Gerhard Storch – a Legend in Mammal Research

Total Page:16

File Type:pdf, Size:1020Kb

Gerhard Storch – a Legend in Mammal Research Gerhard Storch – a legend in mammal research During the second half of the 20th century, mammalogy underwent a revolutionary burst in knowledge about diverse aspects of mammalian biology, phylogeny of particular clades and detailed information on the course of their history. It is ascribed primarily to extensive instrumentation innovations and to methods not available earlier. In the time of big data and excessive information boom, we somehow forgot that, in general, scientific progress results first of all from initial setup of new research fields, identification of links between different research areas and establishing conceptual outlines for research efforts to come. Without the intellectual efforts of personalities disposed to respond to these demands, no progress in any branch of science would be possible. The late Gerhard Storch, to whose memory the present volume is devoted, personified this in an exemplary way. He has been rightly denoted as one of the greatest mammalogists of our time. He was an outstanding integrative personality, who contributed to the shift in knowledge of both recent and fossil mammals in an essential way. Gerhard Storch giving a talk at the Congressus Theriologicus Internationalis in Brno, 1978 (photo by J. Červený) Gerhard Storch was born on May 21st, 1939 in Frankfurt am Main, where he also grew up and spent most of his life. As an enthusiastic young naturalist, he became already at the age of 15 a member of the Senckenberg Gesellschaft für Naturforschung. There began his close co-operation with Heinz Felten (1922 – 2000), then a research fellow of the Senckenberg Resarch Institute and Natural History Museum Frankfurt, and experienced expert in small ground mammals and bats. Gerhard started with field study of these groups, in order to resolve diverse questions of their biology, and, first of all, the taxonomic, biogeographic and evolutionary settings of particular clades. During the 1960s, he undertook about 50 field trips to study native rodents and insectivores in the wider Rhine-Main area, and particularly in the Alps, as the major crossroad of the mid-European mammalian biodiversity. Detailed investigations of small Alpine mammals were resumed in 1971, with collective trips to the Italian Alpine region, resolving the status of enigmatic endemic forms of that region [44, 112, 189]. Simultaneously, since the beginning of 1960s, he regularly conducted research trips into exotic destinations of the Mediterranean and Middle East, regions which mammal fauna was then nearly unknown. These adventures were undertaken first with Franz Malec, a friend of his age and with similar interests (later a director of the Natural History Museum in Kassel), and later in the sixties, as part of a common large-scale research program, also with Heinz Felten, Friedericke Spitzenberger and Dieter Kock. The systematic field study of the mammal fauna in the Balkans, Iran, Turkey, Syria, Spain, Italy, Mediterranean v islands and northern Africa resulted in a series of papers, which present true pillars of knowledge on mammal fauna and biogeography of these regions [1–5, 9, 10, 16–21, 23–25, 28, 39–44, 62, 68, 234]. They resolved numerous uncertainties about the taxonomic and distribution status of particular local forms (with descriptions of several new taxa [1, 9, 16, 42]), and at the same time established a high standard for further investigations of that kind. The refined techniques of comparative analyses combining detailed morphometrics, scoring of non-metric variables and contextual factors (habitat requirements etc.) are shown here as tools for disclosing the patterns of interspecific and intraspecific variations. This also enabled to address the questions of biogeographic and historical factors influencing local faunal development. It is quite illustrative, in this respect, that beginning with their first expeditions, Storch and Malec combined the large-scale collecting of extant mammals with increasing interest in the study of subfossil and fossil mammals, and practical exploration of suspected fossiliferous sites. In his search for the historical roots of extant taxa and the dynamics of extant communities, Gerhard focused his attention first on the development of the Late Pleistocene and Holocene fauna and excavations of cave deposits of that age, including various archaeological sites both in Germany [14, 29, 35, 36, 56–58, 63–64, 72, 76, 88, 119, 130, 152, 224] and abroad [15,16– 18, 23–26, 31–32, 37, 41, 62, 99]. This brought him to compile the first comprehensive summaries on the history of mammal communities along the Pleistocene / Holocene transition in Central Europe, Northeast Iran and South Anatolia [35, 62, 99], highlighting phenotype shifts in some taxa [14, 17, 36], and the geographical variations of these phenomena [130, 224]. The broad span of Gerhard’s interests at the time of his university studies (in Darmstadt, Vienna and Frankfurt) was further expanded after he managed to get a temporary position as research assistant at the Senckenberg Mammalogy Section in 1967 (funded by the Deutsche Forschungsgemeinschaft – DFG). At that time, he focused his work on a detailed comparative study of the functional and morphological aspects of mastication in diverse mammalian clades [8, 11, 13]. The monographic survey of bats [11], an essential part of his PhD thesis (1967), is particularly worthy of attention. It integrated an enormous amount of myological and craniomorphological data, biomechanical models and recordings of jaw kinematics, with details of feeding biology and hypotheses on phylogenetic relations among individual clades of the order. The study provided a complex view on pathways of feeding specializations, and among other things, explicitly demonstrated the monophyly of the order, long before molecular tools resolved doubts on that point. In 1969, Gerhard Storch became a fulltime researcher at the Senckenberg Research Institute and Natural History Museum Frankfurt, and thanks to the initiative of Heinz Felten, the head of the newly established Section Mammalogy II, a research unit focused on fossil mammals. The topic of his research was Tertiary and Quaternary small mammals (rodents, insectivores, bats). Besides continuous interest in the Holocene and Late Pleistocene interface of neontologic topics, and the palaeobiogeography of Mediterranean mammals, Gerhard extended the frame of his investigations to mammal faunas of the Early Pleistocene, Pliocene and Late Miocene age. During the seventies, in co-operation with Franz Malec and Jens Franzen, he described rich assemblages from Hohensülzen [30] and Dorn-Dürkheim [38, 40, 46, 55, 157, 199], as well as Early and Middle Pleistocene sites on the islands of Malta, Chios and Kalymnos [34, 39, 45]. By the end of the 1970s, he took care of a unique collection of mammalian fossils from one of the world’s most important Lagerstätte: the early middle Eocene Messel Pit fossil site. In 1978, he described from there the earliest member of the order Pholidota: Eomanis waldi [47, 54, 65, 95, 135]. At the same time, he paid special attention to one of his favorite groups, particularly well-represented in the Messel fossil record – bats. Thanks to abundant and extraordinary well-preserved material from Messel, he subsequently described (partly together with J. Habersetzer, G. Richter, J. Smith or B. Sigé) several new clades of early bats (including a new family Hassianycteridae), revealed unexpected details on their diet, dental characters, diversification of their wing morphology, echolocation capacities, foraging strategies and pathways of the earliest adaptive radiations within the order [60–61, 84, 91, 105–106, 108, 113, 124–126, 131, 141, 151, 179, 182, 217]. No wonder that Gerhard Storch is widely remembered as one of the most prominent experts in that group and its history. Analysing further Messel fossils, he contributed in a similar way to the knowledge of the early history of a wide spectrum of mammalian clades. For instance, his description of Eurotamandua joresi [67, 96] started vivid discussions on the relationships between Afrotheria and Xenarthra, and extensive reconsideration of Eocene mammal radiations, prefiguring the current concept of Atlantogenata [121, 209, 211, 213, 218–220, 240]. An extraordinarily preserved specimen of Eogliravus wildi, the earliest dormice rodent, elucidated phylogenetic relationships of that family [198, 200, 216, 242]. His work on the insectivorous mammals of Messel, both placentals and marsupials [71, 78, 80, 85–87, 92–93, 98, 132, 133, 145–148, 177, 178] helped defining the diagnostic characters and understanding the early diversification of several clades (e.g. Proteutheria, Lipotyphla, Primates), and the palaeobiological factors of their radiations. Storch’s extraordinary capacity for synthesizing complex results enabled him to compile a series of studies in which the distinguishing features of the Messel fauna and its significance for solving palaeobiogeographic and palaeoenvironmental questions in the Eocene were demonstrated in detail [75, 81–83, 92–97, 100, 109–110, 116, 127, 131–137, 140, 142, 144, 158, 183, 210, 212, 233, 241, 245]. Likewise, Storch paid attention to other early Paleogene fossils, particularly from Geiseltal [78, 111, 140, 158, 208], the Paleocene site Walbeck [256], and the eomyid rodents from the Oligocene site Enspel, which revealed the earliest gliding adaptation in rodents [162, 173, 193]. While he worked with continuous efforts on solving enigmas about the Paleogene stage
Recommended publications
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • A Pangolin Genome Hub for the Research Community
    Database, 2016, 1–10 doi: 10.1093/database/baw063 Original article Original article PGD: a pangolin genome hub for the research community Tze King Tan1,2, Ka Yun Tan1,3, Ranjeev Hari1,2, Aini Mohamed Yusoff1,2, Guat Jah Wong1, Cheuk Chuen Siow1, Naresh V.R. Mutha1, Mike Rayko4, Aleksey Komissarov4, Pavel Dobrynin4, Ksenia Krasheninnikova4, Gaik Tamazian4, Ian C. Paterson2,5, Wesley C. Warren6, Warren E. Johnson7, Stephen J. O’Brien4,8 and Siew Woh Choo1,2,9,* 1Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, University of Malaya, 50603 Kuala Lumpur, Malaysia, 2Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, 3Institute of Biology Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur Malaysia, 4Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, St. Petersburg 199004, Russia, 5Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, 6McDonnell Genome Institute, Washington University, St Louis, MO 63108, USA, 7Smithsonian Conservation Biology Institute, Front Royal, Virginia 22630, USA, 8Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL, 33004, USA and 9Genome Solutions Sdn Bhd, Suite 8, Innovation Incubator UM, Level 5, Research Management & Innovation Complex, University of Malaya, 50603 Kuala Lumpur, Malaysia *Corresponding author: Tel: þ603-79676463; Email: [email protected] Citation details: Tan,T.K., Tan,K.Y., Hari,R. et al. PGD: a pangolin genome hub for the research community. Database (2016) Vol. 2016: article ID baw063; doi:doi:10.1093/database/baw063 Received 24 October 2015; Revised 15 March 2016; Accepted 11 April 2016 Abstract Pangolins (order Pholidota) are the only mammals covered by scales.
    [Show full text]
  • Mammal and Plant Localities of the Fort Union, Willwood, and Iktman Formations, Southern Bighorn Basin* Wyoming
    Distribution and Stratigraphip Correlation of Upper:UB_ • Ju Paleocene and Lower Eocene Fossil Mammal and Plant Localities of the Fort Union, Willwood, and Iktman Formations, Southern Bighorn Basin* Wyoming U,S. GEOLOGICAL SURVEY PROFESS IONAL PAPER 1540 Cover. A member of the American Museum of Natural History 1896 expedition enter­ ing the badlands of the Willwood Formation on Dorsey Creek, Wyoming, near what is now U.S. Geological Survey fossil vertebrate locality D1691 (Wardel Reservoir quadran­ gle). View to the southwest. Photograph by Walter Granger, courtesy of the Department of Library Services, American Museum of Natural History, New York, negative no. 35957. DISTRIBUTION AND STRATIGRAPHIC CORRELATION OF UPPER PALEOCENE AND LOWER EOCENE FOSSIL MAMMAL AND PLANT LOCALITIES OF THE FORT UNION, WILLWOOD, AND TATMAN FORMATIONS, SOUTHERN BIGHORN BASIN, WYOMING Upper part of the Will wood Formation on East Ridge, Middle Fork of Fifteenmile Creek, southern Bighorn Basin, Wyoming. The Kirwin intrusive complex of the Absaroka Range is in the background. View to the west. Distribution and Stratigraphic Correlation of Upper Paleocene and Lower Eocene Fossil Mammal and Plant Localities of the Fort Union, Willwood, and Tatman Formations, Southern Bighorn Basin, Wyoming By Thomas M. Down, Kenneth D. Rose, Elwyn L. Simons, and Scott L. Wing U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1540 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Robert M. Hirsch, Acting Director For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field
    Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field June 12, 2007 ABSTRACT This is compilation of a technical analysis of existing paleontological data and a limited, selective paleontological field survey of the geologic bedrock formations that will be impacted on Federal lands by construction associated with energy development in the Jonah Field, Sublette County, Wyoming. The field survey was done on approximately 20% of the field, primarily where good bedrock was exposed or where there were existing, debris piles from recent construction. Some potentially rich areas were inaccessible due to biological restrictions. Heavily vegetated areas were not examined. All locality data are compiled in the separate confidential appendix D. Uinta Paleontological Associates Inc. was contracted to do this work through EnCana Oil & Gas Inc. In addition BP and Ultra Resources are partners in this project as they also have holdings in the Jonah Field. For this project, we reviewed a variety of geologic maps for the area (approximately 47 sections); none of maps have a scale better than 1:100,000. The Wyoming 1:500,000 geology map (Love and Christiansen, 1985) reveals two Eocene geologic formations with four members mapped within or near the Jonah Field (Wasatch – Alkali Creek and Main Body; Green River – Laney and Wilkins Peak members). In addition, Winterfeld’s 1997 paleontology report for the proposed Jonah Field II Project was reviewed carefully. After considerable review of the literature and museum data, it became obvious that the portion of the mapped Alkali Creek Member in the Jonah Field is probably misinterpreted.
    [Show full text]
  • Influence of Tertiary Paleoenvironmental Changes On
    BMC Evolutionary Biology BioMed Central Research article Open Access Influence of Tertiary paleoenvironmental changes on the diversification of South American mammals: a relaxed molecular clock study within xenarthrans Frédéric Delsuc*1,2, Sergio F Vizcaíno3 and Emmanuel JP Douzery1 Address: 1Laboratoire de Paléontologie, Paléobiologie et Phylogénie, Institut des Sciences de l'Evolution, Université Montpellier II, Montpellier, France, 2The Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand and 3Departamento Científico Paleontología de Vertebrados, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina Email: Frédéric Delsuc* - [email protected]; Sergio F Vizcaíno - [email protected]; Emmanuel JP Douzery - [email protected] * Corresponding author Published: 28 April 2004 Received: 25 December 2003 Accepted: 28 April 2004 BMC Evolutionary Biology 2004, 4:11 This article is available from: http://www.biomedcentral.com/1471-2148/4/11 © 2004 Delsuc et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. MammalsXenarthransEvolutionPalaeontologyPhylogenyRelaxed molecular clockBayesian datingGlobal changeTertiarySouth America Abstract Background: Comparative genomic data among organisms allow the reconstruction of their phylogenies and evolutionary time scales. Molecular
    [Show full text]
  • Resolving the Relationships of Paleocene Placental Mammals
    Biol. Rev. (2015), pp. 000–000. 1 doi: 10.1111/brv.12242 Resolving the relationships of Paleocene placental mammals Thomas J. D. Halliday1,2,∗, Paul Upchurch1 and Anjali Goswami1,2 1Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, U.K. 2Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, U.K. ABSTRACT The ‘Age of Mammals’ began in the Paleocene epoch, the 10 million year interval immediately following the Cretaceous–Palaeogene mass extinction. The apparently rapid shift in mammalian ecomorphs from small, largely insectivorous forms to many small-to-large-bodied, diverse taxa has driven a hypothesis that the end-Cretaceous heralded an adaptive radiation in placental mammal evolution. However, the affinities of most Paleocene mammals have remained unresolved, despite significant advances in understanding the relationships of the extant orders, hindering efforts to reconstruct robustly the origin and early evolution of placental mammals. Here we present the largest cladistic analysis of Paleocene placentals to date, from a data matrix including 177 taxa (130 of which are Palaeogene) and 680 morphological characters. We improve the resolution of the relationships of several enigmatic Paleocene clades, including families of ‘condylarths’. Protungulatum is resolved as a stem eutherian, meaning that no crown-placental mammal unambiguously pre-dates the Cretaceous–Palaeogene boundary. Our results support an Atlantogenata–Boreoeutheria split at the root of crown Placentalia, the presence of phenacodontids as closest relatives of Perissodactyla, the validity of Euungulata, and the placement of Arctocyonidae close to Carnivora. Periptychidae and Pantodonta are resolved as sister taxa, Leptictida and Cimolestidae are found to be stem eutherians, and Hyopsodontidae is highly polyphyletic.
    [Show full text]
  • Rapid and Early Post-Flood Mammalian Diversification Videncede in the Green River Formation
    The Proceedings of the International Conference on Creationism Volume 6 Print Reference: Pages 449-457 Article 36 2008 Rapid and Early Post-Flood Mammalian Diversification videncedE in the Green River Formation John H. Whitmore Cedarville University Kurt P. Wise Southern Baptist Theological Seminary Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Whitmore, John H. and Wise, Kurt P. (2008) "Rapid and Early Post-Flood Mammalian Diversification Evidenced in the Green River Formation," The Proceedings of the International Conference on Creationism: Vol. 6 , Article 36. Available at: https://digitalcommons.cedarville.edu/icc_proceedings/vol6/iss1/36 In A. A. Snelling (Ed.) (2008). Proceedings of the Sixth International Conference on Creationism (pp. 449–457). Pittsburgh, PA: Creation Science Fellowship and Dallas, TX: Institute for Creation Research. Rapid and Early Post-Flood Mammalian Diversification Evidenced in the Green River Formation John H. Whitmore, Ph.D., Cedarville University, 251 N. Main Street, Cedarville, OH 45314 Kurt P. Wise, Ph.D., Southern Baptist Theological Seminary, 2825 Lexington Road.
    [Show full text]
  • Citogenética Molecular Y Reproducción De La Tribu Euphractini Winge, 1923 (Dasypodidae, Xenarthra, Mammalia) De Argentina
    Tesis Doctoral Citogenética molecular y reproducción de la tribu Euphractini Winge, 1923 (Dasypodidae, Xenarthra, Mammalia) de Argentina Luaces, Juan Pablo 2011-12-12 Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Luaces, Juan Pablo. (2011-12-12). Citogenética molecular y reproducción de la tribu Euphractini Winge, 1923 (Dasypodidae, Xenarthra, Mammalia) de Argentina. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Cita tipo Chicago: Luaces, Juan Pablo. "Citogenética molecular y reproducción de la tribu Euphractini Winge, 1923 (Dasypodidae, Xenarthra, Mammalia) de Argentina". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2011-12-12. Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Contacto: [email protected] Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 UNIVERSIDAD DE BUENOS AIRES FACULTAD DE CIENCIAS EXACTAS Y NATURALES Citogenética molecular y reproducción de la tribu Euphractini Winge, 1923 (Dasypodidae, Xenarthra, Mammalia) de Argentina. Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área: CIENCIAS BIOLÓGICAS Lic. Juan Pablo Luaces Director: Prof. Dra. María Susana Merani Consejero de estudios: Prof. Dra.
    [Show full text]
  • Ankle Structure in Eocene Pholidotan Mammal Eomanis Krebsi and Its Taxonomic Implications
    Ankle structure in Eocene pholidotan mammal Eomanis krebsi and its taxonomic implications Inés Horovitz, Gerhard Storch, and Thomas Martin Acta Palaeontologica Polonica 50 (3), 2005: 545-548 Georges Cuvier (1798) established the classical concept of Edentata which included sloths, anteaters, armadillos, aardvarks, and pangolins. With the growing body of comparative morphological data becoming available during the nineteenth century, it was evident that Cuvier's “Edentata” was an artificial group (e.g., Huxley 1872). In his classical textbook,Weber (1904) excluded aardvarks and pangolins from the Edentata and put them in separate orders, Tubulidentata and Pholidota. Later on, fossil taxa were repeatedly added to and removed from Edentata, such as various xenarthran groups, taeniodonts, palaeanodonts, and gondwanatheres, but the South American Xenarthra always was considered as their core group. Even the living order Pholidota has been cited again as ?Edentata incertae sedis many years after Weber’s work (Romer 1966). The validity and extent of a higher taxon Edentata are still in dispute. In this discussion, the Middle Eocene pholidotan Eomanis and the putative xenarthran Eurotamandua from Grube Messel near Darmstadt (Germany) play an important role (Storch 1978, 1981, 2003; Rose and Emry 1993; Gaudin and Branham 1998; Rose 1999). Eomanis krebsi and Eurotamandua joresi have been subject to some discussion regarding their taxonomic distinction. It has been suggested that the only specimen known of Eo. krebsi might actually be a juvenile representative of the senior species E. joresi. A reexamination of the type specimen of Eo. krebsi has yielded some new observations regarding the identity of some of its ankle elements.
    [Show full text]
  • SUPPLEMENTARY INFORMATION: Tables, Figures and References
    Samuels et al. Evolution of the patellar sesamoid bone in mammals SUPPLEMENTARY INFORMATION: Tables, Figures and References Supplementary Table S1: Mammals$ Higher taxa Genus sp. Estimated. age of Patellar Comments# (partial) specimen, location state 0/1/2 (absent/ ‘patelloid’/ present) Sinoconodonta Sinoconodon Jurassic 0 Patellar groove absent, suggests no rigneyi (Kielan- patella Jaworowska, Cifelli & Luo, Sinoconodon is included on our 2004) phylogeny within tritylodontids. Morganucodonta Megazostrodon Late Triassic, southern 0 rudnerae (Jenkins Africa & Parrington, 1976) Morganucodonta Eozostrodon sp. Late Triassic, Wales 0 Asymmetric patellar groove, (Jenkins et al., specimens disarticulated so it is hard 1976) to assess the patella but appears absent Docodonta Castorocauda 164 Mya, mid-Jurassic, 0 Semi-aquatic adaptations lutrasimilis (Ji, China Luo, Yuan et al., 2006) Docodonta Agilodocodon 164 Mya, mid-Jurassic, 0 scansorius China (Meng, Ji, Zhang et al., 2015) Docodonta Docofossor 160 Mya 0 brachydactylus (Luo, Meng, Ji et al., 2015) Docodonta Haldanodon 150-155 Mya, Late 0 Shallow patellar groove exspectatus Jurassic, Portugal (Martin, 2005b) Australosphenida Asfaltomylos Mid-Jurassic, South ? Postcranial material absent patagonicus America (Martin, 2005a) Australosphenida Ornithorhynchus Extant 2 Platypus, genome sequenced Monotremata anatinus (Warren, Hillier, Marshall Graves et (Herzmark, 1938; al., 2008) Rowe, 1988) Samuels et al. Australosphenida Tachyglossus + Extant 2 Echidnas Monotremata Zaglossus spp. (Herzmark, 1938; Rowe, 1988) Mammaliaformes Fruitafossor 150 Mya, Late Jurassic, 0 Phylogenetic status uncertain indet. windscheffeli (Luo Colorado & Wible, 2005) Mammaliaformes Volaticotherium Late Jurassic/Early ? Hindlimb material incomplete indet. antiquus (Meng, Cretaceous Hu, Wang et al., 2006) Eutriconodonta Jeholodens 120-125 Mya, Early 0 Poorly developed patellar groove jenkinsi (Ji, Luo Cretaceous, China & Ji, 1999) Eutriconodonta Gobiconodon spp.
    [Show full text]
  • Mammalia) of São José De Itaboraí Basin (Upper Paleocene, Itaboraian), Rio De Janeiro, Brazil
    The Xenarthra (Mammalia) of São José de Itaboraí Basin (upper Paleocene, Itaboraian), Rio de Janeiro, Brazil Lílian Paglarelli BERGQVIST Departamento de Geologia/IGEO/CCMN/UFRJ, Cidade Universitária, Rio de Janeiro/RJ, 21949-940 (Brazil) [email protected] Érika Aparecida Leite ABRANTES Departamento de Geologia/IGEO/CCMN/UFRJ, Cidade Universitária, Rio de Janeiro/RJ, 21949-940 (Brazil) Leonardo dos Santos AVILLA Departamento de Geologia/IGEO/CCMN/UFRJ, Cidade Universitária, Rio de Janeiro/RJ, 21949-940 (Brazil) and Setor de Herpetologia, Museu Nacional/UFRJ, Quinta da Boa Vista, Rio de Janeiro/RJ, 20940-040 (Brazil) Bergqvist L. P., Abrantes É. A. L. & Avilla L. d. S. 2004. — The Xenarthra (Mammalia) of São José de Itaboraí Basin (upper Paleocene, Itaboraian), Rio de Janeiro, Brazil. Geodiversitas 26 (2) : 323-337. ABSTRACT Here we present new information on the oldest Xenarthra remains. We conducted a comparative morphological analysis of the osteoderms and post- cranial bones from the Itaboraian (upper Paleocene) of Brazil. Several osteo- derms and isolated humeri, astragali, and an ulna, belonging to at least two species, compose the assemblage. The bone osteoderms were assigned to KEY WORDS Mammalia, Riostegotherium yanei Oliveira & Bergqvist, 1998, for which a revised diagno- Xenarthra, sis is presented. The appendicular bones share features with some “edentate” Cingulata, Riostegotherium, taxa. Many of these characters may be ambiguous, however, and comparison Astegotheriini, with early Tertiary Palaeanodonta reveals several detailed, derived resem- Palaeanodonta, blances in limb anatomy. This suggests that in appendicular morphology, one armadillo, osteoderm, of the Itaboraí Xenarthra may be the sister-taxon or part of the ancestral stock appendicular skeleton.
    [Show full text]
  • Download Full Article 2.6MB .Pdf File
    Memoirs of Museum Victoria 74: 151–171 (2016) Published 2016 ISSN 1447-2546 (Print) 1447-2554 (On-line) http://museumvictoria.com.au/about/books-and-journals/journals/memoirs-of-museum-victoria/ Going underground: postcranial morphology of the early Miocene marsupial mole Naraboryctes philcreaseri and the evolution of fossoriality in notoryctemorphians ROBIN M. D. BECK1,*, NATALIE M. WARBURTON2, MICHAEL ARCHER3, SUZANNE J. HAND4, AND KENNETH P. APLIN5 1 School of Environment & Life Sciences, Peel Building, University of Salford, Salford M5 4WT, UK and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia ([email protected]) 2 School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia ([email protected]) 3 School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia ([email protected]) 4 School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia ([email protected]) 5 National Museum of Natural History, Division of Mammals, Smithsonian Institution, Washington, DC 20013-7012, USA ([email protected]) * To whom correspondence should be addressed. E-mail: [email protected] Abstract Beck, R.M.D., Warburton, N.M., Archer, M., Hand, S.J. and Aplin, K.P. 2016. Going underground: postcranial morphology of the early Miocene marsupial mole Naraboryctes philcreaseri and the evolution of fossoriality in notoryctemorphians. Memoirs of Museum Victoria 74: 151–171. We present the first detailed descriptions of postcranial elements of the fossil marsupial mole Naraboryctes philcreaseri (Marsupialia: Notoryctemorphia), from early Miocene freshwater limestone deposits in the Riversleigh World Heritage Area, northwestern Queensland.
    [Show full text]