Regulation of Sirtuin-Dependent Skin Cell Senescence by Dermatology-Associated Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Sirtuin-Dependent Skin Cell Senescence by Dermatology-Associated Compounds Regulation of Sirtuin-dependent skin cell Senescence by dermatology-associated compounds Alfredo Martínez Gutiérrez ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intelꞏlectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR o al Repositorio Digital de la UB (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora. WARNING. On having consulted this thesis you’re accepting the following use conditions: Spreading this thesis by the TDX (www.tdx.cat) service and by the UB Digital Repository (diposit.ub.edu) has been authorized by the titular of the intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not authorized nor its spreading and availability from a site foreign to the TDX service or to the UB Digital Repository. Introducing its content in a window or frame foreign to the TDX service or to the UB Digital Repository is not authorized (framing). Those rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate the name of the author. Doctoral Thesis Regulation of Sirtuin-dependent skin cell Senescence by dermatology-associated compounds Universitat de Barcelona Facultat de Medicina Programa de Doctorat en Biomedicina Student Alfredo Martínez Gutiérrez Directors Dr. Alejandro Vaquero García Dra. Josefina Martínez Hoyos Tutor Dr. Manel Esteller Badosa 2 INDEX ACKNOWLEDGEMENTS..................................................................................9 ABBREVIATIONS..............................................................................................11 INTRODUCTION.........................................................................................................13 1. Epigenetic mechanisms................................................................................................13 1.1. DNA methylation.........................................................................................13 1.2. Histone modifications...................................................................................14 1.2.1. Histone acetylation.......................................................................15 1.2.2. Histone methylation......................................................................16 1.2.3. Histone phosphorylation...............................................................16 1.2.4. Histone ubiquitination..................................................................16 1.2.5. Histone sumoylation.....................................................................17 1.2.6. Histone biotinylation....................................................................17 1.3. Non-coding RNAs........................................................................................18 1.3.1. siRNAs.........................................................................................18 1.3.2. miRNAs........................................................................................18 1.3.3. piRNAs.........................................................................................18 1.3.4. lncRNAs.......................................................................................18 2. Sirtuins.........................................................................................................................20 2.1. General introduction of Sirtuins...................................................................20 2.2. SIRT1...........................................................................................................23 2.2.1. Chromatin organization................................................................23 2.2.2. Metabolism...................................................................................23 2.2.3. Autophagy....................................................................................24 2.2.4. Inflammation................................................................................25 2.2.5. Stress response.............................................................................25 2.2.6. DNA repair...................................................................................26 2.2.7. Circadian clock.............................................................................26 2.2.8. SIRT1 and disease........................................................................26 2.3. SIRT2...........................................................................................................27 2.3.1. Chromatin organization................................................................27 2.3.2. Stress response..............................................................................27 2.3.3. Metabolism...................................................................................28 2.3.4. Inflammation................................................................................28 2.3.5. Structural proteins........................................................................28 2.3.6. SIRT2 and disease........................................................................28 2.4. SIRT6...........................................................................................................29 2.4.1. Chromatin organization................................................................29 2.4.2. DNA repair...................................................................................29 2.4.3. Metabolism...................................................................................30 2.4.4. Inflammation................................................................................30 2.4.5. SIRT6 and disease........................................................................30 2.5. SIRT7...........................................................................................................31 2.5.1. Chromatin organization................................................................31 2.5.2. Stress response..............................................................................31 2.5.3. Metabolism...................................................................................32 2.5.4. RNA regulation and ribosome metabolism..................................32 2.5.5. Mitochondria homeostasis............................................................32 2.5.6. DNA repair...................................................................................32 2.5.7. SIRT7 and disease........................................................................32 3 2.6. Role of sirtuins in skin..................................................................................33 2.7. Regulation of sirtuins at different levels.......................................................34 2.7.1. Sirtuin gene expression and post-transcriptional regulation.........34 2.7.2. Post-translational regulation.........................................................35 2.7.3. Complex formation and substrate-dependent regulation..............36 2.8. Sirtuin activators...........................................................................................37 2.9. Sirtuin inhibitors...........................................................................................38 2.10. Role of sirtuins in senescence.....................................................................39 2.10.1. SIRT1..........................................................................................39 2.10.2. SIRT2..........................................................................................39 2.10.3. SIRT6..........................................................................................40 2.10.4. SIRT7..........................................................................................40 3. Cellular senescence.......................................................................................................40 3.1. Causes of cellular senescence.......................................................................41
Recommended publications
  • Ovulation-Selective Genes: the Generation and Characterization of an Ovulatory-Selective Cdna Library
    531 Ovulation-selective genes: the generation and characterization of an ovulatory-selective cDNA library A Hourvitz1,2*, E Gershon2*, J D Hennebold1, S Elizur2, E Maman2, C Brendle1, E Y Adashi1 and N Dekel2 1Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA 2Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (Requests for offprints should be addressed to N Dekel; Email: [email protected]) *(A Hourvitz and E Gershon contributed equally to this paper) (J D Hennebold is now at Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA) Abstract Ovulation-selective/specific genes, that is, genes prefer- (FAE-1) homolog, found to be localized to the inner entially or exclusively expressed during the ovulatory periantral granulosa and to the cumulus granulosa cells of process, have been the subject of growing interest. We antral follicles. The FAE-1 gene is a -ketoacyl-CoA report herein studies on the use of suppression subtractive synthase belonging to the fatty acid elongase (ELO) hybridization (SSH) to construct a ‘forward’ ovulation- family, which catalyzes the initial step of very long-chain selective/specific cDNA library. In toto, 485 clones were fatty acid synthesis. All in all, the present study accom- sequenced and analyzed for homology to known genes plished systematic identification of those hormonally with the basic local alignment tool (BLAST). Of those, regulated genes that are expressed in the ovary in an 252 were determined to be nonredundant.
    [Show full text]
  • Mapping Influenza-Induced Posttranslational Modifications On
    viruses Article Mapping Influenza-Induced Posttranslational Modifications on Histones from CD8+ T Cells Svetlana Rezinciuc 1, Zhixin Tian 2, Si Wu 2, Shawna Hengel 2, Ljiljana Pasa-Tolic 2 and Heather S. Smallwood 1,3,* 1 Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; [email protected] 2 Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; [email protected] (Z.T.); [email protected] (S.W.); [email protected] (S.H.); [email protected] (L.P.-T.) 3 Children’s Foundation Research Institute, Memphis, TN 38105, USA * Correspondence: [email protected]; Tel.: +1-(901)-448–3068 Academic Editor: Italo Tempera Received: 10 October 2020; Accepted: 2 December 2020; Published: 8 December 2020 Abstract: T cell function is determined by transcriptional networks that are regulated by epigenetic programming via posttranslational modifications (PTMs) to histone proteins and DNA. Bottom-up mass spectrometry (MS) can identify histone PTMs, whereas intact protein analysis by MS can detect species missed by bottom-up approaches. We used a novel approach of online two-dimensional liquid chromatography-tandem MS with high-resolution reversed-phase liquid chromatography (RPLC), alternating electron transfer dissociation (ETD) and collision-induced dissociation (CID) on precursor ions to maximize fragmentation of uniquely modified species. The first online RPLC separation sorted histone families, then RPLC or weak cation exchange hydrophilic interaction liquid chromatography (WCX-HILIC) separated species heavily clad in PTMs. Tentative identifications were assigned by matching proteoform masses to predicted theoretical masses that were verified with tandem MS. We used this innovative approach for histone-intact protein PTM mapping (HiPTMap) to identify and quantify proteoforms purified from CD8 T cells after in vivo influenza infection.
    [Show full text]
  • WO 2007/084545 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 26 July 2007 (26.07.2007) PCT WO 2007/084545 Al (51) International Patent Classification: (74) Agent: ZERULL, Susan, Moeller; The Dow Chemical C07C 227/32 (2006.01) C12P 41/00 (2006.01) Company, Intellectual Property Section, P.O. Box 1967, C07D 317/30 (2006.01) Midland, MI 48674-1967 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US2007/001207 kind of national protection available): AE, AG, AL, AM, AT,AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, (22) International Filing Date: 17 January 2007 (17.01.2007) CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, (25) Filing Language: English GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, (26) Publication Language: English LT, LU, LV,LY,MA, MD, MG, MK, MN, MW, MX, MY, (30) Priority Data: MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, 11/333,937 18 January 2006 (18.01.2006) US RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, (71) Applicant (for all designated States except US): DOW TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW GLOBAL TECHNOLOGIES INC. [US/US]; Washing (84) Designated States (unless otherwise indicated, for every ton Street, 1790 Building, Midland, MI 48674 (US).
    [Show full text]
  • Supplement 1 Overview of Dystonia Genes
    Supplement 1 Overview of genes that may cause dystonia in children and adolescents Gene (OMIM) Disease name/phenotype Mode of inheritance 1: (Formerly called) Primary dystonias (DYTs): TOR1A (605204) DYT1: Early-onset generalized AD primary torsion dystonia (PTD) TUBB4A (602662) DYT4: Whispering dystonia AD GCH1 (600225) DYT5: GTP-cyclohydrolase 1 AD deficiency THAP1 (609520) DYT6: Adolescent onset torsion AD dystonia, mixed type PNKD/MR1 (609023) DYT8: Paroxysmal non- AD kinesigenic dyskinesia SLC2A1 (138140) DYT9/18: Paroxysmal choreoathetosis with episodic AD ataxia and spasticity/GLUT1 deficiency syndrome-1 PRRT2 (614386) DYT10: Paroxysmal kinesigenic AD dyskinesia SGCE (604149) DYT11: Myoclonus-dystonia AD ATP1A3 (182350) DYT12: Rapid-onset dystonia AD parkinsonism PRKRA (603424) DYT16: Young-onset dystonia AR parkinsonism ANO3 (610110) DYT24: Primary focal dystonia AD GNAL (139312) DYT25: Primary torsion dystonia AD 2: Inborn errors of metabolism: GCDH (608801) Glutaric aciduria type 1 AR PCCA (232000) Propionic aciduria AR PCCB (232050) Propionic aciduria AR MUT (609058) Methylmalonic aciduria AR MMAA (607481) Cobalamin A deficiency AR MMAB (607568) Cobalamin B deficiency AR MMACHC (609831) Cobalamin C deficiency AR C2orf25 (611935) Cobalamin D deficiency AR MTRR (602568) Cobalamin E deficiency AR LMBRD1 (612625) Cobalamin F deficiency AR MTR (156570) Cobalamin G deficiency AR CBS (613381) Homocysteinuria AR PCBD (126090) Hyperphelaninemia variant D AR TH (191290) Tyrosine hydroxylase deficiency AR SPR (182125) Sepiaterine reductase
    [Show full text]
  • Effect of a Caloric Restriction Based On
    UNIVERSIDAD AUTÓNOMA DE MADRID FACULTAD DE CIENCIAS DEPARTAMENTO DE BIOLOGÍA DOCTORAL THESIS Biology PhD “Effect of a caloric restriction based on the Mediterranean diet and intake of traditional Mediterranean foods on the expression of microRNAs regulating molecular processes associated with aging” INSTITUTO MADRILEÑO DE ESTUDIOS AVANZADOS EN ALIMENTACIÓN (IMDEA FOOD INSTITUTE) VÍCTOR MICÓ MORENO Madrid, 2018 UNIVERSIDAD AUTÓNOMA DE MADRID FACULTAD DE CIENCIAS DEPARTAMENTO DE BIOLOGÍA DOCTORAL THESIS Biology PhD “Effect of a caloric restriction based on the Mediterranean diet and intake of traditional Mediterranean foods on the expression of microRNAs regulating molecular processes associated with aging” INSTITUTO MADRILEÑO DE ESTUDIOS AVANZADOS EN ALIMENTACIÓN (IMDEA FOOD INSTITUTE) Memoria presentada por: Víctor Micó Moreno Para optar al grado de: DOCTOR EN BIOLOGÍA Doña Lidia Ángeles Daimiel Ruíz, Doctora en Biología Celular y Genética por la Universidad Autónoma de Madrid, investigadora del Instituto IMDEA Alimentación, informa favorablemente la solicitud de autorización de defensa de la tesis doctoral con el Título: “Effect of a caloric restriction based on the Mediterranean diet and intake of traditional Mediterranean foods on the expression of microRNAs regulating molecular processes associated with aging”, presentada por Don Víctor Micó Moreno para optar al grado de Doctor en Biología. Este trabajo ha sido realizado en el Instituto Madrileño de Estudios Avanzados en Alimentación (IMDEA Alimentación) bajo su dirección, y cumple satisfactoriamente las condiciones requeridas por el Departamento de Biología de la Universidad Autónoma de Madrid para optar al Título de Doctor. Ha actuado como tutor académico, y presenta su conformidad el Dr. Carlos Francisco Sentís Castaño, vicedecano de Personal Docente e Investigador y profesor titular del Departamento de Biología de la Facultad de Ciencias de la Universidad Autónoma de Madrid.
    [Show full text]
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • Sirt7 Promotes Adipogenesis in the Mouse by Inhibiting Autocatalytic
    Sirt7 promotes adipogenesis in the mouse by inhibiting PNAS PLUS autocatalytic activation of Sirt1 Jian Fanga,1, Alessandro Iannia,1, Christian Smolkaa,b, Olesya Vakhrushevaa,c, Hendrik Noltea,d, Marcus Krügera,d, Astrid Wietelmanna, Nicolas G. Simonete, Juan M. Adrian-Segarraa, Alejandro Vaqueroe, Thomas Brauna,2, and Eva Bobera,2 aDepartment of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany; bMedizin III Kardiologie und Angiologie, Universitätsklinikum Freiburg, D-79106 Freiburg, Germany; cDepartment of Medicine, Hematology/Oncology, Goethe University, D-60595 Frankfurt am Main, Germany; dInstitute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), D-50931 Köln, Germany; and eCancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Catalonia, Spain Edited by C. Ronald Kahn, Section of Integrative Physiology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, and approved August 23, 2017 (received for review April 26, 2017) Sirtuins (Sirt1–Sirt7) are NAD+-dependent protein deacetylases/ adipogenesis and accumulation of lipids in 3T3-L1 adipocytes by ADP ribosyltransferases, which play decisive roles in chromatin deacetylation of FOXO1, which represses PPARγ (10). The role of silencing, cell cycle regulation, cellular differentiation, and metab- Sirt6 in the regulation of adipogenic differentiation is less clear olism. Different sirtuins control similar cellular processes, suggest- although it is known that Sirt6 knockout (KO) mice suffer from ing a coordinated mode of action but information about potential reduced adipose tissue stores, while Sirt6 overexpressing mice cross-regulatory interactions within the sirtuin family is still lim- are protected against high-fat diet-induced obesity (11, 12).
    [Show full text]
  • Nitrilase 1 Modulates Lung Tumor Progression in Vitro and in Vivo
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 16 Nitrilase 1 modulates lung tumor progression in vitro and in vivo Yong Antican Wang1, Yunguang Sun2,5, Justin M. Le Blanc1, Charalambos Solomides3, Tingting Zhan4, Bo Lu1 1Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA 2Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA 3Department of Pathology, Thomas Jefferson University, Philadelphia, PA, 19107, USA 4Department of Pharmacology, Thomas Jefferson University, Philadelphia, PA, 19107, USA 5Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA Correspondence to: Bo Lu, e-mail: [email protected]. Keywords: NIT1, lung cancer, KRAS, NSCLC, tumor suppressor Received: October 01, 2015 Accepted: January 23, 2016 Published: March 10, 2016 ABSTRACT Uncovering novel growth modulators for non-small cell lung cancer (NSCLC) may lead to new therapies for these patients. Previous studies suggest Nit1 suppresses chemically induced carcinogenesis of the foregut in a mouse model. In this study we aimed to determine the role of Nit1 in a transgenic mouse lung cancer model driven by a G12D Kras mutation. Nit1 knockout mice (Nit1−/−) were crossed with KrasG12D/+ mice to investigate whether a G12D Kras mutation and Nit1 inactivation interact to promote or inhibit the development of NSCLC. We found that lung tumorigenesis was suppressed in the Nit1-null background (Nit1−/−:KrasG12D/+). Micro-CT scans and gross tumor measurements demonstrated a 5-fold reduction in total tumor volumes compared to Nit1+/+KrasG12D/+ (p<0.01). Furthermore, we found that Nit1 is highly expressed in human lung cancer tissues and cell lines and use of siRNA against Nit1 decreased overall cell survival of lung cancer cells in culture.
    [Show full text]
  • Georgia's Newborn Screening Panel (Disorders)
    Georgia’s Newborn Screening Panel (Disorders) Organic Acid Fatty Acid Oxidation Amino Acid Hemoglobinopathy Other • Beta Ketothiolase (BKT) • Caritine Uptake • Cobalamin A and B Defect Deficiency (Cbl A,B ) • Long Chain 3 • Glutaric Acidemia type hydroxyl acyl-CoA • Biotinidase I dehydrogenase • Argininosuccinic Deficiency • Congenital • 3OH 3-CH3 Glutaric Acidemia • Sickle Cell • Adrenal Aciduria (HMG) Medium Chain acyl- • Citrullinemia Disease Hyperplasia • Isovaleric Acidemia CoA dehydrogenase • Homocystinuria • Sickle SC Deficiency • Congenital (IVA) • Maple Syrup Urine Disease • Trifunctional Protein Hypothyroidism • 3 Methylcrotonyl-Co A Disease • Sickle Beta Deficiency • Cystic Fibrosis Carboxylase Deficiency • Phenylketonuria Thalassemia • Very Long chain • Galactosemia (3MCC) • Tyrosinemia • Multiple Carboxylase acyl-CoA Deficiency dehydrogenase Deficiency • Methylmalonic Acidemia (MMA) • Propionic Acidemia 3-methylcrotonyl-CoA carboxylase deficiency (3-MCC) (3-methel-crow-ton-eel co-A car-box-il-ace de-fish-in-sea) POSITIVE NEWBORN SCREEN What is a positive newborn screen? Newborn screening is done on tiny samples of blood taken from your baby’s heel 24 to 48 hours after birth. Newborn screening tests for rare, hidden disorders that may affect your baby’s health and development. The newborn screen suggests your baby might have a disorder called 3-MCC. There are many other conditions that can cause a similar positive result on newborn screening. A positive newborn screen does not mean your baby has 3-MCC or any of the other conditions above, but it does mean your baby needs more testing to know for sure. Your baby’s doctor will help arrange for more testing by specialists in disorders like 3-MCC. Sometimes, a baby has a positive newborn screen because the mother has a hidden form of 3-MCC.
    [Show full text]
  • The Controversial Role of Sirtuins in Tumorigenesis — SIRT7 Joins The
    npg 10 Cell Research (2013) 23:10-12. npg © 2013 IBCB, SIBS, CAS All rights reserved 1001-0602/13 $ 32.00 RESEARCH HIGHLIGHT www.nature.com/cr The controversial role of Sirtuins in tumorigenesis – SIRT7 joins the debate Ling Li1, Ravi Bhatia1 1Division of Hematopoietic Stem cell and Leukemia Research, City of Hope National Medical Center, Duarte, CA 91010, USA Cell Research (2013) 23:10-12. doi:10.1038/cr.2012.112; published online 31 July 2012 Sirtuins are NAD-dependent function of SIRT7 is the least well un- first deacetylase with selectivity for the deacetylases that are conserved derstood so far. SIRT7 lacks conserved H3K18Ac modification. Low levels of from yeast to mammals. A new report amino acids within the catalytic domain H3K18Ac were previously shown to sheds light on the function of SIRT7, associated with deacetylase activity, and predict a higher risk of prostate cancer the least understood member of the although suggested to deacetylate the recurrence, and poor prognosis in lung, Sirtuin family by identifying its locus- tumor suppressor p53 (Figure 1) [3], has kidney and pancreatic cancers [8]. Us- specific H3K18 deacetylase activity, generally been considered to have weak ing chromatin immunoprecipitation and linking it to maintenance of cellu- or undetectable deacetylase activity [4, sequencing to study the genome-wide lar transformation in malignancies. 5]. There is evidence that SIRT7 can me- localization of SIRT7, Barber et al. Sirtuins are NAD-dependent deacety- diate protein interactions regulating the found that SIRT7 is enriched at promot- lases that have been linked to longev- RNA Pol I machinery [6].
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Structures, Functions, and Mechanisms of Filament Forming Enzymes: a Renaissance of Enzyme Filamentation
    Structures, Functions, and Mechanisms of Filament Forming Enzymes: A Renaissance of Enzyme Filamentation A Review By Chad K. Park & Nancy C. Horton Department of Molecular and Cellular Biology University of Arizona Tucson, AZ 85721 N. C. Horton ([email protected], ORCID: 0000-0003-2710-8284) C. K. Park ([email protected], ORCID: 0000-0003-1089-9091) Keywords: Enzyme, Regulation, DNA binding, Nuclease, Run-On Oligomerization, self-association 1 Abstract Filament formation by non-cytoskeletal enzymes has been known for decades, yet only relatively recently has its wide-spread role in enzyme regulation and biology come to be appreciated. This comprehensive review summarizes what is known for each enzyme confirmed to form filamentous structures in vitro, and for the many that are known only to form large self-assemblies within cells. For some enzymes, studies describing both the in vitro filamentous structures and cellular self-assembly formation are also known and described. Special attention is paid to the detailed structures of each type of enzyme filament, as well as the roles the structures play in enzyme regulation and in biology. Where it is known or hypothesized, the advantages conferred by enzyme filamentation are reviewed. Finally, the similarities, differences, and comparison to the SgrAI system are also highlighted. 2 Contents INTRODUCTION…………………………………………………………..4 STRUCTURALLY CHARACTERIZED ENZYME FILAMENTS…….5 Acetyl CoA Carboxylase (ACC)……………………………………………………………………5 Phosphofructokinase (PFK)……………………………………………………………………….6
    [Show full text]