VN Project Main Table and Bibliography
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The History of the Chemical Weapons Movement
Chemical Weapons Movement History Compilation William R. Brankowitz 27 April 1987 . Office of the Program Manager for Chemical Munitions (Demilitarization and Binary) (Provisional) Aberdeen Proving Ground, Maryland 21010-5401 I Chemical Weapons Movement History CcX@latiOn Table of Contents Page Executive Surnnaq 1 How To Use The Cmpilation 2 Introduction 6 Location Key 15 Incident Summarization Sheets 18 Compilation of Moves Pages w Year 1946 11 pages 1947 1 page 1948 2 pages 1949 4 pages 1950 3 pages 1951 2 pages 1952 2 pages 1953 3 pages 1954 3 pages 1955 1 w-e 1956 2 pages 1957 2 pages 1958 3 pages 1959 1 page 1960 1 Page 1961 1 page 1962 2 pages 1963 3 pages 1964 4 pages . 1965 5 pages 1966 4 pages 1967 6 pages 1968 a pages 1969 1 Page 1970-77 2 pages SE'EONI 3 pages SmON II 2 pages 1981-86 3 pages Reccrmendations and Conclusioris 25 f-4 i 4' References Executive Summary The production of a compilation of movement operations provides a base of data which can be used or interpreted in many ways. Some are favorable to the Army, and some are not. However, the Army wishes to show that (1) it has moved large quantities of chemical weapons over many years with relatively few problems and that (2) the Army has learned lessons from the problems which is has encountered. The Army also shows in this study that although there have been some problems associated with the movement of chemical weapons, there has never been a chemical agent fatality associated with such a move. -
Nasa X-15 Program
5 24,132 6 9 NASA X-15 PROGRAM By: T.D. Barnes - NASA Contractor - 1960s NASA contractors for the X-15 program were Bendix Field Engineering followed by Unitec, Inc. The NASA High Range Tracking stations were located at Ely and Beatty Nevada with main control being at Dryden/Edwards AFB in California. Personnel at the tracking stations consisted of a Station Manager, a Technical Advisor, and field engineers for the Mod-2 Radar, Data Transmission System, Communications, Telemetry, and Plant Maintenance/Generators. NASA had a site monitor at each tracking station to monitor our contractor operations. Though supporting flights of the X-15 was their main objective, they also participated in flights of the XB-70, the three Lifting Bodies, experimental Lunar Landing vehicles, and an occasional A-12/YF-12/SR-71 Blackbird flight. On mission days a NASA van picked up each member of the crew at their residence for the 4:20 a.m. trip to the tracking station 18 miles North of Beatty on the Tonopah Highway. Upon arrival each performed preflight calibrations and setup of their various systems. The liftoff of the B-52, with the X-15 tucked beneath its wing, seldom occurred after 9:00 a.m. due to the heat effect of the Mojave Desert making it difficult for the planes to acquire altitude. At approximately 0800 hours two pilots from Dryden would proceed uprange to evaluate the condition of the dry lake beds in the event of an emergency landing of the X-15 (always buzzing our station on the way up and back). -
1 American Institute of Aeronautics and Astronautics from Air Bubbles Cast in the Fuel (Voids) Can Cause Problems During Hot-Fire Operations
Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster George Story1 NASA MSFC Huntsville, Al Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. One remaining issue is the cost of hybrids vs the existing launch propulsion systems. This paper will review the known state-of-the-art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost. I. Introduction Hybrids, considered part solid and part liquid propulsion system, have been caught in the middle of development goals of the various NASA and military programs. Solid rocket motor technology has matured due to the design simplicity, on-demand operational characteristics and low cost. The reliability of solids, given minimal maintenance requirements, made them the ideal system for military applications. On the other hand, liquid rocket engine technology has matured due to their higher specific impulse (ISP) over solids and variable control thrust capability. Hybrid Rockets have been used in only one flight-production application (Teledyne Ryan AQM-81A ‘Firebolt Supersonic Aerial Target) and one series of recent manned flight demonstrations (Burt Rutan’s SpaceshipOne), suggesting that advantages have been overlooked in some potential applications. -
Chemical Munitions Igloos for the Container Storage of Wastes Generated from the Maintenance of the Chemical Munitions Stockpile Attachment D.2
Tooele Army Depot - South Hazardous Wae Storage Permit Permit Attachment 12 - Container Management Modification Date: March 3. 1994 Chemical Munitions Igloos for the Container Storage of Wastes Generated from the Maintenance of the Chemical Munitions Stockpile Attachment D.2. Containers with Free Liquids The stockpile of chemical munitions stored at TEAD(S) (which included the M-55 rockets before they were declarbed obsolete, and became a hazardous waste) requires continual maintenance. These maintenance activities generate wastes, examples of which are: The valves and plugs used on ton containers used to store bulk chemical agent are changed out on a periodic basis, the valves and plugs that are removed are decontaminated, containerized, and managed as a hazardous waste. Wastes of this type would typically carry waste numbers F999 and/or P999, in addition to other waste numbers where applicable. Discarded protective clothing (including suites, boots, gloves, canister to personnel breathing apparatus, etc.) is containerized and managed as a hazardous waste. Certain types of impregnated carbon have been found to contain chromium and silver in leachable quantities exceeding the TCLP criteria for hazardous waste. In such cases, EPA Waste Numbers D007 and DOll would be assigned to these wastes in addition to any other applicable hazardous waste numbers. Any indoor area where chemical agents, or agent filled munitions are stored has the potential to be ventilated. The air removed from the area passes through a bed of activated carbon before being released to the atmosphere. When the activated charcoal is changed out, the spent' carbon is containerized, and managed as a hazardous waste. -
Gallery of USAF Weapons Note: Inventory Numbers Are Total Active Inventory Figures As of Sept
Gallery of USAF Weapons Note: Inventory numbers are total active inventory figures as of Sept. 30, 2011. ■ 2012 USAF Almanac Bombers B-1 Lancer Brief: A long-range, air refuelable multirole bomber capable of flying intercontinental missions and penetrating enemy defenses with the largest payload of guided and unguided weapons in the Air Force inventory. Function: Long-range conventional bomber. Operator: ACC, AFMC. First Flight: Dec. 23, 1974 (B-1A); Oct. 18, 1984 (B-1B). Delivered: June 1985-May 1988. IOC: Oct. 1, 1986, Dyess AFB, Tex. (B-1B). Production: 104. Inventory: 66. Aircraft Location: Dyess AFB, Tex.; Edwards AFB, Calif.; Eglin AFB, Fla.; Ellsworth AFB, S.D. Contractor: Boeing, AIL Systems, General Electric. Power Plant: four General Electric F101-GE-102 turbofans, each 30,780 lb thrust. Accommodation: pilot, copilot, and two WSOs (offensive and defensive), on zero/zero ACES II ejection seats. Dimensions: span 137 ft (spread forward) to 79 ft (swept aft), length 146 ft, height 34 ft. B-1B Lancer (SSgt. Brian Ferguson) Weight: max T-O 477,000 lb. Ceiling: more than 30,000 ft. carriage, improved onboard computers, improved B-2 Spirit Performance: speed 900+ mph at S-L, range communications. Sniper targeting pod added in Brief: Stealthy, long-range multirole bomber that intercontinental. mid-2008. Receiving Fully Integrated Data Link can deliver nuclear and conventional munitions Armament: three internal weapons bays capable of (FIDL) upgrade to include Link 16 and Joint Range anywhere on the globe. accommodating a wide range of weapons incl up to Extension data link, enabling permanent LOS and Function: Long-range heavy bomber. -
U.S. Army Board Study Guide Version 5.3 – 02 June, 2008
U.S. Army Board Study Guide Version 5.3 – 02 June, 2008 Prepared by ArmyStudyGuide.com "Soldiers helping Soldiers since 1999" Check for updates at: http://www.ArmyStudyGuide.com Sponsored by: Your Future. Your Terms. You’ve served your country, now let DeVry University serve you. Whether you want to build off of the skills you honed in the military, or launch a new career completely, DeVry’s accelerated, year-round programs can help you make school a reality. Flexible, online programs plus more than 80 campus locations nationwide make studying more manageable, even while you serve. You may even be eligible for tuition assistance or other military benefits. Learn more today. Degree Programs Accounting, Business Administration Computer Information Systems Electronics Engineering Technology Plus Many More... Visit www.DeVry.edu today! Or call 877-496-9050 *DeVry University is accredited by The Higher Learning Commission of the North Central Association, www.ncahlc.org. Keller Graduate School of Management is included in this accreditation. Program availability varies by location Financial Assistance is available to those who qualify. In New York, DeVry University and its Keller Graduate School of Management operate as DeVry College of New York © 2008 DeVry University. All rights reserved U.S. Army Board Study Guide Table of Contents Army Programs ............................................................................................................................................. 5 ASAP - Army Substance Abuse Program............................................................................................... -
The Challenger Disaster
Engineering Ethics Case Study: The Challenger Disaster Course No: LE3-001 Credit: 3 PDH Mark Rossow, PhD, PE, Retired Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 07677 P: (877) 322-5800 [email protected] Engineering Ethics Case Study: The Challenger Disaster Mark P. Rossow, P.E., Ph.D. © 2015 Mark P. Rossow All rights reserved. No part of this work may be reproduced in any manner without the written permission of the author. 2 Preface On January 28, 1986, the Space Shuttle Challenger was destroyed in a disastrous fire shortly after liftoff. All passengers aboard the vehicle were killed. A presidential commission was formed to investigate the cause of the accident and found that the O-ring seals had failed, and, furthermore, that the seals had been recognized as a potential hazard for several years prior to the disaster. The commission’s report, Report to the President by the Presidential Commission on the Space Shuttle Challenger Accident, stated that because managers and engineers had known in advance of the O-ring danger, the accident was principally caused by a lack of communication between engineers and management and by poor management practices. This became the standard interpretation of the cause of the Challenger disaster and routinely appears in popular articles and books about engineering, management, and ethical issues. But the interpretation ignores much of the history of how NASA and the contractor’s engineers had actually recognized and dealt with the O-ring problems in advance of the disaster. When this history is considered in more detail, the conclusions of the Report to the President become far less convincing. -
Desind Finding
NATIONAL AIR AND SPACE ARCHIVES Herbert Stephen Desind Collection Accession No. 1997-0014 NASM 9A00657 National Air and Space Museum Smithsonian Institution Washington, DC Brian D. Nicklas © Smithsonian Institution, 2003 NASM Archives Desind Collection 1997-0014 Herbert Stephen Desind Collection 109 Cubic Feet, 305 Boxes Biographical Note Herbert Stephen Desind was a Washington, DC area native born on January 15, 1945, raised in Silver Spring, Maryland and educated at the University of Maryland. He obtained his BA degree in Communications at Maryland in 1967, and began working in the local public schools as a science teacher. At the time of his death, in October 1992, he was a high school teacher and a freelance writer/lecturer on spaceflight. Desind also was an avid model rocketeer, specializing in using the Estes Cineroc, a model rocket with an 8mm movie camera mounted in the nose. To many members of the National Association of Rocketry (NAR), he was known as “Mr. Cineroc.” His extensive requests worldwide for information and photographs of rocketry programs even led to a visit from FBI agents who asked him about the nature of his activities. Mr. Desind used the collection to support his writings in NAR publications, and his building scale model rockets for NAR competitions. Desind also used the material in the classroom, and in promoting model rocket clubs to foster an interest in spaceflight among his students. Desind entered the NASA Teacher in Space program in 1985, but it is not clear how far along his submission rose in the selection process. He was not a semi-finalist, although he had a strong application. -
Round Trip to Orbit: Human Spaceflight Alternatives
Round Trip to Orbit: Human Spaceflight Alternatives August 1989 NTIS order #PB89-224661 Recommended Citation: U.S. Congress, Office of Technology Assessment, Round Trip to Orbit: Human Spaceflight Alternatives Special Report, OTA-ISC-419 (Washington, DC: U.S. Government Printing Office, August 1989). Library of Congress Catalog Card Number 89-600744 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402-9325 (order form can be found in the back of this special report) Foreword In the 20 years since the first Apollo moon landing, the Nation has moved well beyond the Saturn 5 expendable launch vehicle that put men on the moon. First launched in 1981, the Space Shuttle, the world’s first partially reusable launch system, has made possible an array of space achievements, including the recovery and repair of ailing satellites, and shirtsleeve research in Spacelab. However, the tragic loss of the orbiter Challenger and its crew three and a half years ago reminded us that space travel also carries with it a high element of risk-both to spacecraft and to people. Continued human exploration and exploitation of space will depend on a fleet of versatile and reliable launch vehicles. As this special report points out, the United States can look forward to continued improvements in safety, reliability, and performance of the Shuttle system. Yet, early in the next century, the Nation will need a replacement for the Shuttle. To prepare for that eventuality, NASA and the Air Force have begun to explore the potential for advanced launch systems, such as the Advanced Manned Launch System and the National Aerospace Plane, which could revolutionize human access to space. -
U.S. Disposal of Chemical Weapons in the Ocean: Background and Issues for Congress
Order Code RL33432 U.S. Disposal of Chemical Weapons in the Ocean: Background and Issues for Congress Updated January 3, 2007 David M. Bearden Analyst in Environmental Policy Resources, Science, and Industry Division U.S. Disposal of Chemical Weapons in the Ocean: Background and Issues for Congress Summary The U.S. Armed Forces disposed of chemical weapons in the ocean from World War I through 1970. At that time, it was thought that the vastness of ocean waters would absorb chemical agents that may leak from these weapons. However, public concerns about human health and environmental risks, and the economic effects of potential damage to marine resources, led to a statutory prohibition on the disposal of chemical weapons in the ocean in 1972. For many years, there was little attention to weapons that had been dumped offshore prior to this prohibition. However, the U.S. Army completed a report in 2001 indicating that the past disposal of chemical weapons in the ocean had been more common and widespread geographically than previously acknowledged. The Army cataloged 74 instances of disposal through 1970, including 32 instances off U.S. shores and 42 instances off foreign shores. The disclosure of these records has renewed public concern about lingering risks from chemical weapons still in the ocean today. The risk of exposure to chemical weapons dumped in the ocean depends on many factors, such as the extent to which chemical agents may have leaked into seawater and been diluted or degraded over time. Public health advocates have questioned whether contaminated seawater may contribute to certain symptoms among coastal populations, and environmental advocates have questioned whether leaked chemical agents may have affected fish stocks and other marine life. -
Shuttle Fact Sheet
NASA Facts National Aeronautics and Space Administration Marshall Space Flight Center Huntsville, Alabama 35812 FS-2003-06-62-MSFC June 2003 Space Shuttle Propulsion Systems managed by the Marshall Space Flight Center The Space Shuttle is NASA’s reusable space vehicle designed for transport of people, spacecraft and equipment to and from Earth orbit. The propulsion elements of the Space Shuttle, including the Main Engine, External Tank and Solid Rocket Boosters that propel the Space Shuttle into orbit are managed at the Marshall Space Flight Center in Huntsville, Alabama. The Space Shuttle Main Engines number of flights between required overhauls. The Space The three Space Shuttle Main Engines are clustered Shuttle Main Engines are built by Rocketdyne Propulsion at the aft end of the orbiter and have a combined thrust and Power Division of the Boeing Company in Canoga of more than 1.2 million pounds (5.4 million newtons) Park, Calif. The engine turbopump is built by Pratt and at sea level. They are high performance, liquid propel- Whitney of West Palm Beach, Fla. The turbopumps are lant rocket engines whose thrust can be varied over made by Pratt and Whitney of West Palm Beach, Fla. a range of 65 to 109 percent of their rated The External Tank Low-Pressure power level. They are Oxidizer Oxidizer The External Tank the world’s first reus- Preburner Turbopump is a giant cylinder High-Pressure able rocket engines Main Injector container with a Oxidizer Turbopump and are 14 feet long Fuel rounded, or ogive, (4.3 meters) and 7.5 Preburner top -- higher than a Low-Pressure feet (2.3 meters) in Fuel Turbopump Hot Gas 15-story building, with diameter at the nozzle Manifold a length of 154 feet exit. -
Scms Atlanta 2016 Conference Program Preliminary Draft
1 SCMS ATLANTA 2016 CONFERENCE PROGRAM PRELIMINARY DRAFT Please review the preliminary draft of the 2016 Atlanta Conference Program and send your minor corrections or changes (affiliation, order of presentations, formatting issues or spelling corrections) to [email protected] by Friday, January 15, 2016 at 5PM CT. To look up author names select the Find button on the tool bar and enter the author's name in the upper left corner of the search box and return. You can also use Ctrl + F to locate the author's name. NOTE: SCMS cannot accommodate requests for changes to the scheduled day or time of any panel or workshop. Corrections will not be made to the preliminary draft. Corrections will be included in the final printed program that will be available at the conference. Open call panel chair assignments are not final. Due to possible changes in room assignments, room numbers will only be included in the final program. REGISTRATION Conference presenters who have not become members and paid the conference registration fee by Friday, February 5, 2016 at 5PM CT will be deleted from the final printed program. To register: https://cmstudies.site-ym.com/?page=conf_registration CANCELLATION/REFUND POLICY All cancellation notifications and requests for conference registration refunds must be submitted online by Monday, February 29, 2016 at 5PM CT. No cancellations by phone or email. Conference registration refunds will be processed at 80% of the amount paid. http://www.cmstudies.org/?page=conf_cancellation (Use this link if you haven't paid the