Stability and Heavy Traffic Limits for Queueing Networks

Total Page:16

File Type:pdf, Size:1020Kb

Stability and Heavy Traffic Limits for Queueing Networks Maury Bramson University of Minnesota Stability and Heavy Traffic Limits for Queueing Networks May 15, 2006 Springer Berlin Heidelberg NewYork Hong Kong London Milan Paris Tokyo Contents 1 Introduction . 5 1.1 The M=M=1 Queue . 6 1.2 Basic Concepts of Queueing Networks . 8 1.3 Queueing Network Equations and Fluid Models . 17 1.4 Outline of Lectures . 20 2 The Classical Networks . 23 2.1 Main Results . 24 2.2 Stationarity and Reversibility . 29 2.3 Homogeneous Nodes of Kelly Type . 33 2.4 Symmetric Nodes . 38 2.5 Quasi-Reversibility . 45 3 Instability of Subcritical Queueing Networks . 59 3.1 Basic Examples of Unstable Networks . 60 3.2 Examples of Unstable FIFO Networks . 66 3.3 Other Examples of Unstable Networks . 77 4 Stability of Queueing Networks . 83 4.1 Some Markov Process Background . 86 4.2 Results for Bounded Sets . 97 4.3 Fluid Models and Fluid Limits . 106 4.4 Demonstration of Stability . 121 4.5 Appendix . 132 5 Applications and Some Further Theory . 145 5.1 Single Class Networks . 146 5.2 FBFS and LBFS Reentrant Lines . 150 5.3 FIFO Networks of Kelly Type . 153 5.4 Global Stability . 161 5.5 Relationship Between QN and FM Stability . 169 1 Introduction Queueing networks constitute a large family of models in a variety of settings, involving \jobs" or \customers" that wait in queues until being served. Once its service is completed, a job moves to the next prescribed queue, where it remains until being served. This procedure continues until the job leaves the network; jobs also enter the network according to some assigned rule. In these lectures, we will study the evolution of such networks. Two aspects of their evolution have been the object of considerable interest over the last two decades. The first is the question of when a network is stable. That is, when is the underlying Markov process of the queueing network positive Harris recurrent? When the state space is countable and all states communicate, this is equivalent to the Markov process being positive recurrent. The other topic is the existence of heavy traffic limits for queueing networks. That is, when does a sequence of networks, under diffusive scaling, converge to a reflecting Brownian motion? We will be interested in both questions, while devoting more effort to the former. A unifying theme in our approach to both questions will be the application of fluid models, which may be thought of as being, in a general sense, dynamical systems that are associated with the networks. The goal of this chapter is to provide a quick introduction to queueing networks. We will provide basic vocabulary and attempt to explain some of the concepts that will motivate later chapters. The chapter is organized as follows. In Section 1.1, we discuss the M=M=1 queue, which is the \simplest" queueing network. It consists of a single queue, where jobs enter according to a Poisson process and have exponentially distributed service times. Both the problems of stability and heavy traffic limits are not difficult to resolve in this setting. Using M=M=1 queues as motivation, we proceed to more general queueing networks in Section 1.2. We introduce many of the basic concepts of queueing networks, such as the discipline (or policy) of a network determining which jobs are served first, and the traffic intensity ρ of a network, which provides a natural condition for deciding its stability. In Section 1.3, we provide a pre- liminary description of fluid models, and how they can be applied to provide 6 1 Introduction conditions for the stability of queueing networks and the existence of heavy traffic limits. In Section 1.4, we summarize the topics we will cover in the remaining chapters. These include the product representation of the stationary distri- butions of certain classical queueing networks in Chapter 2, and examples of unstable queueing networks in Chapter 3. Chapters 4 and 5 introduce fluid models and apply them to queueing network stability. Chapter 6 applies fluid models to heavy traffic limits. 1.1 The M=M=1 Queue The M=M=1 queue, or simple queue, is the most basic example of a queue- ing network. It is familiar to most probabilists and is simple to analyze. We therefore begin with a summary of some of its basic properties to motivate more general networks. The setup consists of a server at a workstation, and \jobs" (or \cus- tomers") who line up at the server until they are served, one by one. After service of a job is completed, it leaves the system. The jobs are assumed to arrive at the station according to a Poisson process with intensity 1; equiva- lently, the interarrival times of succeeding jobs are given by independent rate -1 exponentially distributed random variables. The service times of jobs are given by independent rate-µ exponentially distributed random variables, with µ > 0; the mean service time of jobs is therefore m = 1/µ. We are inter- ested here in the behavior of Z(t), the number of jobs in the queue at time t, including the job currently being served (see Figure 1.1). Fig. 1.1. Jobs enter the system at rate 1 and depart at rate µ. There are currently 2 jobs in the queue. The process Z(·) can be interpreted in several ways. Because of the inde- pendent exponentially distributed interarrival and service times, Z(·) defines a Markov process, with states 0; 1; 2; : : :. (M=M=1 stands for Markov input and Markov output, with one server.) It is also a birth and death process on f0; 1; 2; : : :g, with birth rate 1 and death rate µ. Because of the latter, it is easy to compute the stationary (or invariant) probability measure πm of Z(·) when it exists, since the process will be reversible. Such a measure satisfies πm(n + 1) = mπm(n) for n = 0; 1; 2; : : : : 1.1 The M=M=1 Queue 7 since it is constant, over time, on the intervals [0; n] and [n + 1; 1). It follows that when m < 1, πm is geometrically distributed with n πm(n) = (1 − m)m ; n = 0; 1; 2; : : : : (1.1) All states clearly communicate with one another, and the process Z(·) is −1 positive recurrent. The mean of πm is m(1 − m) , which blows up as m " 1. When m ≥ 1, no stationary probability measure exists for Z(·). Using standard reasoning, one can show that Z(·) is null recurrent when m = 1 and is transient when m > 1. One can also interpret Z(·) as a continuous time biased simple random walk, which is reflected at 0. This viewpoint is natural when one sets 1 Z^r(t) = Zr(r2t) (1.2) r for a sequence of such processes Zr(·), with m replaced by mr. When r(mr − 1) ! β as r ! 1; (1.3) for some β, Z^r(·) converges in distribution to a reflecting Brownian motion with drift β and variance 2; this is the analog of the standard invariance principle for random walk in one dimension. In this setting, one can think of a given system Z^r(·) as having a service (or processing) capacity that approximates the rate at which \work" enters the system; this capacity might be chosen for economic reasons. When mr ≈ 1, Z^r(·) will be approximated by such a Brownian motion. The number of jobs typically in the system at a given time will be of order r. The behavior of Z(·) that was observed in the last two paragraphs pro- vides the basic motivation for these lectures, in the context of the more general queueing networks which will be introduced in the next section. We will in- vestigate when the Markov process corresponding to a queueing network is stable, i.e., is positive Harris recurrent, and when a sequence of such queue- ing networks has a heavy traffic limit, i.e., converges to a reflecting Brownian motion. For M=M=1 queues, we explicitly constructed a stationary probability measure to demonstrate positive recurrence of the Markov process. Typically, however, such a measure will not be explicitly computable, since it will not be reversible. This, in particular, necessitates a new, more qualitative, approach for showing positive recurrence. We will present such an approach in Chapter 4. The limit we stated for Z^r(·) is a variant of the invariance principle for random walk, and as such, is not surprising. In the setting of more general queueing networks, the formulation of the analogous limits will no longer be obvious, and requires a new framework. We will present such an approach in Chapter 6. 8 1 Introduction 1.2 Basic Concepts of Queueing Networks The M=M=1 queue admits natural generalizations in a number of directions. It is unnecessary to assume that the interarrival and service distributions are exponential. For general distributions, one employs the notation G=G=1; or M=G=1 or G=M=1, if one of the distributions is exponential. (To emphasize the independence of the corresponding random variables, one sometimes uses the notation GI instead of G.) The single queue can be extended to a finite system of queues, or a queue- ing network, where jobs, upon leaving a queue, line up at another queue, or station, or leave the system. The queueing network in Figure 1.2 is also a reentrant line, since all jobs follow a fixed route. j=1 j=2 j=3 Fig. 1.2. A reentrant line with 3 stations. Depending on a job's previous history, one may wish to prescribe different service distributions at its current station or different routing to the next station.
Recommended publications
  • Slides As Printed
    Computer Systems Modelling Ian Leslie Notes by Dr R.J. Gibbens (minor edits by Ian Leslie) Computer Laboratory University of Cambridge Computer Science Tripos, Part II Lent Term 2016/17 CSM 2016/17 (1) Course overview 12 lectures covering: ◮ Introduction to modelling: ◮ what is it and why is it useful? ◮ Simulation techniques: ◮ random number generation, ◮ Monte Carlo simulation techniques, ◮ statistical analysis of results from simulation and measurements; ◮ Queueing theory: ◮ applications of Markov Chains, ◮ single/multiple servers, ◮ queues with finite/infinite buffers, ◮ queueing networks. CSM 2016/17 (2) Recommended books Ross, S.M. Probability Models for Computer Science Academic Press, 2002 Mitzenmacher, M & Upfal, E. Probability and computing: randomized algorithms and probabilistic analysis Cambridge University Press, 2005 Jain, A.R. The Art of Computer Systems Performance Analysis Wiley, 1991 Kleinrock, L. Queueing Systems — Volume 1: Theory Wiley, 1975 CSM 2016/17 (3) Introduction to modelling CSM 2016/17 (4) Why model? ◮ A manufacturer may have a range of compatible systems with different characteristics — which configuration would be best for a particular application? ◮ A system is performing poorly — what should be done to improve it? Which problems should be tackled first? ◮ Fundamental design decisions may affect performance of a system. A model can be used as part of the design process to avoid bad decisions and to help quantify a cost/benefit analysis. CSM 2016/17 (5) A simple queueing system arrival queue server departure ◮
    [Show full text]
  • Applied Probability
    ISSN 1050-5164 (print) ISSN 2168-8737 (online) THE ANNALS of APPLIED PROBABILITY AN OFFICIAL JOURNAL OF THE INSTITUTE OF MATHEMATICAL STATISTICS Articles Optimal control of branching diffusion processes: A finite horizon problem JULIEN CLAISSE 1 Change point detection in network models: Preferential attachment and long range dependence . SHANKAR BHAMIDI,JIMMY JIN AND ANDREW NOBEL 35 Ergodic theory for controlled Markov chains with stationary inputs YUE CHEN,ANA BUŠIC´ AND SEAN MEYN 79 Nash equilibria of threshold type for two-player nonzero-sum games of stopping TIZIANO DE ANGELIS,GIORGIO FERRARI AND JOHN MORIARTY 112 Local inhomogeneous circular law JOHANNES ALT,LÁSZLÓ ERDOS˝ AND TORBEN KRÜGER 148 Diffusion approximations for controlled weakly interacting large finite state systems withsimultaneousjumps.........AMARJIT BUDHIRAJA AND ERIC FRIEDLANDER 204 Duality and fixation in -Wright–Fisher processes with frequency-dependent selection ADRIÁN GONZÁLEZ CASANOVA AND DARIO SPANÒ 250 CombinatorialLévyprocesses.......................................HARRY CRANE 285 Eigenvalue versus perimeter in a shape theorem for self-interacting random walks MAREK BISKUP AND EVIATAR B. PROCACCIA 340 Volatility and arbitrage E. ROBERT FERNHOLZ,IOANNIS KARATZAS AND JOHANNES RUF 378 A Skorokhod map on measure-valued paths with applications to priority queues RAMI ATAR,ANUP BISWAS,HAYA KASPI AND KAV I TA RAMANAN 418 BSDEs with mean reflection . PHILIPPE BRIAND,ROMUALD ELIE AND YING HU 482 Limit theorems for integrated local empirical characteristic exponents from noisy high-frequency data with application to volatility and jump activity estimation JEAN JACOD AND VIKTOR TODOROV 511 Disorder and wetting transition: The pinned harmonic crystal indimensionthreeorlarger.....GIAMBATTISTA GIACOMIN AND HUBERT LACOIN 577 Law of large numbers for the largest component in a hyperbolic model ofcomplexnetworks..........NIKOLAOS FOUNTOULAKIS AND TOBIAS MÜLLER 607 Vol.
    [Show full text]
  • Superprocesses and Mckean-Vlasov Equations with Creation of Mass
    Sup erpro cesses and McKean-Vlasov equations with creation of mass L. Overb eck Department of Statistics, University of California, Berkeley, 367, Evans Hall Berkeley, CA 94720, y U.S.A. Abstract Weak solutions of McKean-Vlasov equations with creation of mass are given in terms of sup erpro cesses. The solutions can b e approxi- mated by a sequence of non-interacting sup erpro cesses or by the mean- eld of multityp e sup erpro cesses with mean- eld interaction. The lat- ter approximation is asso ciated with a propagation of chaos statement for weakly interacting multityp e sup erpro cesses. Running title: Sup erpro cesses and McKean-Vlasov equations . 1 Intro duction Sup erpro cesses are useful in solving nonlinear partial di erential equation of 1+ the typ e f = f , 2 0; 1], cf. [Dy]. Wenowchange the p oint of view and showhowtheyprovide sto chastic solutions of nonlinear partial di erential Supp orted byanFellowship of the Deutsche Forschungsgemeinschaft. y On leave from the Universitat Bonn, Institut fur Angewandte Mathematik, Wegelerstr. 6, 53115 Bonn, Germany. 1 equation of McKean-Vlasovtyp e, i.e. wewant to nd weak solutions of d d 2 X X @ @ @ + d x; + bx; : 1.1 = a x; t i t t t t t ij t @t @x @x @x i j i i=1 i;j =1 d Aweak solution = 2 C [0;T];MIR satis es s Z 2 t X X @ @ a f = f + f + d f + b f ds: s ij s t 0 i s s @x @x @x 0 i j i Equation 1.1 generalizes McKean-Vlasov equations of twodi erenttyp es.
    [Show full text]
  • Semimartingale Properties of a Generalized Fractional Brownian Motion and Its Mixtures with Applications in finance
    Semimartingale properties of a generalized fractional Brownian motion and its mixtures with applications in finance TOMOYUKI ICHIBA, GUODONG PANG, AND MURAD S. TAQQU ABSTRACT. We study the semimartingale properties for the generalized fractional Brownian motion (GFBM) introduced by Pang and Taqqu (2019) and discuss the applications of the GFBM and its mixtures to financial models, including stock price and rough volatility. The GFBM is self-similar and has non-stationary increments, whose Hurst index H 2 (0; 1) is determined by two parameters. We identify the region of these two parameter values where the GFBM is a semimartingale. Specifically, in one region resulting in H 2 (1=2; 1), it is in fact a process of finite variation and differentiable, and in another region also resulting in H 2 (1=2; 1) it is not a semimartingale. For regions resulting in H 2 (0; 1=2] except the Brownian motion case, the GFBM is also not a semimartingale. We also establish p-variation results of the GFBM, which are used to provide an alternative proof of the non-semimartingale property when H < 1=2. We then study the semimartingale properties of the mixed process made up of an independent Brownian motion and a GFBM with a Hurst parameter H 2 (1=2; 1), and derive the associated equivalent Brownian measure. We use the GFBM and its mixture with a BM to study financial asset models. The first application involves stock price models with long range dependence that generalize those using shot noise processes and FBMs. When the GFBM is a process of finite variation (resulting in H 2 (1=2; 1)), the mixed GFBM process as a stock price model is a Brownian motion with a random drift of finite variation.
    [Show full text]
  • Product-Form in Queueing Networks
    Product-form in queueing networks VRIJE UNIVERSITEIT Product-form in queueing networks ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Vrije Universiteit te Amsterdam, op gezag van de rector magnificus dr. C. Datema, hoogleraar aan de faculteit der letteren, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de faculteit der economische wetenschappen en econometrie op donderdag 21 mei 1992 te 15.30 uur in het hoofdgebouw van de universiteit, De Boelelaan 1105 door Richardus Johannes Boucherie geboren te Oost- en West-Souburg Thesis Publishers Amsterdam 1992 Promotoren: prof.dr. N.M. van Dijk prof.dr. H.C. Tijms Referenten: prof.dr. A. Hordijk prof.dr. P. Whittle Preface This monograph studies product-form distributions for queueing networks. The celebrated product-form distribution is a closed-form expression, that is an analytical formula, for the queue-length distribution at the stations of a queueing network. Based on this product-form distribution various so- lution techniques for queueing networks can be derived. For example, ag- gregation and decomposition results for product-form queueing networks yield Norton's theorem for queueing networks, and the arrival theorem implies the validity of mean value analysis for product-form queueing net- works. This monograph aims to characterize the class of queueing net- works that possess a product-form queue-length distribution. To this end, the transient behaviour of the queue-length distribution is discussed in Chapters 3 and 4, then in Chapters 5, 6 and 7 the equilibrium behaviour of the queue-length distribution is studied under the assumption that in each transition a single customer is allowed to route among the stations only, and finally, in Chapters 8, 9 and 10 the assumption that a single cus- tomer is allowed to route in a transition only is relaxed to allow customers to route in batches.
    [Show full text]
  • Lecture 19 Semimartingales
    Lecture 19:Semimartingales 1 of 10 Course: Theory of Probability II Term: Spring 2015 Instructor: Gordan Zitkovic Lecture 19 Semimartingales Continuous local martingales While tailor-made for the L2-theory of stochastic integration, martin- 2,c gales in M0 do not constitute a large enough class to be ultimately useful in stochastic analysis. It turns out that even the class of all mar- tingales is too small. When we restrict ourselves to processes with continuous paths, a naturally stable family turns out to be the class of so-called local martingales. Definition 19.1 (Continuous local martingales). A continuous adapted stochastic process fMtgt2[0,¥) is called a continuous local martingale if there exists a sequence ftngn2N of stopping times such that 1. t1 ≤ t2 ≤ . and tn ! ¥, a.s., and tn 2. fMt gt2[0,¥) is a uniformly integrable martingale for each n 2 N. In that case, the sequence ftngn2N is called the localizing sequence for (or is said to reduce) fMtgt2[0,¥). The set of all continuous local loc,c martingales M with M0 = 0 is denoted by M0 . Remark 19.2. 1. There is a nice theory of local martingales which are not neces- sarily continuous (RCLL), but, in these notes, we will focus solely on the continuous case. In particular, a “martingale” or a “local martingale” will always be assumed to be continuous. 2. While we will only consider local martingales with M0 = 0 in these notes, this is assumption is not standard, so we don’t put it into the definition of a local martingale. tn 3.
    [Show full text]
  • Fclts for the Quadratic Variation of a CTRW and for Certain Stochastic Integrals
    FCLTs for the Quadratic Variation of a CTRW and for certain stochastic integrals No`eliaViles Cuadros (joint work with Enrico Scalas) Universitat de Barcelona Sevilla, 17 de Septiembre 2013 Damped harmonic oscillator subject to a random force The equation of motion is informally given by x¨(t) + γx_(t) + kx(t) = ξ(t); (1) where x(t) is the position of the oscillating particle with unit mass at time t, γ > 0 is the damping coefficient, k > 0 is the spring constant and ξ(t) represents white L´evynoise. I. M. Sokolov, Harmonic oscillator under L´evynoise: Unexpected properties in the phase space. Phys. Rev. E. Stat. Nonlin Soft Matter Phys 83, 041118 (2011). 2 of 27 The formal solution is Z t x(t) = F (t) + G(t − t0)ξ(t0)dt0; (2) −∞ where G(t) is the Green function for the homogeneous equation. The solution for the velocity component can be written as Z t 0 0 0 v(t) = Fv (t) + Gv (t − t )ξ(t )dt ; (3) −∞ d d where Fv (t) = dt F (t) and Gv (t) = dt G(t). 3 of 27 • Replace the white noise with a sequence of instantaneous shots of random amplitude at random times. • They can be expressed in terms of the formal derivative of compound renewal process, a random walk subordinated to a counting process called continuous-time random walk. A continuous time random walk (CTRW) is a pure jump process given by a sum of i.i.d. random jumps fYi gi2N separated by i.i.d. random waiting times (positive random variables) fJi gi2N.
    [Show full text]
  • Solving Black-Schole Equation Using Standard Fractional Brownian Motion
    http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 2; 2019 Solving Black-Schole Equation Using Standard Fractional Brownian Motion Didier Alain Njamen Njomen1 & Eric Djeutcha2 1 Department of Mathematics and Computer’s Science, Faculty of Science, University of Maroua, Cameroon 2 Department of Mathematics, Higher Teachers’ Training College, University of Maroua, Cameroon Correspondence: Didier Alain Njamen Njomen, Department of Mathematics and Computer’s Science, Faculty of Science, University of Maroua, Po-Box 814, Cameroon. Received: May 2, 2017 Accepted: June 5, 2017 Online Published: March 24, 2019 doi:10.5539/jmr.v11n2p142 URL: https://doi.org/10.5539/jmr.v11n2p142 Abstract In this paper, we emphasize the Black-Scholes equation using standard fractional Brownian motion BH with the hurst index H 2 [0; 1]. N. Ciprian (Necula, C. (2002)) and Bright and Angela (Bright, O., Angela, I., & Chukwunezu (2014)) get the same formula for the evaluation of a Call and Put of a fractional European with the different approaches. We propose a formula by adapting the non-fractional Black-Scholes model using a λH factor to evaluate the european option. The price of the option at time t 2]0; T[ depends on λH(T − t), and the cost of the action S t, but not only from t − T as in the classical model. At the end, we propose the formula giving the implied volatility of sensitivities of the option and indicators of the financial market. Keywords: stock price, black-Scholes model, fractional Brownian motion, options, volatility 1. Introduction Among the first systematic treatments of the option pricing problem has been the pioneering work of Black, Scholes and Merton (see Black, F.
    [Show full text]
  • On the Convergence of Quadratic Variation for Compound Fractional Poisson Processes in “Fcaa” Journal
    ON THE CONVERGENCE OF QUADRATIC VARIATION FOR COMPOUND FRACTIONAL POISSON PROCESSES IN \FCAA" JOURNAL Enrico Scalas 1, No`eliaViles 2 Abstract The relationship between quadratic variation for compound renewal processes and M-Wright functions is discussed. The convergence of qua- dratic variation is investigated both as a random variable (for given t) and as a stochastic process. Key Words and Phrases: Continuous time random walk; Inverse stable subordinator; Mittag-Leffler waiting time; Fractional Poisson process; M- Wright functions; Quadratic variation; Compound renewal process. 1. Introduction This paper discusses the relationship between quadratic variation for pure jump processes (usually called continuous-time random walks by physi- cists) and M-Wright functions, often appearing in fractional calculus. Some results highlighted in this short paper were already published in [6]. How- ever, the main focus of that paper was defining and studying the properties of stochastic integrals driven by pure jump processes. Moreover, in this paper, we study the convergence of quadratic variation as a stochastic pro- cess. 1.1. Continuous-Time Random Walks 1 Let fJigi=1 be a sequence of independent and identically distributed (i.i.d.) positive random variables with the meaning of durations between c Year Diogenes Co., Sofia pp. xxx{xxx 2 Enrico Scalas, N. Viles events in a point process. They define a renewal process. Let n X T0 = 0;Tn = Ji; for n > 1; (1.1) i=1 be the epoch of the n-th event. Then the process Nt counting the number of events up to time t is Nt = maxfn : Tn ≤ tg; (1.2) where it is assumed that the number of events occurring up to t is a finite, but arbitrary, non-negative integer.
    [Show full text]
  • Long Time Behaviour and Mean-Field Limit of Atlas Models Julien Reygner
    Long time behaviour and mean-field limit of Atlas models Julien Reygner To cite this version: Julien Reygner. Long time behaviour and mean-field limit of Atlas models. ESAIM: Proceedings and Surveys, EDP Sciences, 2017, Journées MAS 2016 de la SMAI – Phénomènes complexes et hétérogènes, 60, pp.132-143. 10.1051/proc/201760132. hal-01525360 HAL Id: hal-01525360 https://hal.archives-ouvertes.fr/hal-01525360 Submitted on 19 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Long time behaviour and mean-field limit of Atlas models Julien Reygner ABSTRACT. This article reviews a few basic features of systems of one-dimensional diffusions with rank-based characteristics. Such systems arise in particular in the modelling of financial mar- kets, where they go by the name of Atlas models. We mostly describe their long time and large scale behaviour, and lay a particular emphasis on the case of mean-field interactions. We finally present an application of the reviewed results to the modelling of capital distribution in systems with a large number of agents. 1. Introduction The term Atlas model was originally introduced in Fernholz’ monograph on Stochastic Portfolio Theory [13] to describe a stock market in which the asset prices evolve according to independent and identically distributed processes, except the smallest one which undergoes an additional up- ward push.
    [Show full text]
  • Martingale Theory
    CHAPTER 1 Martingale Theory We review basic facts from martingale theory. We start with discrete- time parameter martingales and proceed to explain what modifications are needed in order to extend the results from discrete-time to continuous-time. The Doob-Meyer decomposition theorem for continuous semimartingales is stated but the proof is omitted. At the end of the chapter we discuss the quadratic variation process of a local martingale, a key concept in martin- gale theory based stochastic analysis. 1. Conditional expectation and conditional probability In this section, we review basic properties of conditional expectation. Let (W, F , P) be a probability space and G a s-algebra of measurable events contained in F . Suppose that X 2 L1(W, F , P), an integrable ran- dom variable. There exists a unique random variable Y which have the following two properties: (1) Y 2 L1(W, G , P), i.e., Y is measurable with respect to the s-algebra G and is integrable; (2) for any C 2 G , we have E fX; Cg = E fY; Cg . This random variable Y is called the conditional expectation of X with re- spect to G and is denoted by E fXjG g. The existence and uniqueness of conditional expectation is an easy con- sequence of the Radon-Nikodym theorem in real analysis. Define two mea- sures on (W, G ) by m fCg = E fX; Cg , n fCg = P fCg , C 2 G . It is clear that m is absolutely continuous with respect to n. The conditional expectation E fXjG g is precisely the Radon-Nikodym derivative dm/dn.
    [Show full text]
  • Conformally Invariant Scaling Limits in Planar Critical Percolation∗
    Probability Surveys Vol. 8 (2011) 155{209 ISSN: 1549-5787 DOI: 10.1214/11-PS180 Conformally invariant scaling limits in planar critical percolation∗ Nike Suny Department of Statistics, Stanford University 390 Serra Mall Stanford, CA 94305 e-mail: [email protected] Abstract: This is an introductory account of the emergence of confor- mal invariance in the scaling limit of planar critical percolation. We give an exposition of Smirnov's theorem (2001) on the conformal invariance of crossing probabilities in site percolation on the triangular lattice. We also give an introductory account of Schramm-Loewner evolutions (SLEκ), a one-parameter family of conformally invariant random curves discovered by Schramm (2000). The article is organized around the aim of proving the result, due to Smirnov (2001) and to Camia and Newman (2007), that the percolation exploration path converges in the scaling limit to chordal SLE6. No prior knowledge is assumed beyond some general complex analysis and probability theory. AMS 2000 subject classifications: Primary 60K35, 30C35; secondary 60J65. Keywords and phrases: Conformally invariant scaling limits, perco- lation, Schramm-Loewner evolutions, preharmonicity, preholomorphicity, percolation exploration path. Received August 2011. Contents 1 Introduction . 156 1.1 Critical percolation . 157 1.2 Conformal invariance . 159 1.3 The percolation scaling limit . 160 1.3.1 Smirnov's theorem on crossing probabilities . 160 1.3.2 Schramm-Loewner evolutions . 161 1.3.3 Percolation exploration path and convergence to SLE .. 163 arXiv:0911.0063v2 [math.PR] 21 Oct 2011 6 1.3.4 Outline of remaining sections . 163 2 Brownian motion . 165 2.1 Conformal invariance of planar Brownian motion .
    [Show full text]