundcharacterizationdata: N1Isomer( 149 ) N N 14 13 12 1 N N H3COOC CH 11 3 4 10 2 3 5 9 6 8 7 mp: 117120°C; TLC:R f(hexane/EtOAc3:2)=0.20; HPLC: 12.02; UV (MeOH):

CH)), 2000)ע,CH)), 2950( w)ע,λmax ,nm(ε):260(1790),200(3640); IR: ν3100( w ,C=C)), 1545 ( w)ע ,C=O)), 1610 ( m)ע ,w, overtones γ(CH, Ph)), 1725 ( vs ) 1800 ,((C=O)ע ,CO)), 776 ( m, δ(CH, Ph)) cm 1; Raman: ν1719( w)ע ,tetrazole), 1282 ( vs 1 1 ,C=C)), 1543( w,tetrazole)cm ; HNMR (500MHz, d6DMSO):δ=3.56( s)ע,s )1610

239 Chapter5.ExperimentalPart

3 3H, HC12 ), 3.85 ( s, 3H, HC14 ), 7.24 ( d, J2,3 =8.5Hz,2H,HC3),7.74( m, 4H, H 3 13 C6,7,8,9 ),7.90 (d , J2,3 =8.5Hz,2H,HC2); CNMR (125MHz, d6DMSO):δ=33.8

(CH 3,C 12 ),52.3(CH 3,C 14 ),122.3(CH,C 3),128.7(CH,Ar),128.8(CH,Ar),128.9(CH,

Ar),129.4(Cq,C 1),130.4(CH,Ar),131.1(CH,C 2),131.8(Cq,C 5),140.6(Cq,C 10 ), + 143.6(Cq,C 4),154.1(Cq,C 11 ),165.8(Cq,C 13 ); MS: m/z 295[MH] ; HRMS: calc’d for[MH] + =295.1190,found95.1190(M(ppm)<0.1),calc’dfor[M+Na] + =317.1009, found317.1009(M(ppm)=0.1).

N2Isomer( 150 ) 12'

H3C N N 14' 13' 1' N N H3COOC 11' 4' 10' 2' 3' 5' 9' 8' 6' 7'

TLC:Rf(hexane/EtOAc3:2)=0.35; HPLC: 14.03min.;UV (MeOH):λ max ,nm(ε):

CH 3)), 2000)ע,CH)), 2953( w)ע,IR: ν3060( w ;(3870)200,(2100)233,(1270)259 ,C=C)), 1526 ( w)ע ,C=O)), 1610 ( m)ע ,w, overtones γ(CH, Ph)), 1721 (v s ) 1900 ,((C=O)ע ,CO)), 756 ( s, δ(CH, Ph)) cm 1; Raman: ν1721(w)ע ,tetrazole), 1281 (v s 1 1 ,C=C)),1526( w, tetrazole)cm ; HNMR (500MHz, d6DMSO):δ=3.86( s)ע ,s )1610 3 3H,HC12’ ),4.29( s,3H,HC14’ ),7.29( d, J2’,3’ =6.5Hz,2H,HC3’ ),7.53( m,1H,H 3 3 C6’ ),7.64( m, J8’,9’ =7.5Hz,2H,HC7’,8’ ),7.81( m, J8’,9’ =7.5Hz,1H,HC9’ ),7.90 (d, 3 13 J2’,3’ =6.5Hz,2H,HC2’ ); CNMR (125MHz, d6DMSO):δ=48.6(CH 3,C 12’ ),52.2

(CH 3,C 14’ ),127.7(CH,C 3’ ),128.3(CH,Ar),128.5(CH,Ar),128.9(CH,Ar),129.4(Cq,

C1’ ),130.4(CH,Ar),130.5(CH,C 2’ ),130.7(Cq,C 5’ ),140.2(Cq,C 10’ ),145.2(Cq,C 4’ ), + 164.2(Cq,C 11’ ),166.1(Cq,C 13’ ); MS:m/z 295[MH] ; 5Benzenesulphonylmethyl)N-methyltetrazole(179,180)

CH3 CH N N O N N 3 O O N O O N O H3C N N N N N S N H S S N N N H + CH3 CH2Cl2,r.t.,20min N1Isomer N2Isomer 75 180 179

MolecularFormula C9H10 N4O2S MolecularWeight 238.24g/mol

240 Chapter5.ExperimentalPart

TP3: 1.4 equivalents of 3methyl1ptolyltriazene are used in a 10 mmol scale experiment.Thereactionisstirredtwentyminutesatroomtemperaturetogive2.78gof browncrystallinematerial(N2/N1isomer=52/48basedonHPLCanalysis).Thecrude ischromatographed(elutionsystemtoluene/ethylacetate3:1)togive907mgofN2 isomer 179(52%yield)and855mgofN1isomer180 (48%yield).

Compoundcharacterizationdata: N1Isomer( 180 ) N O O N S N 1 N 3 2 CH 6 4 7 3 5 mp: 182184 °C; TLC: Rf (toluene / EtOAc 3:1) = 0.21; HPLC: 4.55 min; UV

(acetonitrile):λ max ,nm(ε): 273(1080),266(1290), 259(918),219(12810),194(39970); CH)), 2000)ע ,CH)), 2954( m)ע ,CH)), 3006( m)ע,CH)),3072( w)ע,IR: ν3095( w ,((C=C)ע,C=C)), 1522( w,tetrazole),1466( m)ע,w,overtones γ(CH,Ph), 1584( w )1750 1 ,sim (SO 2)) cm ; Raman: 1522 ( wע ,asim (SO 2)), 1159 ( sע ,C=C)), 1315 ( s)ע ,s ) 1448 1 1 sim (SO 2)) cm ; HNMR (500MHz, d6DMSO):δ=4.12( s,3H,Hע,tetrazole),1160( m 13 C7),5.48( s,2H,CH2),7.73( m,2H,HC4),7.86( m,3H,HC5,6 ); CNMR (125MHz, d6DMSO):δ=34.2(CH 3,C 7),49.0(CH 2,C 2),128.2(CH,C 4),129.5(CH,C 5),134.7 + (CH, C 6), 137.6 (Cq, C 3), 146.5 (Cq, C 1); MS: m/z 239 [MH] , 237 [MH] ; HRMS: + + calc’dfor[MH] =239.05972,found239.0596(M(ppm)=0.3),calc’dfor[MNH 4] = 256.0863, found 256.0862 (M (ppm) = 0.2), calc’d for [MNa] + = 261.047, found 261.0416(M(ppm)=0.2). N2Isomer( 179 )

CH3 N 7' O O N S N 1' N 3' 2' 6' 4' 5' mp: 137139 °C; TLC: Rf (toluene / EtOAc 3:1) = 0.35; HPLC: 4.62 min.; UV

(acetonitrile):λ max ,nm(ε): 272(1190),265(1410),259(990),216(16890),194(41680); CH)), 2000)ע ,CH)), 2936 ( m)ע ,CH)), 2995 ( s)ע ,CH)), 3061 ( w)ע ,IR: ν 3098 ( w ,((C=C)ע,C=C)), 1494( w,tetrazole),1445( s)ע,w,overtones γ(CH,Ph), 1584( w )1750

241 Chapter5.ExperimentalPart

1 1 sim (SO 2))cm ; HNMR (500MHz, d6DMSO):δ=4.33ע,asim (SO 2)), 1160( sע,s )1319 13 (s,3H,HC7’ ),5.13( s,2H,CH2’ ),7.62( m,2H,HC4’ ),7.73( m,3H,HC5’,6’ ); CNMR

(125MHz, d6DMSO):δ=39.5(CH 3,C 7’ ),51.6(CH 2,C 2’ ),128.1(CH,C 4’ ),129.3(CH, + C5’ ),134.2(CH,C 6’ ),138.2(Cq,C 3’ ),156.1(Cq,C 1’ ); MS:m/z 239[MH] ,237[MH] ; HRMS:calc’dfor[MH] + =239.05972,found239.0596(M(ppm)=0.5),calc’dfor + + [MNH 4] =256.0863,found256.0862(M(ppm)=0.4),calc’dfor[MNa] =261.047, found261.0415(M(ppm)=0.6). NMethyl5thiophen2yltetrazole (181,182) CH3 H C N N N 3 H N N + N N N N CH3 S CH Cl r.t.,1h30min S S HN N 2 2, N N NN H3C N1Isomer N2Isomer 109 182 181 MolecularFormula C6H6N4S MolecularWeight 166.21g/mol TP3: 1.5 equivalents of 3methyl1ptolyltriazene are used in a 0.86 mmol scale experiment.Thereactionisstirredtwohoursatroomtemperaturetogive300mgofa yellow solid (N2/N1isomer = 66:34 based on HPLC analysis). The crude is chromatographed(elutionsystemhexane/ethylacetate5:1)togive78mgofN2isomer 181(55%yield)and60mgofN1isomer182 (42%yield)asanoffwhitecristalline materials. Compoundcharacterizationdata: N1Isomer( 182 )

3 2 N 4 5 S 1 N NN H C 3 6 mp: 110111 °C; TLC: Rf (hexane / AcOEt 5:1) = 0.05; HPLC: 3.37 min; UV UV

,((CH)ע,CH)),3079( w)ע,MeOH):λ max ,nm(ε): 271(8130),254(7900); IR:ν3089( s) 1 1 CH 3), 1575( s,thiophene),1489( s,tetrazole),1448( s,thiophene)cm ; H)ע,w )2960 3 NMR (400MHz, d6DMSO):δ=4.20( s,3H,HC6),7.29( dd , J3,4 =5.0Hz,1H,HC3),

242 Chapter5.ExperimentalPart

3 3 13 7.81 ( d, J2,3 =3.8Hz,1H,HC2), 7.92 ( d, J3,4 =5.0Hz,1H,HC4); C NMR (100

MHz, d6DMSO):δ=35.2(CH 3,C 6),124.0(Cq,C 1),128.8(CH,C 3),130.4(CH,C 2), + 131.2(CH,C 4),149.4(Cq,C 5); HRMS: calc’dfor[M+H] =167.0386,found167.0386 (M(ppm)=0.2),calc’dfor[M+Na] + =189.0205,found189.0205(M(ppm)=0.3).

N2Isomer( 181 )

3' 2' 5' N 4' S 1' N CH3 6' NN mp: 8485°C; TLC: Rf(hexane/AcOEt5:1)=0.22;HPLC: 5.75min; UV(MeOH):

CH)),3077)ע,CH)),3096( w)ע,λmax ,nm(ε): 268(11120),255(10620); IR:ν3119( s 1 1 CH 3), 1573( s,thiophene),1478( s,tetrazole)cm ; HNMR (400)ע,CH)),2957( w)ע,w) 3 MHz, d6DMSO):δ=4.40( s,3H,HC6’ ),7.25( dd , J=5.02Hz,1H,HC3’ ), 7.78( d, 3 3 13 J2’,3’ =3.3Hz,1H,HC2’ ),7.80( d, J3’,4’ =5.02Hz,1H,HC4’ ); CNMR (100MHz, d6DMSO):δ=36.2(CH 3,C 6’ ),127.7(CH,C 3’ ),128.3(Cq,C 1’ ),128.4(CH,C 2’ ),129.0 + (CH,C 4’ ),160.2(Cq,C 5’ ); HRMS: calc’dfor[M+H] =167.0386,found167.0386(M (ppm)=0.1),calc’dfor[M+Na] + =189.0205,found189.0205(M(ppm)=0.3). 5BenzylsulfanylN-methyltetrazole(183,184)

CH3 N N N N CH3 N N H C N N N N N N 3 H S N S N S N H CH + CH2Cl2,r.t.,20min 3 N1 Isomer N2 Isomer 17 184 183

MolecularFormula C9H10 N4S MolecularWeight 206.27g/mol TP3: 1.5 equivalents of 3methyl1ptolyltriazene are used in a 1.87 mmol scale experiment.Thereactionisstirredonehouratroomtemperaturetogive400mgofan orange oil (N1/N2isomer = 52:48 based on HPLC analysis). The crude is chromatographed (elution system hexane / ethyl acetate 5:1) to give 205 mg of N2 isomer183 (53%yield)and125mgofN1isomer 184(32%yield).

243 Chapter5.ExperimentalPart

Compoundcharacterizationdata: N1Isomer( 184 )

N N 2 5 N 3 S N 1 6 CH 4 3 7

CH)),3062)ע,TLC:Rf(Hexane/EtOAc5:1)=0.06; HPLC:6.54min; IR: ν3086( w ,((CH)),19581813( w,overtonesγ(CH,Ph)ע,CH)),2949( w)ע,CH)),3030( w)ע,w) C=C)), 700 ( w, γ(Ph) cm 1; 1H NMR)ע ,C=C)), 1455 ( w)ע ,C=C)), 1495 ( s)ע ,w ) 1585

(400MHz, d6DMSO):δ=3.84( s,3H,HC7),4.52( s,2H,CH5),7.31( m,3H,HC3,4 ), 13 7.40( m,2H,HC2); CNMR (100MHz, d6DMSO):δ=33.5(CH 3,C 7),36.7(CH 2,

C5), 127.7 (CH, C 4), 128.5 (CH, C 3), 128.9 (CH, C 2), 136.5 (Cq, C 1), 153.1 (Cq, C 6); HRMS: calc’dfor[M+H] + =207.0699,found207.0698(M(ppm)=0.5),calc’dfor [M+Na] + =229.0518,found229.0517(M(ppm)=0.4).

N2Isomer( 183 )

7'CH3 N N 2' 5' N 3' S N 1' 6' 4'

TLC:Rf(Hexane/EtOAc5:1)=0.20; HPLC:7.90min;UV (MeOH):λ max ,nm(ε): 243 ,((CH)ע,CH)),2930( w)ע,CH)),2956( w)ע,CH)),3030( w)ע,IR: ν3063( w ;(2900) ,C=C)), 1454 ( s)ע ,C=C)), 1496 ( m)ע ,w, overtones γ(CH, Ph)), 1602 ( w ) 19541808 1 1 ,( ’C=C)),702( w,γ(Ph)cm ; HNMR (400MHz, d6DMSO):δ=4.33( s,3H,HC7)ע 13 4.45( s,2H,CH5’ ),7.29( m,3H,HC3’,4’ ),7.40( m,2H,HC2’ ); CNMR (100MHz, d6

DMSO):δ=35.4(CH 3,C 7’ ),39.8(CH 2,C 5’ ),127.4(CH,C 4’ ),128.4(CH,C 3’ ),128.9 + (CH, C 2’ ), 137.0 (Cq, C 1’ ), 162.4 (Cq, C 6’ ); HRMS: calc’d for [M+H] = 207.0699, found207.0697(M(ppm)=0.9),calc’dfor[M+Na] + =229.0518,found229.0518(M (ppm)=0.3).

244 Chapter5.ExperimentalPart

(S)2(N-Methyltetrazol5yl)pyrrolidine1carboxylicacidbenzylester(185,186)

CH3 N N CH3 N N N N H C N N N H H H N 3 H N N N N N H CH + N CH2Cl2,r.t.,1h30min N 3 N O O O O O O

N1Isomer N2Isomer 112 186 185

CASRegistryNumber 920748454 MolecularFormula C14 H17 N5O2 MolecularWeight 287.32g/mol V. Aureggi, G. Sedelmeier, Novartis Pharma AG, 2007 , WO AnalysisRef. 2007/009716 TP3: 1.5 equivalents of 3methyl1ptolyltriazene are used in a 8 mmol scale experiment.Thereactionisstirredoneandhalfhouratroomtemperaturetogive2.61g of a brown oil (N2/N1isomer = 75:25 based on HPLC analysis). The crude is chromatographed(elutionsystemhexane/ethylacetate3:1)togive1.4gofN2isomer 185 (61%yield)and710mgofN1isomer 186(31%yield)ascolorlessoils. Compoundcharacterizationdata: N1Isomer( 186 )

N N H 2 N N 3 1 11 12 N CH3 4 5 O O 6 7 10 8 9

TLC: Rf(hexane/AcOEt4:1)=0.08 ;HPLC: 7.08min; UV(EtOH):λmax ,nm(ε): 258

,((CH 3)ע ,CH)), 2960 ( w)ע ,CH)), 2996 ( w)ע ,CH)), 3034 ( w)ע ,IR: ν 3056 ( w ;(21) ,CO)), 751( m,γ(CH)ע,CN)), 1110( m)ע,C=C)), 1414( s)ע,C=O)), 1468( w)ע,s )1703 1 1 Ph), 704( w,γ(Ph))cm ; HNMR (400MHz, d6DMSO,300K)Rotamers(4:3):δ=

2.02( m,2H,HC3),2.17( m,1H,HC2), 2.32( m,1H,HC2),3.54( m,2H,HC4),3.81( s,

3H,HC12 ,rotamers4:3,minorrotamer),4.10( s,3H,HC12 ,majorrotamer),4.90( m,

2H,HC6,minorrotamer),5.01( m,2H,HC6,majorrotamer),5.21( m,1H,HC1),6.99

(m,2H,Ar),7.33( m,3H,Ar);(400MHz, d6DMSO,394K):δ=2.02( m,2H,HC3),

2.18( m,1H,HC2), 2.37( m,1H,HC2),3.60( m,2H,HC4),3.96( br ,3H,HC12 ),4.96

245 Chapter5.ExperimentalPart

13 (m,2H,HC6),5.19( m,1H,HC1),7.18( br ,2H,Ar),7.29( m,3H,Ar); CNMR (125

MHz, d6DMSO,300K)Rotamers:δ=23.1,24.1(CH 2,C 3),31.1,32.2(CH 2,C 2),33.3,

33.7(CH 3,C 12 ),46.3,46.8(CH 2,C 4),49.7,50.2(CH,C 1),66.2,66.3(CH 2,C 6),127.5,

127.9(CH,Ar),127.9(CH,C 10 ),128.3,128.4(CH,Ar),136.3,136.7(Cq,C 7),153.2, + 154.0(Cq,C 5),156.3,156.7(Cq,C 11 ); MS: m/z 288[MH] . N2Isomer( 185 )

CH3 N N 12' 2' H N N 3' 1' 11' N O 4' 5' O 6' 7' 8' 9' 10'

TLC: Rf(hexane/AcOEt4:1)=0.31 ;HPLC: 8.03min; UV (MeOH):λ max ,nm(ε): 258 ,CH)),2881( w)ע,CH)),2957( w)ע,CH)),3033( w)ע,IR:ν3064( w ;(418)205,(6) C=C)),1412)ע,C=C)),1447( m)ע,C=C)),1498( w)ע,C=O)),1586( w)ע,CH)),1704( s)ע CO)),741( w,γ(CH,Ph)),699( w,γ(Ph)cm 1; 1HNMR (400)ע,CN)),1116( s)ע,s)

MHz, d6DMSO,300K)rotamers(1:1):δ=1.85( m,1H,HC2’ ),1.92( m,2H,HC3’ ),

2.30( m,1H,HC2’ ),3.50( m,2H,HC4’ ),4.27,4.30( s,3H,HC12’ ),4.95( m,2H,HC6’ ), 3 5.17( m, J1’,2’ =8.0Hz,1H,HC1’ ),7.01( m,1H,HC10’ ),7.30( m,4H,HC8’,9’ );(400

MHz, d6DMSO,394K):δ=1.97( m,3H,HC2’,3’ ),2.33( m,1H,HC2’),3.54( m,2H,H

C4’ ),4.23( s,3H,HC12’ ),5.00( m,2H,HC6’ ), 5.18( br ,1H,HC1’ ),7.21( m,5H,H 13 C8’,9’,10’ ); CNMR (125MHz, d6DMSO,300K)rotamers(1:1):δ=22.7,23.5(CH 2,

C3’ ),31.8,32.8(CH 2,C 2’ ),39.5(CH 3,C 12’ ),46.2,46.7(CH 2,C 4’),52.5,53.0(CH,C 1’ ),

65.5,65.9(CH 2,C 6’ ),127.0,127.5(CH,Ar),127.6,127.8(CH,C 10’ ),128.2,128.4(CH,

Ar),136.8,136.9(Cq,C 7’ ),153.5,153.8(Cq,C 5’ ),167.7,167.9(Cq,C 11’ ); MS: m/z 288 + + [MH] ,244[MHCO 2] .

246 Chapter6.References

5.3. Organocatalysis

5.3.1. Reagents and Solvents

Allchemicalswereobtainedeitherfromcommercialsuppliersorinternalsources andusedwithoutfurtherpurificationunlessotherwisestated.Allreactionswerecarried out under an atmosphere of nitrogen or argon. All the products were satisfactorily characterizedbymeltingpoint,TLC,UV,IR, 1Hand 13 CNMR,MS,HRMSandwhen possible,comparisonoftheiranalyticaldatahasbeenmadewithavailableliteraturedata. 5.3.1.1. Reagents Reagent Molecular MW Quality Formula (g/mol)

Aceticacid C4H4O2 60.05 Fluka;≥96%

(R)(+)NBenzylα C15 H17 N 211.30 Aldrich;98% methylbenzylamine

CesiumhydroxideMonohydrate CsHO.H 2O 167.93 Fluka;≥95.0%(T)

Cyclohexanone C6H10 O 98.15 Fluka;≥99.5%(GC)

3,4Dihydroxy3cyclobutene1,2 C4H2O4 114.6 Fluka;≥97.0%(NT) dione

(s)()α,αDiphenylprolinol C17 H19 NO 253.35 Lancaster;98% Hydrochloricacid HCl 36.45 Fluka; 2N standardsolution

Isovaleraldehyde C5H10 O 86.14 Fluka;≥98%

αMethylstyrene C9H10 118.18 Fluka;≥98%(GC)

Ninhydrin C9H6O4 178.14 Fluka;≥95.0%(UV)

trans βNitrostyrene C8H7NO 2 149.15 Fluka;≥98.0%(GC) Palladiumoncarbon Pd 106.4 Engelhard4505;Pd/C10%

Palladiumacetate (CH 3CO 2)2Pd 224.51 Aldrich;99.98%

2Phenylpropionaldehyde C9H10 O 134.18 Aldrich;98%

Potassiumcarbonate K2CO 3 138.27 Fluka;≥99%(AT) Potassiumhydroxide KOH 56.11 Fluka;≥86%(T)

DProline C5H9NO 2 115.13 Fluka;≥99%(NT)

LProline C5H9NO 2 115.13 Fluka;≥99.5%(NT)

Saccharin C7H5NO 3S 183.18 Fluka;≥99.0%(T) Sodiumhydroxyde NaOH 40.00 Fluka;≥98%(T) Fluka;solution2N

247 Chapter6.References

Sodiummethylate CH 3ONa 54.02 Fluka;95%

Sulfuricacid H2SO 4 98.08 Fluka;95/97%(T)

Trifluoroaceticacid C2F3O2H 114.09 Fluka;≥98.0%(T) 5.3.1.2. Solvents Solvents Quality Acetonitrile Merck;forLC ARMARChemicals; d3Acetonitrile99.5Atom%D nButanol Aldrich; ≥99.5% tert Butanol Fluka; ≥99%(GC) Chloroform Fluka; ≥99.5%(GC) ARMARChemicals;CDCl 3100Atom%D,stab.withAg Dichloromethane Merck;foranalysis Fluka;99.5%(GC) Diethylether Fluka;puriss.overmolecularsieves Dimethylsulfoxide Fluka;99.5%(GC) ARMARChemicals; d6DMSO99.9Atom%D Ethanol Fluka;absolute, ≥99.8%(V/V)(GC) Ethylacetate Fluka;99.5% Hexane Fluka;≥99.0%(GC) Methanol Fluka;foranalysis Dichloromethane Fluka;puriss.overmolecularsieves Tetrahydrofuran Fluka;puriss.p.a., ≥99.5%(GC)

248 Chapter6.References

5.3.2. Synthesis of Pyrrolidine-Tetrazole Derivatives

5.3.2.1. Synthesisof Nalkylatedpyrrolidinetetrazolesandtheirsalts

2t-Butyl5(S)pyrrolidine2yl2Htetrazole(243)and( R)enantiomer(236) H tBuOH H N N H SO 2 4 H N N CF COOH N N 3 N N CH2Cl2 N N H H 114 243 CASRegistryNumber 920748181 MolecularFormula C9H17 N5 MolecularWeight 195.26g/mol V. Aureggi, G. Sedelmeier, Novartis Pharma AG, 2007 , WO AnalysisRef. 2007/009716 A100mL,threeneckedroundbottomedflask,ischargedat0°Cwith( S)5pyrrolidine 2yl1Htetrazole 114 (5.56g,40mmol)andtrifluoroaceticacid(34.2mL,444mmol). Then sulfuric acid (2.6 mL, 95 97 %) and tert butanol (5.92 g, 80 mmol) in dichloromethane(8mL)areadded.Themixtureisstirredatroomtemperatureoverthe night.Themixtureisquenchedwithicewater(20mL),andtheproductisextractedthree times with dichloromethane (20 mL portion). The aqueous phase is treated with solid potassiumcarbonateuntilpH8.5andreextractedtwice with dichloromethane (20 mL portion).ThecombinedorganicphaseiswashedthreetimeswithNaOH(0.5N,25mL portion).Thesolventisremovedtogive7.34gofthepureproductasayellowoil(94% yield).Thereactiongavethesameyieldalsowiththe( R)enantiomer. Compoundcharacterizationdata: 7 2 3 H N N 6 4N 1 5 N N H pKa=8.1; TLC: Rf( nBuOH/H 2O/AcOH3:3:1,ninhydrin)=0.44; Opticalrotation:

25 ,asim (CH 3)),2960( sע,R)enantiomer: [α ]D =+7.2°(inMeOH,c=1.08);IR:ν2982( s)

((CH)),1500( w,tetrazole)),1478( s,tetrazole)),1461( w,tetrazole)),1372( s,δ(CH 3)ע 1 1 cm ; HNMR (400MHz,CDCl 3):δ=1.69( s,9H,HC7),1.9( m,3H,HC2,3 ),2.22( m,

249 Chapter6.References

3 1H,HC2),2.39( br ,NH),2.97( m,1H,HC4),3.15( m,1H,HC4),4.45( dd , J1,2 =7Hz, 13 1H,HC1,); CNMR (125MHz, d6DMSO):δ=25.2(CH 2,C 3),28.7(CH 3,C 7),31.8

(CH 2,C 2),46.3(CH 2,C 4),53.1(CH,C 1),63.1(Cq,C 6),168.5(Cq,C 5); MS:m/z 218 + + + + [M+Na] , 196 [MH] , 70 [C 4H8N] ; HRMS: calc’d for [MH] = 196.1557, found 196.1557(M(ppm)=0.1),calc’dfor[M+Na] + =218.1376,found218.1376(M(ppm) =0.2). (R )2(2t-Butyl2Htetrazol5yl)pyrrolidiniumtrifluoroacetate(244)

H N N CF3COOH H N N CH Cl N N 2 2 NH r.t.,5min N N N H H TFA 243 244

CASRegistryNumber 920748330 MolecularFormula C11 H18 F3N5O2 MolecularWeight 309.28g/mol V. Aureggi, G. Sedelmeier, Novartis Pharma AG, 2007 , WO AnalysisRef. 2007/009716 A10mLroundbottomedflask,ischargedatroomtemperature,with2tertbutyl5(R) 2pyrrolidine2yl2Htetrazole 243 (390mg,2mmol)indichloromethane(2mL),then trifluoroaceticacid(228mg,2mmol)isadded.Themixtureisstirredfiveminutesat room temperature and then the solvent is removed to obtain 615 mg of product as a browncrystallinematerialin≥99%yield.

Compoundcharacterizationdata: 7 2 H N 3 N 6 1 5 4 N N N H H CF3COO mp: 8790°C; TLC: Rf( nBuOH/H 2O/AcOH3:3:1,ninhydrin)=0.43; UV (EtOH):

,C=O)ע,NH)),1658( s)ע , CH)),2559( brm)ע,λmax ,nm(ε): 204(2860);IR: ν2988( m

TFA)),1508( w,tetrazole),1375( m,δ(CH 3)),1202( s,TFA),1184( s,TFA),1136( m, 1 1 TFA),836( w,TFA),724( s,TFA),cm ; HNMR (400MHz, d6DMSO):δ=1.71( s,

9H,HC7),2.10( m,2H,HC3),2.21( m,1H,HC2),2.44( m,1H,HC2),3.33( m,2H,H 3 13 C4),4.49( dd , J1,2 =7.8Hz,1H,HC1),9.46( br ,2H,NH 2); CNMR (100MHz, d6

250 Chapter6.References

DMSO):δ=23.6(CH 2, C 3),29.1(CH 3,C 7),29.5(CH 2,C 2),45.6(Cq,C 4),53.4(CH, + + C1),64.8(Cq,C 5),162.3(Cq,C 5); MS: m/z 196[MHTFA] ,140[MHtBuTFA] ; X Ray: thestructurewasconfirmedbyXrayanalysis(SeeXraydiscussion;Chapter4). (R)2(2t-Butyl2Htetrazol5yl)pyrrolidiniumchloride(245)

H H N HCl N N N CH Cl N N N 2 2 N N H N r.t.,5min H H Cl 236 245 CASRegistryNumber 920748205 MolecularFormula C9H18 ClN 5 MolecularWeight 231.71g/mol V. Aureggi, G. Sedelmeier, Novartis Pharma AG, 2007 , WO AnalysisRef. 2007/009716 A5mLroundbottomedflask,ischargedat0°C,with2tertbutyl5(R) 2pyrrolidine2 yl2Htetrazole(195mg,1mmol)indichloromethane(2mL)andHCl(2N,0.5mL,1 mmol). The mixture is stirred five minutes at room temperature and the solvent is removedtoobtain232mgofthedesiredproductasapinkcrystallinematerialin≥99% yield.

Compoundcharacterizationdata:

1 N N 6 7 2 H N 3 N 5 N+ 4 H H Cl mp: 160164°C,degradationstartingat136°C; TLC: Rf( nBuOH/H 2O/AcOH3:3:1 ninhydrin)=0.44;IR: ν2984( s,ν(CH)),2940( s,ν(CH),2821( s,ν(CH)),2553( brs ,

ν(CH)),1515( w,tetrazole),1456(m,tetrazole),1515( w,tetrazole),1375( s, δ(CH 3)) 1 1 cm ; HNMR (600MHz, d6DMSO):δ=1.75( s,9H,HC7),2.23( m,3H,HC2,3 ),2.43

(m,1H,HC2),3.31( m,2H,HC4),4.48( br ,1H,HC1),9.40( br ,1H,NH),10.30( br , 13 1H, NH); C NMR (150 MHz, d6DMSO): δ = 23.3 (CH 2, C 3), 29.2 (CH 3, C 7), 30.0

(CH 2,C 2),45.1(CH 2,C 4),52.9(CH,C 1),64.5(Cq,C 6),161.7(Cq,C 5); MS: m/z 196 [MHCl] +.

251 Chapter6.References

2(1Methyl1phenylethyl)5 -(R) pyrrolidine2yl2Htetrazole(235)

H H N CF3COOH N N + N N CH2Cl2 N H HN N r.t.,3d H N N 115 246 235 CASRegistryNumber 920748249 MolecularFormula C14 H19 N5 MolecularWeight 257.33g/mol V. Aureggi, G. Sedelmeier, Novartis Pharma AG, 2007 , WO AnalysisRef. 2007/009716 A100mL,threeneckedroundbottomedflaskischarged,atroomtemperatureunderan argon atmosphere, with R5pyrrolidine2yltetrazole 115 (4.16 g, 30 mmol) and trifluoroacetic acid (4 mL) to obtain a yellow solution. The solution is diluted with dichloromethane (20 mL) and then αmethylstirene (4.55 mL, 35 mmol) are added at room temperature, in three portion over a period of ten minutes. The homogeneous yellow mixture is stirred for three days. The mixture is transferred into a separatory funnelandwashedfourtimeswithNaOH(1N,20mLportion)andoncewithwater(20 mL)toremovethetrifluoroaceticacid.Theorganicphaseisevaporatedtogiveanoil whichcrystallizebystandingtwentyminutesatroomtemperature.Thewhitecrystalline materialiswashedwithasmallamountofhexanetoremovetheexcessofmethylstyrole, andthenrecrystallizedfrommethanol/ethylacetate1:3togivethepureproductasa whitecrystallinematerial(7.10g,92%yield). Compoundcharacterizationdata: 7 9 6 10 N N 8 2 H N 11 3 N 1 5 NH 4 mp: 3840°C; TLC: Rf( nBuOH/H 2O/AcOH3:3:1,ninhydrin)=0.5;HPLC: 4.80

25 25 min; Opticalrotation: [α ]D =+4.4°(inMeOH,c=1.00),[α ]D =+24.9°(inCH 2Cl 2,c=

,((CH)ע ,CH)),3010( m)ע ,CH)),3061( w)ע ,NH)),3091( w)ע ,IR: ν3267( w ;(1.00

,sim (CH 3)),19621677( wע ,CH)),2863( s)ע ,CH)),2959( s)ע ,CH)),2984( s)ע ,s )2992 ,C=C)),1367( s)ע ,C=C)),1448( s)ע ,C=C)),1497( s)ע ,overtonesγ(CH,Ph)),1600( w 1 1 =Ph))cm ; HNMR (500MHz, d6DMSO):δ)ע ,δ(CH 3)),766( s,γ(CH,Ph)),697( s

1.83( m,3H,HC2,3 ),2.09(s,6H,HC7),2.10( m,1H,HC2),2.75( br ,1H,NH),2.27( m,

252 Chapter6.References

3 1H),2.87( m,2H,HC4),4.36( dd , J 1,2 =7.6,7.8Hz,1H,HC1),7.07( m,2H,HC9), 13 7.34( m,3H,HC10,11 ); CNMR (150MHz, d6DMSO):δ=25.3(CH 2,C 3),28.7(CH 3,

C7),31.3(CH 2,C 2),46.3(CH 2,C 4),53.2(CH,C 1),67.8(Cq,C 6),124.6(CH,C 9),127.6 + (CH, C 11 ), 128.7 (CH,C 10 ), 144.2 (Cq, C 8), 168.8 (Cq, C 5); MS: m/z 258 [MH] , 140 [MHCumyl] +; HRMS: calc’d for [MH] + = 258.1713, found 258.1712 (M (ppm) = 0.4); XRay: the structure was confirmed by Xray analysis (See Xray discussion; Chapter4). 2[(1Methyl1phenylethyl)2Htetrazol5yl]pyrrolidiniumsaccharinate(248) H O N O N S H N N CH2Cl2 N NH + N H H N N O H N N N O O S O 247 235 248 CASRegistryNumber 920748283 MolecularFormula C21 H24 N6O3S MolecularWeight 440.52g/mol V. Aureggi, G. Sedelmeier, Novartis Pharma AG, 2007 , WO AnalysisRef. 2007/009716 A 10 mL round bottomed flask is charged with 2(methyl1phenylethyl)5(R) pyrrolidine2yl2Htetrazole(128mg,0.5mmol),and obenzoicacidsulfimide(91mg, 0.5 mmol) in dichloromethane (2 mL) to obtain a colorless solution. The solvent is removedtoobtainacolorlessoilwhichisdissolvedindichloromethane(0.5mL)and diethyl ether (1 mL). The product crystallized after standing at room temperature for threehoursintoanopenflask.Thewhitecrystallinematerialisfiltered,andwashedwith diethylether/dichloromethane(3:1,1mL)togive110mgofproduct.Themotherliquor isleadstandingoverthenightintoaclosedflask.Theproductisfilteredtogive110mg assecondcrop.

253 Chapter6.References

Compoundcharacterizationdata: 3 2 H 11 5 N 6 4 N N 1 7 8 H H N N O 9 N O 10 S 13 14 O 18 12 15 16 C)ע ,mp:108111°C; UV (EtOH):λ max ,nm(ε): 264(204),201(6130); IR: ν2993( m C=C)),1458)ע ,C=O)),1587( m)ע ,NH)),1651( m)ע , CH)),2558( brm)ע ,H)),2958( m ,asim (SO 2)), 770 ( s, γ(CHע ,C=C)), 1335 ( m, δ(CH 3)), 1152 ( s)ע ,C=C)), 1448 ( m)ע ,m) 1 1 Ph)),700( s,γ(Ph))cm ; HNMR (500Mz, d6DMSO):δ=2.13( s,6H,HC11 ),2.07 3 (m,2H,HC3),2.31( m,2H,HC2),3.35( m,2H,HC4),5.04(dd , J 1,2 =8.0Hz,1H,H

C1),7.13( m,2H,HC8),7.30( m,1H,HC10 ),7.34( m,2H,HC9),7.59( m,3H,HC1416 ), + 13 7.66( m,1H,HC12 ),9.48( br ,2H,NH 2 ); CNMR (150MHz, d6DMSO):δ=23.1

(CH 2,C 3),28.7(CH 3,C 11 ),28.9(CH 2,C 2),45.3(CH 2,C 4),53.2(CH,C 1),69.0(Cq,C 6),

119.2(CH,Ar),122.6(CH,Ar),124.7(CH,C 8),127.9(CH,C 10 ),128.6(CH,C 9),131.2 (CH,Ar),131.7(CH,Ar),134.5(Cq,Ar),143.5(Cq,Ar),145.0(Cq,Ar),161.8(Cq, + + C17 ), 167.5 (Cq, C 5); MS: m/z 258 [M B] , 140 [M BCumyl] , 182 [M A] ; XRay: the structurewasconfirmedbyXrayanalysis(SeeXraydiscussion;Chapter4). 1Isopropyl5(R)pyrrolidine2yl1Htetrazole(237) H N N N H Pd/C10% H N N N 2, N EtOH N O N N O r.t.,7h H

162 237 CASRegistryNumber 920748421 MolecularFormula C8H15 N5 MolecularWeight 181.24g/mol V. Aureggi, G. Sedelmeier, Novartis Pharma AG, 2007 , WO Ref. 2007/009716 (R)1(1isopropyl1Htetrazol5yl)pyrrolidine1carboxylic acid benzyl ester 162 (2.8 g,8.89mmol)andpalladiumoncharcoal(0.3g,10wt%)inethanol(60mL)arestirred under hydrogen at room temperature for seven hours. The catalyst is removed by 254 Chapter6.References filtrationthroughceliteandtheceliteiswashedsequentiallytwicewithethanol(30mL portion) and twice with dichloromethane (20 mL). The filtrate is concentrated under reducedpressure(45°C,170to30mbar)anddriedundervacuumatroomtemperature fortwotofivehours(3.7 •101mbar)toaffortthedesiredproductasayellowoilwhich crystallizedashydrochlorideafterstandingatroomtemperature(1.69g,88%yield).

Compoundcharacterizationdata: 3 2 H N N 4 N 1 5 N H N 6 7 mp: 178180 °C; TLC: Rf ( nBuOH / H 2O / AcOH 3:3:1, ninhydrin) = 0.40; Optical

25 rotation: [α ]D =+5.2°(inMeOH,c=0.80); IR: ν32002800( brs , ν(NH)),2977( s,

,(sim (CH 3)),1505 ( w,tetrazole),1453( s, tetrazoleע ,CH)), 2880 ( s)ע ,CH)), 2954 ( s)ע 1 1 3 1371( s,δ(CH 3))cm ; HNMR (500MHz, d6DMSO)Tautomers(1:1):δ=1.48( d, J 3 6,7 =6.5Hz,6H,HC7),1.51( d,HC7, J6,7 =6.5Hz),1.85( m,1H,HC3),1.96( m,1H, 3 HC3),2.20( m,2H,HC2),3.01( m,1H,HC4),3.07( m,1H,HC4),4.77( dd , J1,2 =7.5 3 13 Hz,1H,HC1),5.04( sep , J6,7 =6.5Hz,1H,HC6),7.19( br ,1H,NH); CNMR (150

MHz, d6DMSO):δ=22.3(CH 3,C 7),22.4(CH 3,C 7),24.8(CH 2,C 3),30.0(CH 2,C 2),

46.0 (CH 2, C 4), 50.3 (CH 2, C 6), 50.8 (CH, C 1), 154.0 (Cq, C 5); HRMS : calc’d for [M+H] + =182.1400,found182.1400(M(ppm)=0.1),calc’dfor[MNa] + =204.1220, found204.1219(M(ppm)=0.3); XRay: thehydrochloridestructurewasconfirmed + byXrayanalysiswithNH 2 everytwomolecules(SeeXraydiscussion;Chapter4). 2Isopropyl5(R)pyrrolidine2yl2Htetrazole(238)

H N N H N N H2,Pd/C10% N N N O EtOH,r.t.,4h N N O H N

161 238 CASRegistryNumber 920748261 MolecularFormula C8H15 N5 MolecularWeight 181.24g/mol Ref. V. Aureggi, G. Sedelmeier, Novartis Pharma AG, 2007 , WO

255 Chapter6.References

2007/009716 (R)2(2Isopropyl2Htetrazol5yl)pyrrolidine1carboxylic acid benzyl ester 161 (9.0 g,28.53mmol)andpalladiumoncharcoal(0.9g,10 wt %) in ethanol (180 mL) are stirredunderhydrogenatroomtemperatureforfourhours.Thecatalystisremovedby filtrationthroughceliteandtheceliteiswashedsequentiallytwicewithethanol(50mL portion) and twice with dichloromethane (30 mL portion). The filtrate is concentrated under reduced pressure (45 °C, 170 to 30 mbar) and dried under vacuum at room temperature for two to five hours (3.7 •10 1 mbar) to affort the desired product as a yellowoil(5.1g,98%yield).

Compoundcharacterizationdata:

3 2 H N N 6 7 4 N 1 5N NH H H 25 TLC: Rf( nBuOH/H 2O/AcOH3:3:1,ninhydrin)=0.42; Opticalrotation: [α ]D =+6.6

25 25 °(inMeOH,c=1.00), [α ]D =1.6°(inDMSO,c=1.00), [α ]D =+15.8°(inCH 2Cl 2,c ,((CH)ע ,UV (EtOH):λ max ,nm(ε): 203(224);IR: ν3334( brm , ν(NH)),2978( s ;(1.00=

,sim (CH 3)),1499( m,tetrazole),1458( s,tetrazole),1372( sע ,CH)),2875( s)ע ,w )2960 1 1 3 δ(CH 3))cm ; HNMR (500MHz, d6DMSO):δ=1.55( d, J6,7 =6.8Hz,6H,HC7),

1.85( m,3H,HC2,3 ),2.15( m,1H,HC2),2.90( m,2H,HC4),4.33( br ,NH),4.43( dd , 3 3 13 J1,2 =7.3,6.8Hz,1H,HC1),5.07( sep , J6,7 =6.7Hz,1H,HC6); CNMR (125MHz, d6DMSO): δ = 21.8 (CH 3, C 7), 25.3 (CH 2, C 3), 31.2 (CH 2, C 2), 46.2 (CH 2, C 4), 53.1 + + (CH, C 1), 56.4 (CH, C 6), 168.3 (Cq, C 5); MS: m/z 182 [MH] ,113[MHC4H7N] , 70 + + [C 4H8N] ;HRMS: calc’dfor[M+H] =182.1400,found182.1400(M(ppm)=0.3), calc’dfor[M+Na] + =204.1220,found204.1219(M(ppm)=0.1). 2Isopropyl5(R)pyrrolidine2yl2Htetrazolesquaricacidsalt(250)

H O OH N N H N CH Cl THF + N 2 2, N N N N N r.t. H H O OH H N O OH

O O 249 238 250

256 Chapter6.References

MolecularFormula C12 H17 N5O4 MolecularWeight 295.31g/mol A 5 mL round bottomed flask is charged with 2isopropyl5(R)pyrrolidine2yl2H tetrazole 238(181mg,1mmol)and3,4dihydroxy3cyclobutene1,2dione (114mg,1 mmol)inTHF(1mL)anddichloromethane(1mL)toobtainabrown solution.After standingoverthenightatroomtemperature,amixture1:1ofmethanolandchloroform (1mL)areaddedtothebrownoil.Diethylether(1.5mL)isaddedatroomtemperaturen andtheproductcrystallizedafterstandingatroomtemperatureforonedayintoanopen flaskasabrownsolide.

Compoundcharacterizationdata: 7 3 2 H N 4 N 6 N 1 5 N H H N O 8 OH 11 9 O 10 O mp :110112°C; UV :c=0.0098g/LinMeOH:a)λ max 258(ε=20604),b)λ max 244nm

25 (ε=22089); Opticalrotation : [α ]D =+12.8°(inMeOH,c=1.00);IR :ν 3511( brs ,ν (OH), 3393 ( brm , ν(NH), 2983 ( brs , ν(CH), 1648 (s, ν(C=O)), 1562 ( brs , ν(C=C), 1 1 3 tetrazole)cm ; HNMR (500MHz, d6DMSO):δ=1.58( d, J6,7 =6.8Hz,6H,HC7),

2.08( m,2H,HC3),2.26( m,1H,HC2),2.45( m,1H,HC2),3.35( m,2H,HC4),5.02 3 3 (dd , J1,2 =7.8,8.0Hz,1H,HC1),5.16( sep , J6,7 =6.8Hz,1H,HC6),8.31( br ,OH), 13 9.45 ( br , NH), 10.09 ( br , 1H, NH); C NMR (150 MHz, d6DMSO): δ = 21.6, 21.8

(CH 3,C 7),23.2(CH2,C 3),29.0(CH 2,C 2),45.3(CH 2,C 4),53.1(CH,C 1),56.7(CH,C 6), + + 161.8(Cq,C 5),193.8(Cq,C 811 );MS:m/z 182[M B+H] ,113[M AH] ,182[M A] ; X Ray :thestructurewasconfirmedbyXrayanalysis(SeeXraydiscussion;Chapter4).

257 Chapter6.References

5.3.2.2. Synthesisofpyrrolidinetetrazolemetalsalts

(R)5Pyrrolidine2yltetrazolesodiumsalt(239) MethodA:

N N N N Na H N H N NaOCH3 N N H CH OH NH 3 NH 115 239 CASRegistryNumber 920748227 MolecularFormula C5H8N5Na MolecularWeight 161.14g/mol V. Aureggi, G. Sedelmeier, Novartis Pharma AG, 2007 , WO Ref. 2007/009716 A25mLroundbottomedflaskischarged,atroomtemperature,with( R)5pyrrolidine2 yltetrazole 115 (417mg,3mmol)inmethanol(6mL).Sodiummethylate(170mg,3 mmol)areaddedatroomtemperatureandtheresultingsolutionisstirredonehour.The solventisremovedand theproductisdriedin vacuum at room temperature for three hourstogiveawhitecrystallinematerialinquantitativeyield. MethodB:

N N N N Na H N NaOH H N N N H CH OH NH 3 NH 115 239

A10mLflaskischargedatroomtemperature,with( R)5pyrrolidine2yltetrazole 115 (417mg,3mmol)dissolvedinNaOH(1N,3mL)andmethanol(1mL).Thecolorless solution is stirred for twenty minutes at room temperature and then the solvent is removed to give 484 mg of white crystalline material. The product is redissolved in methanol(1.5mL)at60°C.Thecolorlesssolutioniscooledat0°Candtreatedwith diethylether (2.5 mL). The product crystallized after standing three hours at room temperatureinanopenflasktogiveawhitecrystallinematerialin≥99%yield. Compoundcharacterizationdata: 3 2 H 5 N 4 N N 1 H N N Na

258 Chapter6.References

mp: 6264 °C; TLC: Rf (nBuOH / water/ AcOH 3:3:1, ninhydrin) = 0.26; Optical

25 ,((CH)ע ,CH)),2963( s)ע ,rotation: [α ]D =+17.9°(inMeOH,c=0.66);IR:ν2981( s

,NH)),1606( brs ,tetrazole),1455( s,tetrazole),1440( s,tetrazole),1422( s)ע , brs )2587 1 1 tetrazole),cm ; HNMR (600MHz, d6DMSO):δ=1.9( m,3H,HC2,3 ),2.17( m,1H, 3 13 HC2),3.10( m,2H,HC4),4.55( dd , J1,2 =7.3,7.5Hz,1H,HC1); CNMR (150MHz, d6DMSO):δ=24.0(CH 2,C 3),31.0(CH 2,C 2),45.0(CH 2,C 4),54.7(CH,C 1),166.3(Cq, + C5); MS:m/z 140[MHNa] ; HRMS: calc’dfor[MNa] =138.0785,found138.0785 (M(ppm)=0.2). (R)5Pyrrolidine2yltetrazolepotassiumsalt(240)

N N N K N H H N KOH N N N H CH3OH NH NH 115 240 CASRegistryNumber 920748307 MolecularFormula C5H8N5K MolecularWeight 177.26g/mol V. Aureggi, G. Sedelmeier, Novartis Pharma AG, 2007 , WO Ref. 2007/009716 A10mLflaskischargedatroomtemperature,with( R)5pyrrolidine2yltetrazole(347 mg,2.5mmol),andKOH(140mg,2.5mmol)inmethanol(4mL).Thecolorlesssolution isstirredfortwentyminutesatroomtemperatureandthenthesolventisremovedtogive awhitecrystallinematerial(440mg).Theproductisredissolvedinofmethanol(1.5 mL) at 60 °C. The colorless solution is cooled at room temperaure and treated with diethylether(2.5mL).Thesolutioniscooledat0°Candtheproductcrystallizedafter standing in an open flask three hours at room temperature to give a whie crystalline materialin≥99%yield. Compoundcharacterizationdata: 3 2 H 5 N 4 N N 1 H N N K mp: 5862 °C; TLC: Rf (nBuOH / water/ AcOH 3:3:1, ninhydrin) = 0.24; Optical

25 C)ע , CH)),2879( brm)ע , rotation: [α ]D =+22.7°(inMeOH,c=0.99);IR: ν2975( brs

(NH)),1489( w,tetrazole),1429( brs ,tetrazole),1410( brs ,tetrazole)ע , H)),2581( brw

259 Chapter6.References

1 1 cm ; H NMR (600MHz, d6DMSO): δ = 1.69 ( m, 3H, HC2,3 ), 1.94 ( m, 1H, HC2), 3 13 2.66( m,1H,HC4),3.02( m,1H,HC4),4.09( dd , J1,2 =6.8Hz,1H,HC1); CNMR

(125MHz, d 6DMSO):δ=25.4(CH 2,C 3),32.5(CH 2,C 2),44.2(CH 2,C 4),54.9(CH, C1),173.5(Cq,C 5);HRMS: calc’dfor[MK] =138.0785,found138.0785(M(ppm) <0.1). (R)5Pyrrolidine2yltetrazolecesiumsalt(241)

N N N N Cs H N CsOH H N N N H H2O NH NH 115 241 CASRegistryNumber 920748363 MolecularFormula C5H8N5Cs MolecularWeight 217.06g/mol V. Aureggi, G. Sedelmeier, Novartis Pharma AG, 2007 , WO AnalysisRef. 2007/009716 A10mLflaskischarged,atroomtemperature,with( R)5pyrrolidine2yltetrazole115 (417mg,3mmol)dissolvedinwater(4mL),andwithcesiumhydroxidemonohydrate (504 mg, 3 mmol). The colorless solution is stirred for twenty minutes at room temperatureandthenthesolventisremovedtogive810mgofwhitecrystallinematerial. Theproductisredissolvedinmethanol(1.5mL)at50°C,andthecolorlesssolutionis treatedwithdiethylether(2.5mL).Thesolutionisfirstcooledat0°C,andtheproduct crystallizedafterstandinginanopenflaskthreehoursatroomtemperature.Theproduct isfilteredgive650mgofawhitecrystallinematerialin≥98%yield.

Compoundcharacterizationdata: 3 2 H 5 N 4 N N 1 H N N Cs mp:5558°C; TLC: Rf(nBuOH/water/AcOH3:3:1,ninhydrin)=0.25;IR:ν2975 , CH)),1537( brs ,tetrazole),1428( brs ,tetrazole),1408( brs)ע , CH)),2876( brm)ע , brs) 1 1 tetrazole)cm ; HNMR (400MHz, d6DMSO):δ=1.71( m,3H,HC2,3 ),1.94( m,1H, 3 13 HC2),2.70( m,1H,HC4),3.04( m,1H,HC4),4.12( dd , J1,2 =6.8Hz,1H,HC1); C

NMR (125MHz, d 6DMSO):δ=25.6(CH 2,C 3),32.7(CH 2,C 2),46.3(CH 2,C 4),54.8 (CH,C 1),164.0(Cq,C 5); HRMS: calc’dfor[MCs] =138.0785,found138.0785(M( ppm)=0.1).

260 Chapter6.References

(R)5Pyrrolidine2yltetrazolepalladium(II)complex(242) H N N N NH H N N N Pd(OAc) H N 2 Pd N H N THF,H2O H 50°C,1h N N N N N H 115 242

MolecularFormula C10 H18 N10 OPd MolecularWeight 400.74g/mol V. Aureggi, G. Sedelmeier, Novartis Pharma AG, 2007 , WO AnalysisRef. 2007/009716 A10mL,oneneckedroundbottomedflaskischarged,atroomtemperature,with( R)5 pyrrolidine2yltetrazole 115(139mg,1mmol)andpalladiumacetate(112g,0.5mmol) dissolvedinasolutionofTHF/water(1.5mL,2:1).Themixtureiswarmedonehour understirringat50°C.Theproductcrystallizedin≥98%yieldfromthesolventafter standingatroomtemperaturefortwohours.

Compoundcharacterizationdata: 2 H N 3 5 N 1 4 N N N H Pd H N N N N N H mp:268271°Cdecomposition; UV (EtOH):λmax ,nm(ε):288(48),204(2650); IR: ν ,CH)), 1507 ( w)ע ,CH)), 2876 ( w)ע ,CH)), 2955 ( m)ע ,NH)), 2989 ( m)ע , sbr ) 3132 1 1 tetrazole),1452( s,tetrazole),1404( s,tetrazole)cm ; HNMR (600MHz, d6DMSO):δ 3 =1.87( m,3H,HC2,3 ),2.44( m,1H,HC2),3.44( m,2H,HC4),4.51( dd ,1H, J1,2 =7.3 + 13 Hz HC1), 7.57 ( m, NH ); C NMR (150 MHz, d6DMSO): δ = 26.4 (CH 2, C 3), 31.0

(CH 2, C 2), 52.2 (CH 2, C 4), 56.9 (CH, C 1), 167.2 (Cq, C 5); XRay: the structure was confirmedbyXrayanalysis(SeeXraydiscussion;Chapter4).

261 Chapter6.References

5.3.3. Enamines Formation 5.3.3.1. Typicalproceduresfortheenamineformation

5.3.3.1.1. TP4:Typicalprocedurefortheenamineformation

H N N O H N N K2CO3 N N + N H N H H N N CH2Cl2 Scheme 140.Enamineformation A 25 mL, roundbottomed flask is charged, at room temperature, with ( R)tert butylpyrrolidine tetrazole (487 mL, 2.5 mmol) dissolved in dichloromethane (3 ml), potassiumcarbonate(691mg,5mmol)andthenisovaleraldehyde(0.37mL,4mmol)in dichloromethane(2mL).Themixtureisstirredatroomtemperaturefortwentyminutes, the potassium carbonate is filtered, the solvent and excess of isovaleraldehyde are removedwiththerotaryevaporatortogivetheproductasacolorlessoilin(673mg,≥99 %yield). 5.3.3.1.2. TP5: Typical procedure for the enamine formation: NMR tube experiment H O N H N N DMSO N H + N N N N H N N H Scheme 141.Equilibriumoftheenamineformation ANMRtubeischarged,atroomtemperature,with2tertbutyl5(S)pyrrolidine2 yl2Htetrazole (19.5 mg, 0.1 mmol) dissolved in dDMSO (0.5 ml) and with isovaleraldehyde(8.6ml,0.1mmol)inof dDMSO(0.3ml).

262 Chapter6.References

5.3.3.2. Enamineformationfromaldeydes

5{1[2Phenylprop1en1yl]pyrrolidine2yl}tetrazole(259)

H H H H O N N CH3 H H N N N N H N DMSO + N N + N N N N H3C H N N CH3

E Z 303 115 259a 259b

MolecularFormula C14 H17 N5 MolecularWeight 255.32g/mol TP5: Oneequivalentof2phenylpropionaldehydeandoneequivalentof2( R) (tetrazol5 yl)pyrrolidine 115 areusedina0.1mmolscaleexperiment.Themixtureischeckedvia HNMRafterfiveminutesandshows90%ofenamineformation(75%Eisomer,25% Zisomer).

Compoundcharacterizationdata: EIsomer( 259a) 3 2 H N NH 4 N 1 5 N N 8 6 H C 3 H 7 9 10 11 12 1 HNMR (400MHz, d6DMSO):δ=1.96( s,3H,HC8),2.08( m,3H,HC2,3 ),2.33( m, 3 1H,HC2 ),3.26( m,1H,HC4),3.68( m,1H,HC4),4.90( dd , J1,2 =7.5Hz, 1H,HC1),

6.42( s,1H,HC6),7.23( m,5H,HC1012 ). ZIsomer( 259b) 3' 2' H N NH 4' 12' N 1' 5' N N 7' 6' 11' 9' H 10' CH3 8'

263 Chapter6.References

1 HNMR (400MHz, d6DMSO):δ=1.87( s,3H,HC8’ ),2.08( m,3H,HC2’,3’ ),2.25( m, 3 1H,HC2’ ),3.09( m,1H,HC4’ ),3.26( m,1H,HC4’ ),4.73( dd , J1’,2’ =7.0,6.8Hz, 1H,

HC1’ ), 6.1( s,1H,HC6’ ),7.1 m,5H,HC10’12’ ). 2tert Butyl5{1[2phenylprop1en1yl]pyrrolidine2yl}2Htetrazole(260)

H O N H N N N CH H 3 N N H N Solvent N N N N + N N H3C + H NN H H

CH3

E Z 303 243 260a 260b

MolecularFormula C18 H28 N5 MolecularWeight 311.42g/mol Method1: TP5: Oneequivalentof2phenylpropionaldehydeandoneequivalentof2(S)tert butyl 5pyrrolidine2yl2Htetrazole 243 are used in a 0.09 mmol scale experiment in d6 DMSO.TheismixtureischeckedviaHNMRafterseventeenhoursandshows98%of enamineformation(51%Eisomer,49%Zisomer). Method2: TP5: Oneequivalentof2phenylpropionaldehydeandoneequivalentof2( S)tert butyl

5pyrrolidine2yl2Htetrazole 243areusedina0.09mmolscaleexperimentinCD 3CN. TheismixtureischeckedviaHNMRafterseventeenhoursandshows90%ofenamine formation(84%Eisomer,16%Zisomer).

Compoundcharacterizationdata: EIsomer( 260a)

3 2 H 14 N N 4 13 N 1 5 N 8 N H C 6 3 H 7 9 10 11 12

264 Chapter6.References

1 HNMR (400MHz, d6DMSO):δ=1.65( s,9H,HC14 ),1.95( s,3H,HC8),1.95( m, 3 3H,HC3),2.062.30( m,2H,HC2 ),3.043.63( m,2H,HC4),4.80( dd , J1,2 =7.0,7.3

Hz,1H,HC1), 6.44( s,1H,HC6),7.057.20( m,5H,HC1012 );(400MHz,CD 3CN):δ= 4 1.70( s,9H,HC14 ),2.02( d, J6,8 =1.2Hz,3H,HC8),2.102.36( m,4H,HC2,3 ),3.34 3 4 (m,1H,HC4),3.69( m,1H,HC4),4.78( dd , J1,2 =7.0,7.5Hz,1H,HC1), 6.41( d, J6,8

=1.2Hz,1H,HC6),7.107.29( m,5H,HC1012 ). ZIsomer( 260b)

3' 2' H 14' N N 4' 13' 12' N 1' 5' N N 7' 6' 11' 9' H 10' CH3 8' 1 HNMR (400MHz, d6DMSO):δ=1.68( s,3H,HC14’ ),1.86( s,3H,HC8’ ),1.731.95 3 (m,2H,HC3’ ),2.062.30( m,2H,HC2’ ),3.043.63( m,2H,HC4’ ),4.67( dd , J1’,2’ =7.0

Hz,1H,HC1’ ),6.11( s,1H,HC6’ ),7.057.20( m,5H,HC10’12’ );(400MHz,CD 3CN):δ 4 =1.73 ( s,9H,HC14’ ),1.92( d, J6’,8’ =1.0Hz,3H,HC8’ ),2.152.6 ( m,4H,HC2’,3’ ), 3 4 3.11( m,2H,HC4’ ),4.65( dd , J1’,2’ =7.0,7.3Hz,1H,HC1’ ), 6.12( d, J6’,8’ =1.0Hz,

1H,HC6’ ),7.107.29( m,5H,HC10’12’ ). (R,E)NBenzyl3methylN(1phenylethyl)but1en1amine(261) O CH3 CH3 CH2Cl2 H + N K2CO3 N H r.t.

213 304 261

MolecularFormula C20 H25 N MolecularWeight 279.43g/mol TP4: 1.67equivalents ofisovaleraldehyde areusedin3mmolscaleexperiment.The reactionisstirredforfivehoursatroomtemperaturetogiveamixtureofstartingamine anddesiredenamineasacolorlessoil(23%ofenamineby 1HNMR).

265 Chapter6.References

Compoundcharacterizationdata: 8 CH 3 6 13 12 7 9 14 1 N 10 15 2 11 3 4 5 1 3 3 HNMR (400Mz, d6DMSO):δ=0.82( d, J4,5 =6.7Hz,6H,HC5),1.40( d, J1,8 =7.0 3 2 Hz,3H,HC8),2.11( m, J4,5 =6.7Hz,1H,HC4), 3.81( d, J6,6’ =15.6Hz, 1H,HC6), 2 3 3 3.92( d, J6,6’ =15.6Hz, 1H,HC6’ ), 4.09( dd , J2,3 =13.8Hz, 1H,HC3),4.24( q, J1,8 = 3 7.0Hz, 1H,HC1),6.06( d, J2,3 =13.8Hz, 1H,HC2),7.21( m,10H,ArH). 5{1[(1 E)3Methylbut1en1yl]pyrrolidine2yl}tetrazole (262)

H N O NH H N NH DMSO N N H + N N N H N H

213 114 262

MolecularFormula C10 H17 N5 MolecularWeight 207.28g/mol TP5: One equivalent of isovaleraldehyde and one equivalent of 2( S) (tetrazol5yl) pyrrolidine 114 areusedina0.095mmolscaleexperiment.Themixtureischeckedvia HNMRafterfiveminutesandshows70%ofenamineconversion.

Compoundcharacterizationdata:

3 2 H H N N 4 N 1 5 N N 6 7 H 8 9 1 3 3 HNMR (400MHz, d6DMS):δ=4.05( dd , J6,7 =13.8Hz, 1H,HC7),4.67( dd , J1,2 = 3 8.1,8.8Hz, 1H,HC1),6.0( d, J6,7 =13.8Hz, 1H,HC6) 266 Chapter6.References

1[(1 E)3Methylbut1en1yl](S)proline(305) H O O O H DMSO N H + OH OH N H H 213 193 305

MolecularFormula C10 H17 NO 2 MolecularWeight 183.25g/mol TP5: One equivalent of isovaleraldehyde areusedin0.1mmolscaleexperiment.The mixtureischeckedviaHNMRafterfiveminutesandshows18%ofenamineformation. Compoundcharacterizationdata: 3 2 H O 4 N 1 9 OH 6 5 H 8 7 1 3 3 HNMR (400Mz, d6DMSO):δ=3.99( dd , J5,6 =13.8Hz,1H,HC5),6.04( d, J5,6 =

13.8Hz,1H,HC5) 2tert-Butyl5[( R)1(E)3methylbut1enyl)pyrrolidine2yl]2Htetrazole(264)

H N O N H K CO N N 2 3 NN + N H N CH Cl H H NN 2 2 213 236 264

MolecularFormula C14 H29 N5 MolecularWeight 263.39g/mol TP4: 1.6equivalentsofisovaleraldehyde areusedina2.5mmolscaleexperiment.The reactionisstirredfortwentyminutesatroomtemperaturetogive659mgofproductasa colorlessoilin≥99%yield.

267 Chapter6.References

Compoundcharacterizationdata:

3 2 H N 10 4 N N 1 9 11 N N 6 5 H

8 7

,CH), 1655 ( s)ע ,(sim (CH 3ע ,asim (CH 3)), 2869 ( sע , CH)), 2955 ( vs)ע ,IR: ν 3040 ( w 1 1 C=C)), 1372 ( s, δ(CH 3)), 936 ( m, δ(CH, C=C trans)) cm ; H NMR (400 Mz, d6)ע 3 DMSO):δ=0.85( d, J7,8 =6.5Hz,6H,HC8),1.66( s,9H,HC11 ),1.93( m,1H,HC3 ),

2.06( m,1H,HC7),2.10( m,2H,HC2,3 ),2.24( m,1H,HC2),2.96( m,1H,HC4),3.13 3 3 3 (m,1H,HC4),4.05( dd , J5,6 =13.8, J6,7 =7.0Hz,1H,HC6),4.57( dd , J1,2 =7.8,8.0 3 13 Hz,1H,HC1),6.00( d, J5,6 =13.8Hz,1H,HC5,); CNMR (125Mz, d6DMSO):δ=

23.5 (CH 2, C 3), 24.2 (CH 3, C 8), 28.7 (CH 3, C 11 ), 28.8 (CH, C 7), 31.0 (CH 2, C 2), 48.2

(CH 2,C 4),55.5(CH,C 1),63.3(Cq,C 10 ),107.2(CH,C 6),131.9(CH,C 5),167.1(Cq,C 9); + + + MS:m/z 264[MH] ,248[MCH 3] ,138[MtButyltetrazole] . 5[( R)1(E)3Methylbut1enyl)pyrrolidine2yl]2(1methyl1phenylethyl)2H tetrazole(263)

H N O N H N N K2CO3 N N + N H N H H N N CH2Cl2,r.t.,20min 213 235 263

MolecularFormula C19 H27 N5 MolecularWeight 325.46g/mol TP4: 1.67 equivalents of isovaleraldehyde are used in 1 mmol scale experiment. The reactionisstirredfortwentyminutesatroomtemperaturetogive326mgofproductasa colorlessoilin≥98%yield. Compoundcharacterizationdata:

3 2 10 H N 9 4 N N 115 11 N N 12 6 5 H 13 8 14 7

268 Chapter6.References

asim (CH 3)),2867ע , CH)),2954( vs)ע ,CH)),3030( w)ע ,CH)),3061( w)ע ,IR:ν3091( w

,((C=C)ע ,C=C)),1449( s)ע ,C=C)),1498( s)ע ,C=C)),1602( w)ע ,sim (CH 3)),1655( sע ,s) 1 1371( s,δ(CH 3)),936( m,δ(CH,C=Ctrans)),762( s, γ(CH,Ph)), 698( s, γ(Ph)cm ; 1 3 HNMR (400Mz, d6DMSO):δ=0.84( d, J7,8 =6.5Hz,6H,HC8),1.93( m,2H,H

C3),2.06( s,6H,HC10 ),2.06( m,1H,HC7),2.22( m,2H,HC2),2.96( m,1H,HC4), 3 3 3 3.12( m,1H,HC4),4.03( dd , J5,6 =13.8, J6,7 =7.0Hz,1H,HC6),4.57( dd , J1,2 =7.8, 3 13 8.0Hz1H,HC1),5.95( d, J5,6 =13.8Hz,1H,HC5); CNMR (125Mz, d6DMSO):δ

=23.3(CH 2,C 3),24.1,24.2(CH 3,C 8),28.6,28.7(CH 3,C 10 ),31.2(CH 2,C 2),48.2(CH 2,

C4), 55.4 (CH, C 1), 68.0 (Cq, C 9), 107.3 (CH, C 6), 124.4 (CH, C 12 ), 127.6 (CH, C 14 ), + 128.5(CH,C 13 ),131.7(CH,C 5),144.3(Cq,C 11 ),167.5(Cq,C 15 ); MS:m/z 326[MH] . (R,E)1Isopropyl5[1(3methylbut1enyl)pyrrolidine2yl]1Htetrazole(265)

H N O N H N CH2Cl2 N H + N N N N K2CO3 H N N 213 237 265

MolecularFormula C13 H25 N5 MolecularWeight 249.36g/mol TP4: Two equivalents of isovaleraldehyde are usedin1mmolscaleexperiment.The reactionisstirredfortwentyminutesatroomtemperaturetogive250mgofproductasan orangeoilin≥99%yield.

Compoundcharacterizationdata:

3 2 H N 4 N N 1 9 N N 6 5 10 7 11 8 1 3 HNMR (400MHz,CDCl 3):δ=0.81( m,6H,HC8),1.48( d, J10,11 =6.5Hz, 3H,H 3 C11 ),1.53( d, J10,11 =6.8Hz,3H,HC11 ),1.832.09( m,3H,HC2,3 ),1.942.09( m,1H, 3 HC7),2.35( m,1H,HC2),3.00(m,1H,HC4),3.33( m,1H,HC4),4.10( dd ,J 5,6 =13.8, 3 3 J 6,7 =7.0Hz,1H,HC6),4.66( dd , J1,2 =7.0,7.5Hz,1H,HC1),4.81( m,1H,HC10 , 3 3 13 J10,11 =6.5,6.8Hz),5.79( d, J5,6 =13.8Hz, 1H,HC5); CNMR (100MHz,CDCl 3):δ

269 Chapter6.References

=22.9(CH 3,C 8),23.8(CH 2,C 3),24.0(CH 3,C 11 ),29.4(CH,C 7),32.6(CH 2,C 2),50.5

(CH 2,C 4),51.0(CH,C 10 ),55.7(CH,C 1),111.5(CH,C 6),131.4(CH,C 6),154.9(Cq,

C9). (R,E)2Isopropyl5[1(3methylbut1enyl)pyrrolidine2yl]2Htetrazole(266)

O H H N N K CO N + N 2 3 N H N N N H N N CH2Cl2,r.t.,20min H 213 238 266

MolecularFormula C13 H23 N5 MolecularWeight 249.36g/mol TP4:2equivalentsofisovaleraldehyde areusedin1mmolscaleexperiment.Thereaction isstirredfortwentyminutesatroomtemperaturetogive250mgofproductasacolorless oilin≥99%yield. Compoundcharacterizationdata:

2 3 10 H N N 4 11 N 1 5 N N 6 7 H

8 9 ,sim (CH 3)), 1654 ( sע ,CH)), 2869 ( s)ע ,(asim (CH 3ע , CH)), 2955 ( vs)ע ,IR: ν 3049 ( w 1 1 C=C)), 1459 ( vs , tetrazole), 1371 ( s, δ(CH 3)), 936 ( m, δ(CH, C=C trans)) cm ; H)ע 3 3 NMR (500MHz, d6DMSO):δ=0.86( d, J8,9 =7.0Hz,6H,HC9),1.54( d, J10 ,11 =6.5

Hz,6H,HC11 ),1.94( m,1H,HC3),2.09( m,4H,HC2,3,8 ),2.24( m,1H,HC2),2.96( m, 3 3 1H,HC4),3.13( m,1H,HC4),4.04( dd , J6,7 =13.8, J7,8 =7.0Hz,1H,HC7),4.57( dd , 3 3 3 J1,2 =7.8,8.0Hz,1H,HC1),5.08( m, J10,11 =6.5Hz,1H,HC10 ),6.01( d, J6,7 =13.8 13 Hz,1H,HC6); CNMR (125MHz, d6DMSO):δ=21.8(CH 3,C9),23.4(CH 3,C 11 ),

24.3(CH 2,C 3),28.8(CH,C 8),31.1(CH 2,C 2),48.2(CH 2,C 4),55.5(CH,C 10 ),55.8(CH, + + C1),107.1(CH,C 7),131.9(CH,C 6),167.4(Cq,C 5); MS: m/z 250[MH] ,249[M] ,234 + + [MCH 3] ,138[MiPropyltetrazole] .

270 Chapter6.References

5.3.3.3. Oxazolinesformation

(3 R,4 S)3Isobutyl1,1diphenyltetrahydropyrrolo[1,2c]oxazole (267)

O N CH 2Cl 2 H + O K CO OH 2 3 N r.t.,20min H 213 306 267

MolecularFormula C23 H31 NO MolecularWeight 337.51g/mol TP4: Twoequivalentsofisovaleraldehyde areusedin0.71mmolscaleexperiment.The reactionisstirredfortwentyminutesatroomtemperaturetogive240mgofproductasa colorlessoilin≥99%yield.

Compoundcharacterizationdata:

3 2 1 4 7 N 6 O 5 11 8 10 12 9 13' 13

C)ע ,(asim (CH 3ע , CH)),2956( brs)ע,CH)),3024( w)ע,CH)),3059( w)ע,IR:ν3085( w

C=C)),1491)ע ,sim (CH 3)),19501766( w,overtonesγ(CH,Ph)),1599( wע ,H)),2870( s

CO)), 751)ע ,CO)),1017( s)ע ,C=C)),1385( w,δ(CH 3)),1156( m)ע ,C=C)),1448( s)ע ,s) 1 1 3 (s,γ(CH)), 702( s,γ(Ph))cm ; HNMR (500Mz, d6DMSO):δ=0.89( d, J12,13 =6.5 3 Hz,3H,HC13 ),0.99( d, J12,13’ =6.5Hz,3H,HC13’ ),1.19( m,1H,HC2), 1.42( m,1H,

HC3), 1.52( m,1H,HC3),1.64( m,1H,HC11 ),1.79( m,1H,HC11 ),1.87( m,2H,H 3 C2,12 ),2.70( m,2H,HC4),4.27( m, J1,2 =7.0Hz, 1H,HC1),4.34( m,1H,HC5),7.10 (m,1H,ArH),7.21( m,3H,ArH),7.34( m,4H,ArH),7.55( m,2H,ArH); 13 CNMR (125

Mz, d6DMSO):δ=22.3,24.1(CH 3,C 13,13’ ),28.7(CH 2,C 2),39.1(CH 2,C 11 ),46.3(CH 2,

C4),25.9(CH 2,C 3),25.5(CH,C 12 ),73.1(CH,C 1),86.8(Cq,C 6),89.2(CH,C 5),125.9 (CH,Ar),126.0(CH,Ar),126.5(CH,Ar)126.7(CH,Ar),127.8(CH,Ar),128.1(CH, + Ar),144.2(Cq,C 7),147.2(Cq,C7’); MS:m/z 322[MH] .

271 Chapter6.References

(7a' S)1',1'diphenyltetrahydro1' Hspiro[cyclohexane1,3'pyrrolo[1,2 c][1,3]oxazole] (307)

O DMSO + N r.t. N H HO O 209 306 307

MolecularFormula C23 H27 NO MolecularWeight 333.48g/mol TP5: Oneequivalentofcyclohexanone isusedin0.1mmolscaleexperiment

NOPRODUCTOBSERVED!

272 Chapter6.References

5.3.4. Organocatalysis 5.3.4.1. TypicalproceduresforMichaeladditions

5.3.4.1.1. TP6:TypicalprocedurefortheMichaelAddition

H H NO2 N O N O N H N N * + * EtOH NO2 209 211 212 Scheme 142.Michaeladditionorganocatalized A5ml,oneneckedroundbottomedflask,ischarged,atroomtemperature,with cyclohexanone(0.155ml,1.5mmol)dissolvedinethanol(1.5ml),(R) (tetrazol5yl) pyrrolidine as catalyst (42 mg, 0.3 mmol) and nitrostyrole (223 mg, 1.5 mmol). The mixtureisstirredforthirtyhoursatroomtemperature.ThemixtureisquenchedwithHCl (3ml),theaquesusphaseissaturatedwithsolidNaCl and the product extracted three timeswithdichloromethane(4mlportions).Thesolventisremovedtogive380mgofa yellowcrystallinematerial.Thecrudeischromatographed(elutionsystem:hexane/ethyl acetate 6:1) to give the product as a colorless crystalline material (360 mg, 97 % of yield). 5.3.4.1.2. TP7:TypicalprocedurefortheMichaelAdditionfollowedbyreduction toprimaryalcohol

H N NO2 NH O N O OH H N N * NaBH4 H + H * * * NO 2 NO2 213 211 214 268 Scheme 143.Michaeladditionfollowedbyreduction

A5ml,oneneckedroundbottomedflask,ischarged,atroomtemperature,with isovaleraldehyde(0.61ml,6mmol)dissolvedindichloromethane(5ml),2( R) (tetrazol

273 Chapter6.References

5yl)pyrrolidine 115ascatalyst(55mg,0.4mmol)andnitrostyrole(298mg,2mmol). Themixtureisstirredfortwentyhoursatroomtemperature.Themixtureiscooledat0 °C, ethanol (1.5 ml) is added and the mixture is carefully treated with sodium borohydrure(113.5mg,3mmol).Themixtureisgraduallywarmedatroomtemperature and stirred two hours. The mixture is cooled at 0 °C and quenched with HCl (2 ml, solution2M).Theorganicphaseiswashedtwicewithwater(4mlportion),thesolventis removedtogive474mgofabrownoil.Thecrudeischromatographed(elutionsystem: hexane/ethylacetate9:1)togivetheproductasayellowoil(422mg,89%yield). (2 S,3 R)2(1methylethyl)4nitro3phenylbutyraldehyde(214)

H O N N N O H NO2 H HN N + H * * r.t.,sv NO 2 213 211 214 (S,R)isomer:475294918 CASRegistryNumber (R,S)isomer:384354465 (S,S)isomer:768370383 MolecularFormula C13 H17 NO 3 MolecularWeight 235.28g/mol a)G.M.Betancort,C.F.Barbas,III, Org. Lett . 2001 , 3,3737;b)T. Ishii,S.Fujioka,Y.Sekiguchi,H.Kotsuki, J. Am. Chem. Soc. 2004 , 126 ,9558;c)P.Kotrusz,S.Toma,H.G.Schmalz,A.Adler, Eur. J. Org. Chem. 2004 , 7,1577;d)O.Andrey,A.Alexakis,A.Tomassini, AnalysisRef. G.Bernardinelli, Ad. Synth. Cat. 2004 , 346 ,1147; e)S.Mosse,M. Laars,K.Kriis,T.Kanger,A.Alexakis, Org. Lett. 2006 , 8,2559;f) S.Mosse,A.Alexakis, Org. Lett . 2006 , 8,3577;g)Y.Li,X.Y.Liu, G.Zhao, Tetrahedron: Asymm . 2006 , 17 ,2034 TP6: 2 equivalents of isovaleraldehyde are used in a 10 mmol scale experiment in dichloromethanewith2( R) (tetrazol5yl)pyrrolidineascatalystascatalysts(20%).The reaction is stirred for twenty hours at room temperature to give the product after chromatographyasacolorlessoil(1.82g,77%yield,57%ee,syn/anti8:1). Compoundcharacterizationdata: 10 9 8 O 7 1 2 H 3 4 5 NO2 6 6'

274 Chapter6.References

TLC: syn: Rf (hexane/EtOAc4:1)=0.33,Anti: Rf (hexane/EtOAc4:1)=0.43; HPLC: syn: 10.04min,anti: 9.62min; Chiral HPLC: (syn isomer) A: 8.26min,B: 13.01min;

25 ,CH)),3031( w)ע ,Opticalrotation: [α ]D =+6.04°(inMeOH,c=0.96); IR:ν3065( w

,((C=O)ע ,sim (CH 3)),1718( sע ,CH)),2875( w)ע ,asim (CH 3)), 2936( wע ,CH)),2965( m)ע ,C=C)),1379( m)ע ,C=C)),1456( w)ע ,C=C)),1466( w)ע ,asim (NO 2)),1496( wע ,s )1554 1 1 sim (NO 2)), 761( w,γ(CH,Ph)), 703( w,γ(Ph))cm ; HNMR (600MHz, d6DMSO):δע 3 3 3 =0.74( d, J5,6 =7.0Hz,3H,HC6),0.96( d, J5,6’ =7.0Hz,3H,HC6’ ),1.48( m, J5,6/6’= 3 3 3 7.0Hz,1H,HC5),2.83( m, J1,2 =2.8Hz,1H,HC2),3.83( dt , J3,4 =5.3, J2,3 =10.6Hz, 3 3 1H,HC3),4.79( dd , J3,4 =5.3Hz,2H,HC4),7.33( m,5H,HC810 ),9.83( d, J1,2 =2.8 13 Hz,1H,HC1); CNMR (150Mz, d6DMSO):δ=16.6(CH 3,C 6),21.2(CH 3,C 6’ ),27.3

(CH,C 5),41.6(CH,C 3),57.6(CH,C 2),78.9(CH 2,C 4),127.5(CH,C 10 ),128.3(CH,C 9), + 128.6(CH,C 8),137.9(Cq,C 7),205.6(CHO,C 1); MS:m/z 253[M+NH 4] . (2 S,3 R)2Isopropyl4nitro3phenylbutan1ol(268)

O O OH Ct NaNH4 H + H r.t. r.t. NO EtOH 2 NO 2 NO 2 213 211 214 268

MolecularFormula C13 H19 NO 3 MolecularWeight 237.30g/mol TP7: Threeequivalentsofisovaleraldehyde areusedintwommolscaleexperimentwith the 2( R)(tetrazol5yl)pyrrolidine 115 as catalyst (20 %) to give the product after chromatographyasabrownoil(422mg,89 %yield,63%eeofenantiomerB,syn/anti 19:1). Compoundcharacterizationdata: 10 9

OH 8 7 2 4 1 3 5 NO2 6 6'

275 Chapter6.References

TLC: syn: Rf(hexane/EtOAc9:1)=0.06; HPLC: syn: 9.29min,anti :8.94min; Chiral HPLC: (synisomer) enantiomer A: 11.63 min; enantiomer B: 13.78 min; Optical

25 C)ע ,OH)),3087( w)ע ,rotation: [α ]D =+21.4°(inMeOH,c=1.00); IR:ν3433( w

CH)),2875)ע ,asim (CH 3)),2930( wע ,CH)),2961( m)ע ,CH)),3030( w)ע ,H)),3064( w

,C=C)), 1455 ( w)ע ,C=C)), 1466 ( w)ע ,asim (NO 2)), 1496 ( wע , sim (CH 3)), 1551 ( vsע ,w)

((CO)), 758( w,γ(CH,Ph)), 702( m,γ(Ph)ע ,sim (NO 2)),1035( wע ,C=C)),1382( m)ע 1 1 3 cm ; HNMR (600MHz, d6DMSO):δ=0.72( d, J5,6 =7.0Hz, 3H,HC6),0.87( d, 3 J5,6’ =7.0Hz, 3H,HC6’ ),1.43( m,1H,HC5),1.54( m,1H,HC2),3.51( m,2H,HC1),

3.56( m,1H,HC3),4.66( m,1H,OH),5.08( m,2H,HC4),7.21( m,1H,HC10 ),7.27( m, 13 2H,HC9),7.30( m,2H,HC8); CNMR (150Mz, d6DMSO):δ=17.3(CH 3,C 6),21.6

(CH 3,C 6’ ),26.5(CH,C 5),45.3(CH,C 3),49.0(CH,C 2),58.2(CH 2,C 1),79.2(CH 2,C 4), 127.0(CH,C 10 ),128.0(CH,C 8),128.4(CH,C 9),140.2(Cq,C 7); MS: m/z 236[MH] ; HRMS: calc’dfor[MH] =236.12922,found236.12926(M(ppm)=0.2). 2[2Nitro1phenylethyl]cyclohexanone (212)

O H N O N NO2 N H HN N * * + r.t.,sv NO2 209 211 212 (R,R)isomer:54568748 (S,S)isomer:84025876 CASRegistryNumber (R,S)isomer:84025843 (S,R)isomer:84025832 MolecularFormula C14 H17 NO 3 MolecularWeight 247.29g/mol a) S. J. Blarer, W. B. Schweizer, D. Seebach, Helv. Chim. Acta 1982 , 65 ,1637;b)M.A.Brook,D.Seebach, Can. J. Chem. 1987 , AnalysisRef. 65 ,836;c)A.J.A.Cobb,D.M.Shaw,D.Longbottom,J.B.Gold, V. S. Ley, Org. Bioo. Chem. 2005 , 3, 84; d) Y. Xu, A. Cordova, Chem. Commun. 2006 , 4,460 TP6: Stoichiometric amount of cyclohexanone are used in a 1.5 mmol experiment in ethanolwith2(R)(tetrazol5yl)pyrrolidineascatalystascatalysts(20%).Thereaction isstirredforthirtyhoursatroomtemperaturetogivetheproductafterchromatographyas awhitecrystallinematerial(360mg,97%yield,60 %eeenantiomerA,syn/anti19:1).

276 Chapter6.References

Compoundcharacterizationdata: 11 10

O 9 8 1 2 6 7 12 3 NO 5 2 4 mp: 103106°C; TLC: Rf(hexane/EtOAc5:1)=0.2; HPLC: syn: 8.44min,anti: 7.97 min; Chiral HPLC: (synisomer) enatiomer A: 13.03 min, enantiomer B: 17.10 min;

25 ,CH)),3057( w)ע ,Opticalrotation: [α ]D =6.2°(inMeOH,c=0.81);IR:ν3085( w

C=O)),1552)ע ,CH)),1699( s)ע ,CH)),2936( w)ע ,CH)),2957( w)ע ,CH)),3029( w)ע

sim (NO 2)),747( w,γ(Cע ,C=C)),1385 (m)ע ,C=C)),1450( w)ע ,asim (NO 2)),1495( wע ,s) 1 1 H,Ph)), 698( m,γ(Ph))cm ; HNMR (600MHz, d6DMSO):δ=1.08( m,1H,HC3),

1.46( m,3H,HC3),1.50( m,1H,HC5),1.51( m,1H,HC4),1.64( m,1H,HC4),1.96( m,

1H,HC5),2.27( m,1H,HC6),2.41( m,1H,HC6),2.83( m,1H,HC2),3.67( m,1H,H 13 C7),4.86( m,2H,HC12 ),7.23( m,1H,HC11 ),7.30( m,4H,HC9,10 ); CNMR (150Mz, d6DMSO):δ=24.3(CH 2,C 4),27.9(CH 2,C 5),32.3(CH 2,C 3),42.1(CH,C 6),43.4(CH,

C7),51.4(CH,C 2),78.8(CH 2,C 12 ),127.2(CH,C 11 ),128.4(CH,C 10 ),128.5(CH,C 9), + 138.4(Cq,C 8),211.6(Cq,C 1); MS:m/z 248[MH] .

277 Chapter6.References

References

1 a)R.N.Butler,in ComprehensiveHeterocyclicChemistryII; A.R.Katritzky,C. W.Rees,E.F.V.Scriven,Eds.,PergamonPress:Oxford, 1996 ,Vol.4,p.621,905; b)R.N.Butler,in ComprehensiveHeterocyclicChemistryII; A.R.Katritzky,C. W.Rees,Eds.,PergamonPress:Oxford, 1984 ,Vol.5,p.791. 2 P.Lin,W.Clegg,R.W.Harrington,R.A.Henderson, DaltonTrans .2005 ,2388. 3 a)A.K.Gupta,C.Y.Rim,C.H.Oh, Synlett 2004 , 12 ,2227;b)P.L.Franke,L.W. Groeneveld, InorgChim.Acta 1980 , 40 ,111. 4 E.H.White,H.Scherrer, TetrahedronLett. 1961 , 21 ,758. 5 a)M.Hiskey,D.E.Chavez,D.L.Naud,S.F.Son,H.L.Berghout,C.A.Bome, Proc. Int. Pyrotch. Semin . 2000 , 27 , 3; b) H. Xue, Y. Gau, B. Twamley, J. M. Shreeve, Chem. Mater. 2005 , 17 , 191; c) M. X. Zhang, P E. Eaton, R. Gilardi, Angew.Chem.,Int.Ed . 2000 , 39 ,401;d)D.E.Chavez,M.A.Hiskey,R.Gilardi, Angew.Chem.,Int.Ed . 2000 , 39 ,1791;e)H.Xue,S.W.Arritt,B.Twamley,J.M. Shreeve, Inorg.Chem . 2004 , 43 ,7972;f)T.MKlapötke,P.Mayer,A.Schulz,J.J. Weigand, J.Am.Chem.Soc. 2005 , 127 ,2032;g)C.ZhaoXu,X.Heming,Y.Shulin, Chem. Phys . 1999 , 250 ,243;h)R.P.Singh,R.D.Verma,D.T.Meshri,J. M. Shreeve, Angew.Chem. ,Int.Ed. 2006 , 45 ,3584;i)Y.Miyata,S.Date,K.Hasue, Propellants,Explos.,Pyrotech .2004 , 29 ,247;l)Y.Miyata,H.Kanou,S.Date,K. Hasue, Sci.Tech.EnergeticMaterials 2005 , 66 ,233. 6 D.M.Vyas,R.A.Partyka,T.W.Doyle,BristolMyers Co., USA, 1986 , Ger. Offen.DE3531453. 7 H.Singh,A.S.Chawla,V.K.Kapoor,D.Paul,R.K.Malhotra, Prog.Med.Chem . 1980 , 17 ,151. 8 R.J.Herr, Bioorg.Med.Chem . 2002 , 10 ,3379. 9 R.Huisgen, J.Org.Chem. 1968 , 33 ,2291. 10 D.Moderhack; J.Prakt.Chem .1988 , 340 ,687. 11 R.E.Trifonov,V.A.Ostrovskii, Russ.J.Org.Chem. 2006 , 42 ,1585. 12 R.N.Butler,V.C.Garvin, J.Chem.Soc.PerkinTrans.1 , 1981 , 2,390. 13 R.N.Butler, AdvancesinHeterocyclicChemistry 1977 , 21 ,323.

278 Chapter6.References

14 a)M.W.Wong,R.LeungToung,C.Wentrup, J.Am.Chem.Soc. 1993 , 115 ,265; b)N.SadlejSosnowska, J.Org.Chem . 2001 , 66 ,8737;c)K.Jug,A.M.Köster, J. Am.Chem.Soc . 1990 , 112 ,6772. 15 J. Kaczmarek, H. Smagowski, Z. Grzonka, J. Chem. Soc. Perkin Trans. 2 , 1979 , 1670. 16 P.N.Gaponik,S.V.Voitekhovich,O.A.Ivashkevich, Russ.Chem.Rev. 2006 , 75 , 507. 17 a)L.Carlucci,G.Ciani,D.M.Proserpio, Angew.Chem.Int.Ed. 1999 ,38,3488;b) J.S.Morley, J.ChemSoc. 1969 ,809;c)X.H.Huang,T.L.Sheng,S.C.Xiang, R.B.Fu,S.M.Hu,Y.M.Li,X.T.Wu, Inorg.Chem.Comm. 2006 , 9,1304;d)F. Lenda,F.Guenoun,J.Martinez,F.Lamaty, TetrahedronLett. 2007 , 48 ,805;e)X. Chang,K.E.Lee,Y.J.Kim,S.W.Lee, Inorg.Chim.Acta 2006 , 359 ,436;f)M.A. MunozHernandez,M.S.Hill,D.A.Atwood, Polyhedron 1998 , 17 ,2237. 18 T.Habu,N.Mii,K.Kuge,H.Manto,Y.Takamuki, Journal of Imaging Science 1991 , 35 ,202. 19 G.I.Koldobskii,V.A.Ostrovskii, Usp.Khim . 1994 , 63 ,847. 20 a)S.P.Cass,D.BorelloFrance,J.M. Furman, Am.J.Otology 1996 , 17 ,581;b)I. C.Richards,P.S.Thomas, PesticideScience 1990 , 30 ,275. 21 G.R.Marshall,C.Humblet,N.VanOpdenbosch,J.Zabrocki, Peptides:Synthesis StructureFunction ;Proc.7thAmericanPeptideSymposium,D.H.Rich,E.Gross, Eds.;PierceChemicalCompany;Rockford,IL, 1981 ,669. 22 B.C.H.May,A.D.Abell, TetrahedronLett. 2001 , 42 ,5641. 23 K.L.Yu,R.L.Johnson, J.Org.Chem. 1987 ,5 2,2051. 24 a)J.Zabrocki,J.B.DunbarJr.,K.W.Marshall,M.V.Toth,G.R.Marshall, J. Org.Chem. 1992 , 57 ,202;b)J.Zabrocki,G.D.Smith,J.B.DunbarJr.,H.Iijima, G.R.Marshall, J.Am.Chem.Soc. 1988 , 110 ,5875. 25 R.Welz,S.Müller, TetrahedronLett . 2002 , 43 ,795. 26 BlaiseW.LeBlanc,B.S.Jursic, Synth.Commun . 1998 , 28 ,3591. 27 D.Tsou,A.Hampel,A.Andrus,R.Vinayak, NucleosideandNucleotides 1995 ,14 , 1481. 28 E.Lieber,T.Enkoji, J.Org.Chem . 1961 , 26 ,4472. 29 S.J.Wittenberger ,J.Org.Prep.Proced.Intl . 1994 , 26 ,499. 30 P.F.Juby,T.W.Hudyma,M.Brown, J.Med.Chem. 1968 , 11 ,111.

279 Chapter6.References

31 a)A.T.Chiu,JV.Duncia,D.E.McCall,P.C.Wong,W.A.Jr.Price,M.J.M.C. Thoolen,D.J.Carini,A.L.Johnson,P.B.W.M.Timmermans, J.Pharmacol.Exp. Ther . 1989 , 250 , 867; b) Y. Furkawa, S. Kishimoto, K. Nishikawa, K. Takeda Industries, 1982 ,U.S.PatentNo.4,340,598. 32 a)G.I.Koldobskii,R.B.Kharbash, Russ. J.Org.Chem . 2003 , 39 ,453;b)Mirura, H.,K.Gato,S.Kitamura,T.Kitagava,S.Kohda, Chem.Pharm.Bul . 2002 , 50 ,766; c) Momose, Y., T. Maekawa, H. Oaka, H. Ikeda, T. Sohda, Chem. Pharm. Bull . 2002 , 50 ,100;d)T.Ichikawa,T.Kitazaki,Y.Matsushita,H.Hosono,M.Yamada, M. Mizuno, K. Itoh, Chem. Pharm. Bull. 2000 , 48 , 1947; e) O’Neill, M. J., A. Bond,P.L.Ornstein,M.A.Ward,C.A.Hicks,K.Hoo,D.Bleakman,D.Lodge, Neuropharmacology 1998 , 37 ,1211;f)Liljebris,C.,S.D.Larsen,D.Ogg,B. J. Palazuk,J.E.Bleasdale, J.MedChem . 2002 , 45 ,1785. 33 C.Hansch,L.Leo, ExploringQSAR.FundamentalsandApplicationsinChemistry andBiology ;AmericanChemicalSociety:Washington,DC, 1995 ,Chapter13. 34 a)L.Peters,R.Fröhlich,A.S.F.Boyd,A.Kraft, J.Org.Chem . 2001 , 66 ,3291;b) K. Kubo, Y. Kohara, E. Imamiya, Y. Sugiura, Y. Inada, Y. Furukawa, K. Nishikawa,T.Naka, J.Med.Chem . 1993 , 36 ,2182. 35 G.F.Holland,J.Pereira, J.Med.Chem. 1967 , 10 ,149. 36 S.Wu,A.Fluxe,J.Sheffer,J.M.Janusz,B.E.Blass,R.White,C.Jackson,R. Hedges,M.Muawsky,B.Fang,G.M.Fadayel,M.Hare,L.Djandjighian, Bioorg. Med.Chem.Lett . 2006 , 16 ,6213. 37 Y.Momose,T.Maekawa,H.Odaka,H.Ikeda,T.Sohda, Chem.Pharm.Bull. 2002 , 50 ,100. 38 R.S.Upadhayaya,S.Jain,N.Sinha,N.Kishore,R.Chandra,S.K.Arora, Eur.J. Med.Chem. 2004 , 39 ,579. 39 A.Nohara,H.Kuriki,T.Saijo,H.Sugihara,M.Kanno,Y.Sanno ,J.Med.Chem. 1977 , 20 ,141. 40 Y.Kanai,Y.Nakai,N.Nakajima,S.Tanayama,Xenobiotica 1979 ,9,33. 41 a)P.L.Ornstein, 1990 ,EP330353A1;b)P.L.Ornstein, 1990 ,US4902687A;c) H.BräunerOsborne,J.Egebjerg,E.O.Nielsen,U.Madsen,P.KrogsgaardLarsen, J.Med.Chem . 2000 , 43 ,2609. 42 a)K.G.Jensen,L.Dalgaard, DrugMetabolismandDisposition 1999 , 27 ,125;b) I.V.Bliznets,A.A.Vasil’ev,S.V.Shorshnev,A.E.Stepanov,S.M.Lukyanov; TetrahedronLett. 2004 , 45 ,2571.

280 Chapter6.References

43 S.J.Wittenberger,B.G.Donner J.Org.Chem . 1993 , 58 ,4139. 44 M.Lusina,T.Cindrić,J.Tamaić,M.Peko,L.Pozaić,N.Musulin, Int.J.Pharm . 2005 , 291 ,127. 45 a)J.V.Duncia,D.J.Carini,A.T.Chiu,A.L.Johnson,W.A.Price,P.C.Wong, R.R.Wexler,P.B.M.W.Timmermans, Med.Res.Rev . 1992 , 12 ,141;b)R.D. Smith,J.V.Duncia,RJ.Lee,D.D.Christ,A.T.Chiu,D.J.Carini,W.F.Herblin, P.B.M.W.Timmermans,R.R.Wexler, MethodsNeurosci. 1993 , 13 ,258. 46 P. Buehlmayer, L. Criscione, W. Fuhrer, P.Fuhret, M. de Gasparo, S. Stutz, S. Whitebread,J.Med.Chem. 1991 , 34 ,3105. 47 D.J.Carini,J.V.Duncia, Adv.Med.Chem. 1993 ,2 ,153. 48 J.V.Duncia,M.E.Pierce,J.B.Santella,III, J.Org.Chem. 1991 , 56 ,2395. 49 A.F.Brigas,ScienceofSynthesis 2004 ,13,861. 50 V.Y.Zubarev,V.A.Ostrovskii, Chem.Heterocycl.Compd . 2000 , 36 ,759. 51 B.Schmidt,D.Meid,D.Keiser, Tetrahedron 2007 , 63 ,492. 52 a)V.V.Rostovtsev,L.G.Green,V.V.Fokin,K.B.Sharpless, Angew.Chem. ,Int. Ed. 2002 , 41 , 2596; b)C. W. Tornøe, C.Christensen, M. Meldal, J. Org. Chem. 2002 , 67 ,3057. 53 a)R.Manetsch,A.Krasinski,Z.Radic,J.Raushel,P.Taylor,K.B.Sharpless,H. C. Kolb, J. Am. Chem. Soc. 2004 ,126,12809;b)W.G.Lewis,L.G.Green,F. Grynszpan,Z.Radic,P.R.Carlier,P.Taylor,M.G.Finn,K.B.Sharpless, Angew. Chem.,Int.Ed. 2002 , 41 ,1053. 54 A.E.Speers, J.Am.Chem.Soc. 2003 , 125 ,4686. 55 B.E.Huff,M.A.Staszak, TetrahedronLett . 1993 , 34 ,8011. 56 H.Shechter, J.Org.Chem . 1996 , 61 , 1,4462. 57 J.M.McManus,R.M.Herbst,J.Org.Chem. 1959 , 24 ,1462. 58 J.Sauer,R.Huisgen,H.J.Strum, Tetrahedron 1960 , 11 ,241. 59 Z.P.Demko,K.B.Sharpless, Angew.Chem.Int.Ed . 2002 , 12 ,2110. 60 W.R.Carpenter, J.Org.Chem. 1962 , 27 ,2085. 61 F.Himo,Z.P.Demko,L.Noodleman,K.B.Sharpless, J.Am.Chem . Soc .2002 , 124 ,12210. 62 W.G.Finnegan,R.A.Henry,R.Lofquist, J.Am.Chem.Soc . 1958 , 80 ,3908. 63 Z.P.Demko,K.B.Sharpless, Org.Lett. 2001 , 3,4091. 64 R.Roger,D.G.Neilson, Chem.Rev . 1961 , 61 ,179.

281 Chapter6.References

65 I.E.Titova,V.S.Poplavskii,G.I.Koldobskii,V.A.Nikolaev,G.B.Erusalimskii, Khim.Geterosikl.Soedin. 1986 ,8 ,1086. 66 a)J.S.Mihina,R.M.Herbst, J.Org.Chem . 1950 , 15 ,1082 ; b)R.M.Herbst,C.F. Froberger, J.Org.Chem. 1957 , 22 ,1050;c)B.B.V.Straaten, D.Solinger,C.van de Westeringh, H. Veldstra Recueil de Travaux Chimique de PaysBas et de la Belgique 1958 , 77 ,1129. 67 J.vonBraun,W.Keller, Ber . 1932 , 65 ,1677. 68 E.Jursic,Z.Zdravkovski, THEOCHEM 1964 , 118 ,11. 69 E.Lieber,T.Enkoji, J.Org.Chem . 1961 , 26 ,4472. 70 C.O. Obenland,D.J.Mangold,M.P.Marino, InorganicSyntheses 1966 , 8,53. 71 P.R.Bernstein,E.P.VacekE, Synthesis 1987 ,1133. 72 a)K.Koguro,T.Oga,S.Mitsui,R.Orita, Synthesis 1997 ,910;b)K.Koguro,T. Oga,Takasagoshi,Hyogoken(JP), 1997 ,EP0796852A1. 73 B.S.Jursic,B.W.LeBlanc, J.Heterocycl.Chem. 1998 , 35 ,405. 74 A.Kumar,R.Narayanan,H.Shechter, J.Org.Chem . 1996 , 61 ,4462. 75 D.P.Matthews,J.E.Green,A.Shuker, J.Comb.Chem . 2000 , 2,19. 76 a)H.C.Kolb,M.G.Finn,K.B.Sharpless, Angew.Chem. ,Int.Ed., 2001 , 40 ,2004; b)H.C.Kolb,K.B.Sharpless, DrugDiscoveryToday 2003 , 8,1128. 77 W.G.Lewis,L.G.Green,F.Grynszpan,Z.Radić,P.R.Carlier,P.Taylor,M.G. Finn,K.B.Sharpless, Angew.Chem. ,Int.Ed. 2002 , 41 ,1053. 78 Z.P.Demko,K.B.Sharpless, J.Org.Chem . 2001 , 66 ,7945. 79 F.Himo,Z.P.Demko,L.Noodleman,K.B.Sharpless, J.Am.Chem.Soc. 2003 , 125 ,9983. 80 C.M.Athanassopoulos,T.Garnelis,D.Vahliotis,D.Papaioannou, Org.Lett. 2005 , 7,561. 81 a)F.Itoh,K.Yukishige,M.Majima,K.Ootsu,H.Akimoto, Chem.Pharm.Bull. 1995 , 43 ,230;b)P.Lin,J.M.Pisano,W.R.Schoen,K.Cheng,W.S.Chan,B.S. Butler,R.G.Smith,M.H.Fisher,M.Wyvratt, J.Bioog.Med.Chem.Lett. 1999 , 9, 3237;c)J.S.McMurray,O.Khabashesku,J.S.Britwistle,W.Wang, Tetrahedron Lett . 2000 , 41 ,6555. 82 a)Y.Rival,C.G.Wermuth Synth.Commun . 2000 , 30 ,1587;b)P.L.Ornstein,M. B.Arnold,W.H.W.Lunn,L.J.Jeinz,J.D.Leander,D.Lodge,D.D.Shoepp, Bioorg. Med. Chem. Lett . 1998 , 8,389;c)P. L.Ornstein,D.D.Shoepp,M.B. Arnold,J.D.Leander,D.Lodge,J.W.Paschal,T.Elzey, J.Med.Chem. 1991 , 34 ,

282 Chapter6.References

90;d)J.H.Huchinson,D.Riendeau,C.Brideau,C.Chan,D.Delorme,D.Denis, J.P.Falgueyret,R.Fortin,J.Guay,P.Hamel,T.R.Jones,D.MacDonald,C.S. McFarlane, H. Piechuta, J. Scheigetz, P. Tagari, M. Thérien, Y. Girad, J. Med. Chem. 1993 , 36 ,2771;e)D.P.Curran,S.Hadida,S.Y.Kim, Tetrahedron 1999 , 5, 8997. 83 D.J.Carini,J.V.Duncia;P.E.Aldrich,A.T.Chui,A.L.Johnson,M.E.Pierce, W.A.Price,J.B.IIISantella,G.J.Wells,R.R.Wexler,P.C.Wong,S.E.Yoo,P. B.M.W.M.Timmermans, J.Med.Chem. 1991 , 34 ,2525. 84 E.Ettenhuber,K.Rühlman, Chem.Ber. 1968 , 101 ,743. 85 D.Amantini,R.Beleggia,F.Fringuelli,F.Pizzo,L.Vaccaro, J.Org.Chem . 2004 , 69 ,2896. 86 R.J.P.Corriu,R.Perz,C.Reye, Tetrahedron 1883 , 39 ,999. 87 F.A.J.Kerdesky,A.Haight,B.A.Narayanan,C.W.Nordeen,D.Scarpetti,L.S. Seif,S.J.Wittemberger,H.E.Morton, Synth.Commun . 1993 , 23 ,2027. 88 M.J.Schulz,S.J.Coats,D.J.Hlasta, Org.Lett .2004 , 6,3265. 89 N.Roeder,K.Dehnicke, Chimia 1974 , 28 ,349. 90 a)Y.S.Gyoung,J,G.Shim,Y.Yamamoto, TetrahedronLett. 2000 , 41 ,4193;b)S. Kamijo,T.Jin,Y.Yamamoto, J.Org.Chem. 2002 , 67 ,7413. 91 W.Wiberg,H.Michaud,GermanPatent962,798, 1957 . 92 a) C. Arnold, D.N. Thatcher, J. Org. Chem . 1969 , 34 , 1141; b) A. Nohara, Tetrahedron Lett . 1974 , 1187; c) H. Behringer, K. Kohln, Chem. Ber. 1956 , 89 , 2648. 93Katam,M.L.,K.B.S.Kumar,K.P.Raja, J.Mol.CatalysisA:Chemical 2006 , 247 , 186 . 94A.Antonowa,S.Hauptmann, ZeitschriftfurChemie 1976 , 16 ,17. 95J.Boivin,S.Husinec,S.Z.Zard, Tetrahedron 1995 , 51 ,11737. 96T.Biadatti,B.QuicletSire,J.B.Saunier,S.Z.Zard, TetrahedronLett. 1998 , 39 , 19. 97 T. V. Artamonova, A. B. Zhivich, M. Y. Dubinskii, G. I. Koldobskii, Synthesis 1996 ,1428. 98V.A.Ostrovskii,A.O.Koren, Heteroclycles 2000 , 53 ,1421. 99 L.R.Subramanian Productclass5:nitriles, in ScienceofSynthesis 2004 ,19 ,79; Publisher:GeorgThiemeVerlag.

283 Chapter6.References

100 K.Friedrich,K.Wallenfelsin TheChemistryoftheCyanoGroup ,Z.Rappaport, Ed.,WileyIntersciencePublishers:NewYork, 1970 ,p67. 101C.Betram,D.W.Bruce,D.A.Dunmur,S.E.Hunt,P.M.Maitlis,M.McCann, J. Chem.Soc.,Chem.Commun. 1991 ,69. 102G.J.Hathaway,N.H.Proctor,J.P.Hughes,M.L.Fischman,ProctorandHughes' chemicalhazardsoftheworkplace.3rded.NewYork,NY:VanNostrandReinhold 1991 . 103 Z. Rappoport in The Chemistry of the CyanoGroup (Chemistry of Functional Groups), 1970 ,Publisher:Interscience,London. 104 a) R. C. Larock in Synthetic Organic Methodology: Comprehensive Organic Transformations, A Guide to Functional Group Preparations , WileyVCH Publisher, New York, 1999; b) L. R. Subramanian in Construction of the cyano groupbyfunctionalgrouptransformationfromanitrogenfree starting material, Science of Synthesis 2004 , 19 , 95; c) M. North in Comprehensive Organic Functional Group Transformations II , Nitriles: general methods and aliphatic nitriles ,A.R.Katritzky,R.J.K.Taylor,Eds.,Publisher:ElsevierLtd.,Oxford,UK, 2005 , 3,621. 105 P.Arthur,D.C.England,B.C.Pratt,G.M.Whitman, J.Am.Chem.Soc. 1954 , 76 , 5364. 106 a)T.V.RajanBabu,A.L.Casalnuovo, J.Am.Chem.Soc. 1992 , 114 ,6265;b)W. R.Jackson,P.Perlmutter,A.J.Smallridge, TetrahedronLett. 1988 , 29 ,1983. 107 P.S.Elmes,W.R.Jackson, J.Am.Chem.Soc. 1979 , 101 ,6128. 108 D.W.Kim,C.E.Song,D.Y.Chi, J.Org.Chem. 2003 , 68 ,4281. 109 W.P.Reeves,M.R.White,R.G.Hilbrich,L.L.Biegert, Synth.Commun. 1976 , 6, 509. 110 L.Friedman,H.Shechter, J.Org.Chem. 1961 , 26 ,2522. 111 a) D. T. Mowry, Chem. Rev. 1948 , 42 , 189; b) J. Zanon, A. Klapars, S. L. Buchwald, J.Am.Chem.Soc. 2003 , 125 ,2890. 112 L.Cassar,M.Foa,F.Montanari,G.P.Marinelli, J.Organomet.Chem. 1979 , 173 , 335. 113 a) S. A. Weissman, D. Zewge, C. Chen, J. Org. Chem. 2005 , 70 , 1508; b) O. Grossman, D. Gelman Org. Lett. 2006 , 8, 1189; c) M. Sundermeier, A. Zapf, S. Mutyala,W.Baumann,J.Sans,S.Weiss,M.Beller,Chem.Eur.J. 2003 , 9,1828.

284 Chapter6.References

114 a)G.P.Ellis,I.L.Thomas, Prog.Med.Chem. 1974 , 10 ,245;b)M.Boruah,D. Konwar, J.Org.Chem. 2002 , 67 ,7138;c)G.Lai,N.K.Bhamare,W.K.Anderson, Synlett 2001 , 2,230;d)E.F.Chen,H.Fu,G.Meng,Y.Cheng,Y.XLü, Synthesis 2000 , 11 ,1519;e)S.Talukdar,J.L.Hsu,T.C.Chou,J.M. Fang, Tetrahedron Lett. 2001 , 42 ,1103;f)H.Sharghi,M.H.Sarvari, Synthesis 2003 , 2,243;g)M.M. Rogic,J.F.VanPeppen,K.P.Klein,T.R.Demmin, J.Org.Chem. 1974 , 39 ,3424 115 a)J.A.Krynitsy,H.W.Carhart, Org.Synth. ,Wiley:NewYork, 1963 ,Collect.Vol. IV,p436;b)D.B.Reisner,E.C.Horning, Org.Synth. ,Wiley:NewYork, 1963 , Collect.Vol.IV,p144;c)S.H.Yang,S.Chang, Org.Lett. 2001 , 3,4209;d)J.i. Kawakami,K. Kimura,M. Yamaoka,Synthesis 2003 , 5,677;e)S.I.Maffioli,E. Marzorati, A. Marazzi, Org. Lett. 2005 , 7, 523; f) M.P. Heck, A. Wagner, C. Mioskowski, J. Org. Chem . 1996 , 61 , 6486; g) D. S. Subhas, B. Jayalakshmi, Synthesis 1999 , 1,64;h)M.Buruah,D.Konwar, J.Org.Chem . 2002 , 67 ,7138;i) F. Campagna, A. Carotti, G. Casini, Tetrahedron Lett. 1977 , 18 , 1813; l) W. Lehnert, TetrahedronLett . 1971 , 12 ,1501;m)W.E.Dennis, J.Org.Chem. 1967 , 32 ,3640. 116 C.P.Miller,D.H.Kaufman, Synlett 2000 ,1169. 117 J.N.Kim,K.H.Chung,E.K.Ryu, Synth.Commun. 1990 , 20 ,2785. 118 F.Campagna,A.Carotti,R.Ballini, Synthesis 1979 , 1,56. 119 A.Napolitano,M.d’Ischia, J.Org.Chem . 2002 , 67 ,803. 120 H.G.Thomas,H.D.Greyn, Synthesis 1983 ,472. 121 D.Konwar,R.C.Boruah,J.S.Sandhu, TetrahedronLett. 1990 , 31 ,1063. 122 S.K.Dewan,R.Singh, Synth.Commun. 2003 ,33,3085 123 N.Lingaiah,R.Narender, Synth.Commun . 2002 , 32 ,2391. 124 E.C.Wang,G.J.Lin, TetrahedronLett . 1998 ,39 ,4047, 125 a)C.S.Rao,M.Rambabu,P.S.Srinivasan, Synth.Commun . 1989 , 19 ,1431;b)J. P. Dulcere, Tetrahedron Lett. 1981 , 22 , 1599; c) T.L. Ho, C. M. Wong, Synth. Commun. 1975 , 5,299;d)T.L.Ho,C.M.Wong, Synth.Commun. 1975 , 5,423;d) R.Ballini,D.Fiorini,A.Palmieri, Synlett 2003 , 12 ,1841. 126 G.J.Reddy,D.Latha,C.Thirupathaiah,K.S. Rao, Tetrahedron Lett. 2004 , 45, 847. 127 a)E.M.Burgess,H.R.Penton,Jr.,andE.A.Taylor, J.Org.Chem.1973 , 38 ,26; b)E.M.Burgess,H.R.Penton,Jr.,E.A.Taylor, W. M. Williams, Org. Synth . 1977 ,56,40.

285 Chapter6.References

128 D.A.Claremon,B.T.Phillips, TetrahedronLett. 1988 , 29 ,2155. 129 C.Czekelius,E.M.Carreira, Angew.Chem. 2005 , 117 ,618. 130 R. Fernández, C. Gasch, J.M. Lassaletta, J.M. Llera, J. Vázquez, Tetrahedron Lett. 1993 , 34 ,141. 131 T.Ramalingam,B.V.S.Reddy,R.Srinivas,J.S.Yadav, Synth.Commun. 2000 , 30 ,4507. 132 J.S.Moore,S.I.Stupp, J.Org.Chem. 1990 , 55 ,3374. 133 a)H.Yamada,M.Kobayashi, Bioscience,Biotechnology,andBiochemistry 1996 , 60 ,1391;b)K.T.Liu,M.H.Shih,H.W.Huang,C.J.HuSynthesis 1988 , 9,715. 134 A. Sharifi, F. Mohsenzadeh, M. M. Mojtahedi, M. R. Saidi, S. Balalai, Synth. Commun . 2001 , 31 ,431. 135 S.I.Murahashi,H.Takaya, Acc.Chem.Res.2000 , 33 ,225. 136 C.CativielaM.D.DiazdeVillegas,J.A.GglvezJ.Org.Chem. 1994 , 59 ,2497. 137 a)A.Pinner, F.Klein, Ber. 1877 , 10 ,1889;b)P. IDalko,Y. Langlois, J. Org. Chem. 1998 , 63 ,8107. 138 a)J.J.Ritter,P.P.Minieri, J.Am.Chem.Soc. 1948 , 70 ,4045;b)J.J.Ritter,J. Kalish, Soc. 1948 , 70 ,4048;c)L.I.Krimen,D.J.Donald, Org.React. 1969 , 17 , 213. 139 H.Fernholz,H.J.Schmidt, Angew.Chem.,Int.Ed.Eng. 1969 , 8,521. 140 a)M.YLebedev,M.B.Erman, TetrahedronLett .2002 , 43 ,1397;b)R.Bishop;In Comp.Org.Synth. ;B.M.Trost,I.Fleming;Eds.;PergamonPress:NewYork, 1992 ;Vol.6,261300. 141 G.Sedelmeier,NovartisPharmaAG, 2005 ,WO2005/014602A1. 142 V.Aureggi,G.Sedelmeier,NovartisPharmaAG, 2007 ,WO2007/009716 . 143 V.H.Rawal,H.M.Zhong, TetrahedronLett . 1994 , 35 ,4947. 144 M.I.Prince,K.Weiss, J.Organometal.Chem. 1966 ,5,584 145 a)K.Dehnicke,J.Strähele,D.Seybold,J.Müller, J.Organometal.Chem. 1966 , 6, 298;b)J.Müller,K.Dehnicke, J.Organomet.Chem. 1968 , 12 ,37;c)N.Röder,K. Dehnicke, Chimia 1974 , 28 ,351. 146 a)F.Benedetti,F.Berti,S.Norbedo, Tetrahedron Lett. 1998 , 39 ,7971;b)C.E. Davis,J.L.Bailey,J.W.Lockner,M.Coates, J.Org.Chem. 2003 ,68,75. 147I.Adamo,F.Benedetti,F.Berti,G.Nardin,S.Norbedo, TetrahedronLett . 2003 , 44 ,9095.

286 Chapter6.References

148 C.M. Starks, C. L. Liotta, M. Halpern, PhaseTransferCatalysis , Chapman and Hall:NewYork, 1994 ,640pp. 149 P.S.Rao,R.V.Venkataratnam, TetrahedronLett. 1991 , 32 ,5821. 150T.Y.Tsai,K.S.Shia,H.J.Liu, Synlett , 2003 , 1,97. 151 A. Fava in Organic Sulfur Compounds, Isomerization of organic thiocyanates , 1966 ,2,73. 152 S.Maas,A.Stamm,H.Kunz, Synthesis 1999 ,10,1792. 153 a)B.List, Tetrahedron 2002 , 5,5573;b)I.Ibrahem,J.Casas,A.Cordova, Angew. Chem., Int. Ed. 2004 , 43 , 6528; c) W. Notz, F. Tanaka, C. F. Barbas, III, Acc. Chem.Res. 2004 , 37 ,580;d)P.I.Dalko,L.Moisan, Angew.Chem.,Int.Ed. 2004 , 43 , 5138; e) B. List, Chem. Commun. 2006 , 8, 819; f) R. M. Kellogg, Angew. Chem.,Int.Ed. 2007 , 46 ,494;g)M.Limbach, Chem.Biodiversity 2006 , 3,119. 154 P.I.Arvidsson,A.Hartikka, Eur.J.Org.Chem .2005 ,4287. 155 H.Torii,M.Nakadai,K.Ishihara,S.Saito,H.Yamamoto, Angew.Chem.,Int.Ed. 2004 , 43 ,1983. 156 A.J.A.Cobb,D.M.Shaw,S.V.Ley, Synlett 2004 , 3,558. 157 N.S.Chowdari,M.Ahmad,K.Albertshofer,F.Tanaka,C.F.Barbas,III, Org.Lett . 2006 , 8,2839. 158 a)H.Sundén,I.Ibrahem,L.Eriksson,A.Cordova, Angew.Chem.,Int.Ed. 2005 , 44 ,4877;b)N.Momiyama,Y.Yamamoto,H.Yamamoto, J.Am.Chem.Soc . 2007 , 129 ,1190. 159 Y.Yamamoto,N.Momiyama,H.Yamamoto, J.Am.Chem.Soc . 2004 , 126 ,5962. 160 a)C.E.T.Mitchell,A.J.Cobb,S.V.Ley, Synlett 2005 , 4,611;b)S.Brandes,B. Niess,M.Bella,A.Prieto,J.Overgaard,K.A.Jørgensen, Chem.Eur.J . 2006 , 12 , 6039. 161 E.Winterfeldt, Synthesis 1975 , 10 ,617. 162 H. S. Yathirajan, M. Nethaji, B. Prabhuswamy, C. R. Raju, P. Nagaraja, S. Shashikanth,M.N.Ponnuswamy,K.Palani, Cryst.Res.Technol. 2006 , 41 ,299. 163 E.Wiberg,H.Michaud, Z.Naturforsch. 1954 , 96 ,497. 164 P.I.Paetzold,P.P.Habereder,R.Müllbauer, J.Organomet.Chem. 1967 ,7,45. 165 W. Fraenk, T. Habereder, T. M. Klapötke, H. Nöth, K. Polborn J. Chem. Soc., DaltonTrans. 1999 ,4283. 166 a) P. Gray, T. C. Waddington, Res. Correspondence 1955 , 8, S56; b) L. O. Williams,O.Fla,MartinMariettaCo.Bethesda,Md, 1992 ,US005081930A.

287 Chapter6.References

167 a)F.Ek,S.Manner,L.G.Wistrand,T.Frejd, J.Org.Chem. 2004 , 69 ,1346;b)G. Garipova,A.Gautier,S.R.Pietre, Tetrahedron 2005 , 61 ,4755. 168 1,3Dipolar Cycloaddition: Novel “Click Chemistry” for the Synthesis of 5 SubstitutedTetrazolesfromOrganoaluminumAzidesandNitriles ,V.Aureggi,G. Sedelmeier, Angew.Chem.,Int.Ed. 2007 ,inpress. 169 R.M.Claramut,D.Sanz,C.Lopez,J.A.Jimenez,M.L.Jimeno,J.Elguero,A. Fruchier, Magn.Reson.Chem ., 1997 , 35 ,35. 170R.Raap,J.Howard, Can.J.Chem. 1969 , 47 ,813. 171 P.A.Bethel,M.S.Hill,M.F.Mahon,K.C.Molloy, J.Chem.Soc.,PerkinTrans. 1, 1999 ,3507. 172 R.N.Butler, LeicesterChem.Rev. 1969 , 10 ,12. 173 a)C.Zhang,G.Zheng,L.Fang,Y.Li, Synlett 2006 ,3 ,475;b)L.V.Myznikov,T. V. Artamonova, V. K. Bel'skii, A. I. Stash, N. K. Skvortsov, G. I. Koldobskii, Russ.J.Org.Chem . 2002 , 38 ,1360;c)A.DiazMartinez,L.RafecasJane,A.Riera Escale,M.PastoAguila,M.EcijaQueralt,AlgryQuimica,S.L.,Spain, 2006 ,WO 2006067215. 174 R.A.Henry, J.Heterocycl.Chem. 1976 , 13 ,391. 175 a) S. V. Voitekhovich, P. N. Gaponik, D. S. Pytleva, A. S. Lyakhov, O. A. Ivashkevich, Pol.J.Chem . 2002 , 76 ,1371;b)J.W.Tilley,W.Danho,K.Lovey,R. Wagner, J. Swistok, R. Makofske, J. Michalewsky, J. Triscari, D. Nelson, S. Weatherford, J.Med.Chem. 1991 , 34 ,1125. 176 A. O. Koren, P. N. Gaponik, O. A. Ivashkevich, T. B. Kovalyova, Mendeleev Commun . 1995 ,10. 177 M.R.Wood,NJ.Anthony,M.G.Bock,S.D.Kuduk,Merch&Co,Inc.,USA, 2005 ,WO2005063690. 178 a)L.Edwards,M.Isaac,A.Slassi,M.Nagard,L.Storlien,D.Morgan,Astrazeneca AB, Swed. 2007 , WO 2007001973; b) J.Q. Fan, K. Vanlenzano, G. Lee, M. Bouvier, Amicus Therapeutics, Inc., USA, 2006 , WO 2006133098; c) R. Amengual,C.Marsol,E.Mayeux,M.Sierra,P.Wagner,CarexSA,Fr., 2006 ,WO 2006133926. 179 a)T.Jiang,K.L.Kuhen,K.Wolff,H.Yin,K.Bieza,J.Caldwell,B.Bursulaya,T. Tuntland, Z. Zhang, D. Karenewsky, Y. He, Bioorg. Med. Chem. Lett. 2006 , 16 , 2109;b)K.S.Yeung,M.Farkas,J.F.Kadow,N.A. Meanwell, M. Taylor, D.

288 Chapter6.References

Johnston, T. S. Coulter, J. J. K. Wright, BristolMyers Squibb Company, USA, 2005 ,WO2005004801. 180 a)D.R.Bolin,S.Chen,S.G.Mischke,Y.Qian, F. HoffmannLa Roche A.G., Switz, 2004 ,WO2004101528;b)K.L.Kees,R.S.Cheeseman,D.H.Prozialeck, K.E.Steiner, J.Med.Chem. 1989 , 32 ,11. 181 a)P.Traxler,G.Bold,M.Lang,J.Frei,NovartisA.G.,Switz. 1998 ,WO9807726; b) T. Kato, N. Kawanishi, T. Mita, M. Ohkubo, T. Shimomura, Banyu Pharmaceutical Co, Ltd., Japan, 2006 , WO 2006129842; c) M. R. Wood, N. J. Anthony,M.G.Bock,D.M.Feng,S.D.Kuduk,D.S.Su,J.M.C.Wai,Merck& Co.,Inc.,USA, 2003 ,WO2003066577;d)Y.Aoyama,M.Seki,H.Masuda,Y. Usui, Y. Abe, M. Shimada, M. Yamamoto, Mitsubishi Chemical Corporation, Japan, 2001 ,WO2001023349. 182 a)Y.W.Yo,W.B.Im,J.K.Rhee,M.J.Shim,W.B.Kim,E.C.Choi, Bioorg. Med. Chem . 2004 , 12 , 5909; b) L. VeraCabrera, B. A. BrownElliott, R. J. Wallace, Jr., J. OcampoCandiani, O. Welsh, S. H. Choi, C. A. MolinaTorres, Antimicrob.AgentsChemother. 2006 , 50 ,4027;c)F.Wu,D.Weaver,C.Barden, D.Byers,C.Mcmaster,A.Henneberry,F.Ban, 2006 ,WO2006092059;d)B.Das, S. Ahmed, A. S. Yadav, S. Ghosh, A. Gujrati, P. Sharma, A. Rattan, Ranbaxy LaboratoriesLimited,India, 2006 ,WO2006038100;e)J.K.Rhee,W.B.Im,C. H. Cho, S. H. Choi, T. H. Lee, DongA Pharm.Co., Ltd., S. Korea, 2005 , WO 2005058886A1;f)H.Yong,Y.GuiGu,R.F.Clark,T.Marron,Z.Ma,N.Soni, G.G.Stone,A.M.Nilius,K.Marsh,S.W.Djuric,Bioorg.Med.Chem.Lett. 2005 , 15 ,2653. 183 C.M.Suterin TheOrganicChemistryofSulfur: TetracovalentSulfurCompounds . JohnWiley&Sons,Inc.1944.p49. 184 a) V. A. Ostrovskii, I. Y. Shirobokov, G. I. Koldobskii, Zhurnal Organicheskoi Khimii 1981 , 17 , 146; b) I. Y. Shirobokov, V. A. Ostrovskii, G. I. Koldobskii, Zhurnal Organicheskoi Khimii 1980 , 16 , 2145; c) I. Y. Shirobokov, V. A. Ostrovskii,G.I.Koldobskii, ZhurnalOrganicheskoiKhimii 1980 , 16 ,788;d)I.Y. Shirobokov, V. A. Ostrovskii, G. I. Koldobskii, Zhurnal Organicheskoi Khimii 1979 , 15 ,839. 185 S.Hunig, Ber. 1956 ,85,1056. 186 J.C.R.Rippey,M.I.Stallwood, EmergencyMedicineJournal 2005 , 22 ,878.

289 Chapter6.References

187 a)M.Sittig. HandbookofToxicandHazardousChemicalsandCarcinogens .2nd ed. 1985 NoyesPublications,ParkRidgeNJ.U.S.;b)DepartmentofHealthand Human Services. Hazardous Substances Data Bank (HSDB, online database). NationalToxicologyInformationProgram,NationalLibraryofMedicine,Bethesda, MD. 1993 . 188 R.J.Spear, Aust.J.Chem. 1984 , 37 ,2453. 189 T.Balle,J.Perregaard,M.T.Ramirez,A.K.Larsen,K.K.Søby,T.Liljefors,K, Andersen, J.Med.Chem . 2003 , 46 ,265. 190 R.N.Butler,V.C.Garvin,T.M.McEvoy, J.Chem.Res.(S) 1981 , 6,174. 191 H.Yuan,R.B.Silverman, Bioorg.Med.Chem. 2006 , 14 ,1331. 192H.Ogawa,T.Chiara,K.Taya, J.Am.Chem.Soc. 1985 , 107 ,1365. 193 R. Blumstein, G. J. Murphy, A. Blumstein, A. C. Watterson, Polymer Letters Edition 1973 , 11 ,21. 194 a)A.Presser,A.Hüfner, Monatsh.Chem. 2004 , 135 ,1015;b)R.L.Kreeger,H. Shechter, Tetrahedron Lett. 1975 , 25 , 2061; c) N. Hashimoto, T. Aoyama, T. Shioiri, Chem.Pharm.Bull. 1981 , 29 ,1475. 195 D.Seyferth,A.W.Dow,H.Menzel,T.C.Flood, J. Am. Chem. Soc. 1968 , 90 , 1080. 196 J.Boivin,E.Henriet,S.Z.Zard, J. Am.Chem.Soc. 1 994 , 116 ,9739. 197 H.Iwamura,K.Albert,A.Rieker, TetrahedronLett. 1976 , 30 ,2627. 198 M.Kawanisi,I.Otani,H.Nozaki, TetrahedronLett . 1968 ,53,5575. 199 a) O. Dimroth, Ber. 1905 , 38 , 670; b) O. Dimroth, Ber. 1903 , 36 , 909; c) O. Dimroth, Ber. 1907 , 40 ,2390. 200 A.A.R.Laila, Gazz.Chim.Ital . 1989 , 119 ,453. 201 a)K.Vaughan,M.F.G.Stevens, Chem.Soc.Rev. 1978 , 7,377;b)H.Ogawa,T. Chihara, K. Taya, J. Am. Chem. Soc. 1985, 107 , 1365; c) A. Mangia, A. Scandroglio, TetrahedronLett . 1978 , 19 ,5219. 202 N.S.Isaacs,E.Rannala, J.Chem.Soc.PerkinTrans.2 1974 , 8,902. 203 K.Vaughan,M.T.H.Liu, Can.J.Chem. 1981 , 59 ,923. 204 K.Albert,M.M.Dangel,A.Rieker,H.Iwamura,Y. Imahashi, Bull.Chem.Soc. Japan 1976 , 49 ,2537. 205 G.Lunn,E.B.Sansone,L.K.Keefer, Synthesis 1985 , 12 ,1104 . 206 a) P. I. Dalko, L. Moisan, Angew. Chem., Int. Ed. 2001 , 40 , 3726; b) S. B. Tsogoeva, Eur.J.Org.Chem. 2007 ,1701.

290 Chapter6.References

207 P. I. Dalko in Enantioselective Organocatlysis: Reactions and Experimantal Procedures 2007 ,WileyVCHVerlagGmbH&Co,KgaA,Weinheim. 208 J.Seayad,B.List, Org.Biomol.Chem. 2005 , 3,719. 209 O.Andrey,A.Alexakis,A.Tomassini,G.Bernardinelli, Adv.Synth.Catal. 2004 , 347 ,1147. 210 a)B.List, Tetrahedron 2002 , 58 ,5573;b)B.List, Acc.Chem.Res. 2004 , 37 ,548. 211 P.Melchiorre,K.A.Jørgensen, J.Org.Chem. 2003 , 68 ,4151. 212 M.Marigo,K.A.Jørgensen, Chem.Commun. 2006 ,2001. 213 A.B.Northrup,D.W.C.MacMillan, J.Am.Chem.Soc. 2002 , 124 ,2458. 214 W.Notz,F.Tanaka,C.F.Barbas,III, Acc.Chem.Res. 2004 ,37,580. 215 C.Ó.Dálaigh,Synlett 2005 , 5,875. 216M.S.Sigman,P.Vachal,E.N.Jacobsen, Angew.Chem.,Int.Ed. 2000 , 39 ,1279. 217 a)S.Mossé,A.Alexakis, Org.Lett . 2005 ,7,4361;b)O.Andrey,A.Alexakis,G. Bernardinelli, Org.Lett. 2003 , 5,2559. 218 a) J. M. Betancort, C. F. Barbas, III, Org. Lett. 2001 , 3, 3737; b) N. Mase, R. Thayumanavan, F. Tanaka, C. F. Barbas, III, Org. Lett. 2004 , 6, 2527; c) J. M. Betancort,K.Sakthivel,R.Thayumanavan,F.Tanaka,C.F.Barbas,III, Synthesis 2004 , 9,1509. 219 S.V.Ley, AsymmetricSynthesis 2007 ,201. 220 G.Bredig,W.S.Fiske, Biochem.Z. 1912 ,7. 221 H.Pracejus,H.Mätje, J.Prakt.Chem. 1964 , 24 ,195. 222 a)Z.G.Hajos,D.R.Parrish,J.Org.Chem. 1974 , 39 ,1616;b)U.Eder,G.Sauer, R.Wiechert, Angew.Chem. 1971 , 83 ,492; Angew.Chem.,Int.Ed. 1971 , 10 ,496. 223 N.S.Chowdari,C.F.Barbas,III, Org.Lett. 2005 , 7,867. 224 Z. Grzonka, B. Liberek, Z. Palacz, Zeszyty Naukowe Wydzialu Matematyki, Fizyki, Chemii:Chemia 1971 , 1,201. 225 A.J.A.Cobb,D.M.Shaw,S.V.Ley, Synlett 2004 ,3,558. 226 A.Hartikka,P.I.Arvidsson, Tetrahedron:Asymmetry 2004 , 15 ,1831. 227 A.Cordova,W.Notz,G.Zhong,J.M.Betancort,C.F.Barbas,III, J.Am.Chem. Soc. 2002 , 124 ,1842. 228 a)S.Bahmanyar,K.N.Houk, Org.Lett . 2003 ,5 ,1249;b)S.Bahmanyar,K.N. Houk,H.J.Martin,B.List, J.Am.Chem.Soc. 2003 , 125 ,2475;c)S.Bahmanyar, K.N.Houk, J.Am.Chem.Soc. 2001 , 123 ,11273.

291 Chapter6.References

229 A.J.A.Cobb,D.M.Shaw,D.A.Longbottom,J.B.Gold,S.V.Ley, Org.Biomol. Chem. 2005 , 3,84. 230 B.List,P.Pojarliev,H.J.Martin, Org.Lett. 2001 , 3,2423. 231 A.J.A.Cobb,D.A.Longbottom,D.M.Shaw,S.V.Ley, Chem.Commun. 2004 , 1808. 232 S.Mossé,M.Laars,K.Kriis,T.Kanger,A.Alexakis, Org.Lett. 2006 , 8,2559. 233 C.Palomo,S.Vera,A.Mielgo,E.GómezBengoa, Angew.Chem.,Int.Ed. 2006 , 45 ,5984. 234 K.R.Knudsen,C.E.T.Mitchell,S.V.Ley,Chem.Commun. 2006 ,66. 235 H.Torii,M.Nakadai,K.Ishihara,S.Saito,H. Yamamoto, Angew. Chem. 2004 , 116 ,2017. 236 N. Momiyama, H. Torii, S. Saito, H. Yamamoto, Proc. Natl. Acad. Sci. U.S.A. 2004 , 101 ,5374. 237 V.Fanckevičius,K.R.Knudsen,M.Ladlow,D.A.Longbottom,S.V.Ley, Synlett. 2006 , 6,889. 238Z.P.Demko,K.B.Sharpless, Org.Lett .2002 , 4,2525. 239 R.G.Almquist,W.R.Chao,C.JenningsWhite,J.Med.Chem . 1985 , 28 ,1067. 240 M.J.Lucero,K.N.Houk, J.Am.Chem.Soc. 1997 ,119,826. 241 D.Seebach,J.Goliński, Helv.Chim.Acta 1981 , 64 ,1413. 242 S.J.Blarer,W.B.Schweizer,D.Seebach, Hev.Chim.Acta 1982 , 5,1637 243 D. Seebach, A. K. Beck, D. M. Bladine, M. Limbach, A. Eschenmoser, A. M. Treasurywala, R. Hobi, W. Prikoszovich, B. Linder, Helv. Chim. Acta 2007 , 90 , 425. 244 A.Alexakis,O.Andrey, Org.Lett. 2002 , 4,3611. 245 M.Arnó,R.J.Zaragozá,L.R.Domingo, Tetrahedron:Asymmetry 2005 , 16 ,2764. 246 P. Perlmutter in Conjugate Adition Reactions in Organic Synthesis , Pergamon Press:Oxford, 1992 . 247 A.T.Rizk,C.A.Kilner,M.A.Halcrow, Cryst.Eng.Commun. 2005 , 7,359. 248 N.Fridman,M.Kapon,M.Kaftory, ActaCryst. 2004 ,C60,o47. 249 N.N.Kolos,B.V.Paponov,V.D.Orlov,M.I.Lvovskaya,A.O.Doroshenko,O. V.Shishkin, J.Mol.Structure 2006 , 785 ,114. 250 a)W.R.Ellis,Jr.,W.L.Purcell, Inorg.Chem. 1982 , 21 ,834;b)P.Lin,W.Clegg, R.W.Harrington,R.A.Henderson, DaltonTrans. 2005 ,2388.

292 Chapter6.References

251M.Parvez,P.C.Unangst,D.T.Connor,M.D.Mullican, ActaCryst. 1991 ,C47, 611.

293

Molecules

N N N N N N N N N N N Cs N H H Cl Cl 1 2 11 N N N N Br N N N S S N N H H

16 17 26 N N N N N S O N

MeO

70 73 74 N NH O N N N N N N O N S S N S N N N H H

75 76 77 N NH N N NH N NH N N N N S N NH N N N NH N N N N 79 78 80 N N N NH N N N NH N N N N N H N N HN 81 82 83 HN N N NH N N N N N CH N N 3 NH N NH N N HN N N NH 85 86 NN N N 84 N N NH CF N 3 N CH3 N N HN N NH N 88 N 89 87 N N N N N N NH N N NH NH N N N N N CH H N 3 N N N H 92 90 91 N N N N OH N N N N N N N NH N N H H H N O N N 2 93 94 95 F N N Cl N N I N N N N N N N N H H H

96 97 98 N N OH OH N H N N N H C H 3 N N N NH N N F 99 100 101 OH N N N N H N N N N N N H H N N N N 102 103 104 N N N N N N N N N N H N N N HN N H N NN NH 105 N 106 107 N N N N N N O N S N N N HN HN H HN 108 109 110 H N H H N NH N NH N NH N N N N N N N N O O O O O O

113 111 112

N NH H H N N H C N NH NH 3 N N N N H N N H N N CH 115 3 114 116 N O HN N H N N N NH O N O CN N N N NH MeO C 119 117 2 118 N O O Et N N H H N N N H N N HO O N O N N N 122 123 Et 125 OH N N N N HN N N H H N MeO C CO Me HO N 2 2 N 126 N 130 128 N HN N O Pri-O B N Al N MeO C 3 3 2 O Pri-O 134 139

132 Cl

N N N N Cl N N N N K N H3C O N N N O O

140 O

143

144 H C N N N N 3 N N N N CH N N 3 CH3 N N F F

145 Cl 146 147 H C 3 H C N N N N 3 N N N N MeO C N N CH 2 3 MeO C N N 2

149 Cl 150 148

H N N H N N H N N N N N N N O O N N N N OO O O

161 162 164

N N O O N O O N S N N S N N O O N N H S N N

COOCH COOCH 3 3 165 COOCH 167 3 166

N O O N H N N CH N S 3 H N N N N N N N N N O O O CO Me 169 2 177 168 H C 3 N N O O CH3 N O N N S O N N O N O S N S N N N CH 3

CO Me 180 2 179 178

N N N N S N S N CH3 S N N N N N N CH H C 3 181 3 183 182 CH3 N N H N N N H N N N N N S N O CH N N N 3 O H C O 3 O 184

186

185 H N N O O N NO NO H N N 2 H 2

235 212 214 H H N H N N N N N N N H N N N H N N H NN 236 238 237 H H H N N N N N Na N N K N N Cs H N N H N N H N N 239 240 241 H ++ N N H H N N N N N H N Pd N N N H H N N H H N N N N N TFA N 243 N 244 H 242 H H N N N N H N N N N N N H H H H N N N O N N N O OH H H O Cl S O 245 O O 250 248 H H H N N N N N N N N N HN N HN N N N H3C H3C

CH 3

259a 259b 260a H CH H N 3 N N N N N N N N HN N

CH 3 260b 261 262 H H N N H N N N N N N N N N N N N N

263 264 265

H N N N N OH N N NO2

266 268 267