Product-Form in Queueing Networks

Total Page:16

File Type:pdf, Size:1020Kb

Product-Form in Queueing Networks Product-form in queueing networks VRIJE UNIVERSITEIT Product-form in queueing networks ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Vrije Universiteit te Amsterdam, op gezag van de rector magnificus dr. C. Datema, hoogleraar aan de faculteit der letteren, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de faculteit der economische wetenschappen en econometrie op donderdag 21 mei 1992 te 15.30 uur in het hoofdgebouw van de universiteit, De Boelelaan 1105 door Richardus Johannes Boucherie geboren te Oost- en West-Souburg Thesis Publishers Amsterdam 1992 Promotoren: prof.dr. N.M. van Dijk prof.dr. H.C. Tijms Referenten: prof.dr. A. Hordijk prof.dr. P. Whittle Preface This monograph studies product-form distributions for queueing networks. The celebrated product-form distribution is a closed-form expression, that is an analytical formula, for the queue-length distribution at the stations of a queueing network. Based on this product-form distribution various so- lution techniques for queueing networks can be derived. For example, ag- gregation and decomposition results for product-form queueing networks yield Norton's theorem for queueing networks, and the arrival theorem implies the validity of mean value analysis for product-form queueing net- works. This monograph aims to characterize the class of queueing net- works that possess a product-form queue-length distribution. To this end, the transient behaviour of the queue-length distribution is discussed in Chapters 3 and 4, then in Chapters 5, 6 and 7 the equilibrium behaviour of the queue-length distribution is studied under the assumption that in each transition a single customer is allowed to route among the stations only, and finally, in Chapters 8, 9 and 10 the assumption that a single cus- tomer is allowed to route in a transition only is relaxed to allow customers to route in batches. In all cases necessary and sufficient conditions for a product-form queue-length distribution are given and solution techniques for product-form queueing networks are illustrated. For the equilibrium behaviour emphasis will be on the study of the influence of state-dependent routing on the existence of product-form distributions, that is queueing networks in which customers may be blocked while routing or in which routing may be otherwise influenced by the state of the queueing network are studied. I have chosen to analyse product-form queueing networks for a number of reasons. First, as is observed above, product-forms are useful for prac- tical systems since various solution techniques (also for non product-form queueing networks) are based on product-form results for queueing net- works. Second, I have been interested in balance equations and product- forms are usually obtained when a process satisfies some notion of local v vi Preface balance. Third, because product-forms analysis of queueing networks is a method to obtain exact results, and finally because it is more fun. The basic method used to analyse queueing networks in this mono- graph is a method based on the approach used in physics. In my opinion, a physical interpretation or a physical analogue of a queueing network is very important. This can be seen from various results obtained in this monograph. For example, the dual process discussed in Chapter 5 is a direct consequence of the physical interpretation of a queueing network in terms of potential energy, Norton's theorem as obtained in Chapter 6 is a consequence of the electrical-circuit analogue of a queueing network, and the theory on queueing networks with negative and positive customers as discussed in Chapter 10 shows similarities with Dirac's theory of holes as described in quantum mechanics. Also, the interpretation of the balance equations yielding the equilibrium distribution of a queueing network is a physical interpretation of the behaviour of the queueing network. Global balance which forms the basis of the equilibrium analysis states that the flow out of a state equals the flow into a state. Although flow represents probability flow, the intuitive relation with flow of liquids is obvious. A queueing network is shown to possess a product-form equilibrium distri- bution if the flow into and out of each station of the queueing network is balanced. Therefore, the physical interpretation of a queueing network is very important. In fact, it is shown in this monograph that a queueing network possesses a product-form distribution if and only if a physical interpretation of the rate into and out of a station is possible. Although product-form distributions are the topic of all chapters of this monograph, the various chapters are independent of each other to a large extent. All chapters, except for the introductory chapters, are mainly based on publications and research reports. Therefore, all chapters are self-contained. The following table gives the papers which are the basis of the chapters of this monograph: [3] Transient product form distributions in queueing networks. (with P.G. Taylor) Research report, The University of Western Australia, Department of Mathematics, August 1990, submitted. [4] A note on the transient behaviour of the Engset loss model. To ap- pear: Stochastic Models [5] A dual process associated with the evolution of the state of a queue- ing network at its jumps. Research Memorandum 1991-39, Vrije Uni- Preface vii versiteit, Faculteit der Economische Wetenschappen en Econometrie, Amsterdam, submitted. [6] A generalization of Norton's theorem. (with N.M. van Dijk) Research Memorandum 1991-61, Vrije Universiteit, Faculteit der Economische Wetenschappen en Econometrie, Amsterdam, submitted. [7] Aggregation of Markov chains. To appear: Stoch. Proc. Appl. [8] Spatial birth-death processes with multiple changes and applications to batch service networks and clustering processes. (with N.M. van Dijk) Adv. Appl. Prob. 22, 433-455 (1990). [9] Product forms for queueing networks with state dependent multiple job transitions. (with N.M. van Dijk) Adv. Appl. Prob. 23, 152-187 (1991). [10] Local balance in queueing networks with positive and negative cus- tomers. (with N.M. van Dijk) Research Memorandum 1992-1, Vrije Universiteit, Faculteit der Economische Wetenschappen en Econome- trie, Amsterdam, submitted. Sections are numbered within a chapter. A reference to Section 3 is to Section 3 of the current chapter and a reference to Section 2.3 is to Sec- tion 3 of Chapter 2. Formulas are numbered within a section. A reference to formula (5.7) is to formula (5.7) appearing in Section 5 of the current chapter, and a reference to formula (3.5.7) is to formula (5.7) appearing in Section 5 of Chapter 3. A similar convention is used for theorems and figures. I should like to take this opportunity of thanking the National Operations Research Network in the Netherlands (LNMB { Landelijk Netwerk Mathe- matische Besliskunde) for providing an excellent training programme for Ph.D.-students. In particular, I wish to thank the LNMB for providing funds allowing me to visit The University of Western Australia, Perth, Australia, from July 1, 1990 until August 12, 1990. With respect to this visit my thanks are also due to dr. P.G. Taylor for the fruitful discussions and joint research during this visit. I should like to thank my colleagues at the Department of Econometrics of the Vrije Universiteit for stimulating discussions about this, that and the other during coffee, lunch and tea breaks. viii Contents I am also very grateful to prof.dr. H.C. Tijms and prof.dr. N.M. van Dijk for their encouragement, comments and advice during the past years in which I was employed at the Vrije Universiteit, and to R.D. Nobel for carefully reading parts of this monograph. Finally, I owe a special debt of gratitude to Carla for her constant support during the past years. Amsterdam, February 1992 Richard Boucherie Contents 1 Introduction 1 1 Motivation . 1 2 Outline . 4 2 Preliminaries 11 1 Basic results on Markov chains . 11 2 Queueing network model . 19 3 Balance equations . 25 4 Product-form distributions; literature . 29 5 Review of assumptions . 38 3 Transient product-form distributions 39 1 Introduction . 39 2 Model and canonical representation . 40 2.1 Canonical form for the open network . 42 2.2 Canonical form for the closed network . 44 3 Sufficient conditions . 46 4 Necessary conditions for the open network . 50 5 Necessary conditions for the closed network . 56 6 Discussion and general remarks . 59 4 Transient behaviour of the Engset loss model 63 1 Introduction . 63 2 Engset loss model . 64 3 Transient queue-length distribution . 66 5 Dual processes 75 1 Introduction . 75 2 The primal process . 77 3 Definition of the dual process . 83 ix x CONTENTS 4 The dual routing function . 88 4.1 Similar transitions . 90 4.2 Similar subtransitions . 93 4.3 Similar transitions; reversed potential . 94 4.4 Similar subtransitions; reversed potential . 95 5 Relation between the primal and the dual process . 96 5.1 Equal probability flow . 97 5.2 Palm probabilities . 100 6 Examples . 105 6.1 Complementary slackness relations . 105 6.2 Blocking examples . 106 6.3 Alternative transition rates; dual states . 109 6.4 Alternative transition rates; traffic equations . 110 6.5 Self-dual process . 111 6.6 Customer-vacancy duality . 112 6 Norton's theorem 115 1 Introduction . 115 2 Electrical circuit theory . 117 3 Queueing network model . 120 4 Decomposition into clusters . 124 4.1 Routing: Conditions . 124 4.2 Routing: Examples . 129 4.3 Service: Conditions . 134 4.4 Service: Examples . 135 5 Norton's theorems . 138 6 Practical applications of Norton's theorems . 146 7 Examples . 149 7.1 Global throughput determines local behaviour; work- load balancing . 149 7.2 Internal blocking . 151 7.3 Nested aggregation .
Recommended publications
  • Slides As Printed
    Computer Systems Modelling Ian Leslie Notes by Dr R.J. Gibbens (minor edits by Ian Leslie) Computer Laboratory University of Cambridge Computer Science Tripos, Part II Lent Term 2016/17 CSM 2016/17 (1) Course overview 12 lectures covering: ◮ Introduction to modelling: ◮ what is it and why is it useful? ◮ Simulation techniques: ◮ random number generation, ◮ Monte Carlo simulation techniques, ◮ statistical analysis of results from simulation and measurements; ◮ Queueing theory: ◮ applications of Markov Chains, ◮ single/multiple servers, ◮ queues with finite/infinite buffers, ◮ queueing networks. CSM 2016/17 (2) Recommended books Ross, S.M. Probability Models for Computer Science Academic Press, 2002 Mitzenmacher, M & Upfal, E. Probability and computing: randomized algorithms and probabilistic analysis Cambridge University Press, 2005 Jain, A.R. The Art of Computer Systems Performance Analysis Wiley, 1991 Kleinrock, L. Queueing Systems — Volume 1: Theory Wiley, 1975 CSM 2016/17 (3) Introduction to modelling CSM 2016/17 (4) Why model? ◮ A manufacturer may have a range of compatible systems with different characteristics — which configuration would be best for a particular application? ◮ A system is performing poorly — what should be done to improve it? Which problems should be tackled first? ◮ Fundamental design decisions may affect performance of a system. A model can be used as part of the design process to avoid bad decisions and to help quantify a cost/benefit analysis. CSM 2016/17 (5) A simple queueing system arrival queue server departure ◮
    [Show full text]
  • The Queueing Network Analyzer
    THE BELL SYSTEM TECHNICAL JOURNAL Vol. 62, No.9, November 1983 Printed in U.S.A. The Queueing Network Analyzer By W. WHITT* (Manuscript received March 11, 1983) This paper describes the Queueing Network Analyzer (QNA), a software package developed at Bell Laboratories to calculate approximate congestion measures for a network of queues. The first version of QNA analyzes open networks of multiserver nodes with the first-come, first-served discipline and no capacity constraints. An important feature is that the external arrival processes need not be Poisson and the service-time distributions need not be exponential. Treating other kinds of variability is important. For example, with packet-switchedcommunication networks we need to describe the conges­ tion resulting from bursty traffic and the nearly constant service times of packets. The general approach in QNA is to approximately characterize the arrival processes by two or three parameters and then analyze the individual nodes separately. The first version of QNA uses two parameters to characterize the arrival processes and service times, one to describe the rate and the other to describe the variability. The nodes are then analyzed as standard GI/G/m queues partially characterized by the first two moments of the interarrival­ time and service-time distributions. Congestion measures for the network as a whole are obtained by assuming as an approximation that the nodes are stochastically independent given the approximate flow parameters. I. INTRODUCTION AND SUMMARY Networks of queues have proven to be useful models to analyze the performance of complex systems such as computers, switching ma­ chines, communications networks, and production job shOpS.1-7 To facilitate the analysis of these models, several software packages have * Bell Laboratories.
    [Show full text]
  • The MVA Priority Approximation
    The MVA Priority Approximation RAYMOND M. BRYANT and ANTHONY E. KRZESINSKI IBM Thomas J. Watson Research Center and M. SEETHA LAKSHMI and K. MANI CHANDY University of Texas at Austin A Mean Value Analysis (MVA) approximation is presented for computing the average performance measures of closed-, open-, and mixed-type multiclass queuing networks containing Preemptive Resume (PR) and nonpreemptive Head-Of-Line (HOL) priority service centers. The approximation has essentially the same storage and computational requirements as MVA, thus allowing computa- tionally efficient solutions of large priority queuing networks. The accuracy of the MVA approxima- tion is systematically investigated and presented. It is shown that the approximation can compute the average performance measures of priority networks to within an accuracy of 5 percent for a large range of network parameter values. Accuracy of the method is shown to be superior to that of Sevcik's shadow approximation. Categories and Subject Descriptors: D.4.4 [Operating Systems]: Communications Management-- network communication; D.4.8 [Operating Systems]: Performance--modeling and prediction; queuing theory General Terms: Performance, Theory Additional Key Words and Phrases: Approximate solutions, error analysis, mean value analysis, multiclass queuing networks, priority queuing networks, product form solutions 1. INTRODUCTION Multiclass queuing networks with product-form solutions [3] are widely used to model the performance of computer systems and computer communication net- works [11]. The effective application of these models is largely due to the efficient computational methods [5, 9, 13, 18, 21] that have been developed for the solution of product-form queuing networks. However, many interesting and significant system characteristics cannot be modeled by product-form networks.
    [Show full text]
  • Queueing-Theoretic Solution Methods for Models of Parallel and Distributed Systems·
    1 Queueing-Theoretic Solution Methods for Models of Parallel and Distributed Systems· Onno Boxmat, Ger Koolet & Zhen Liui t CW/, Amsterdam, The Netherlands t INRIA-Sophia Antipolis, France This paper aims to give an overview of solution methods for the performance analysis of parallel and distributed systems. After a brief review of some important general solution methods, we discuss key models of parallel and distributed systems, and optimization issues, from the viewpoint of solution methodology. 1 INTRODUCTION The purpose of this paper is to present a survey of queueing theoretic methods for the quantitative modeling and analysis of parallel and distributed systems. We discuss a number of queueing models that can be viewed as key models for the performance analysis and optimization of parallel and distributed systems. Most of these models are very simple, but display an essential feature of dis­ tributed processing. In their simplest form they allow an exact analysis. We explore the possibilities and limitations of existing solution methods for these key models, with the purpose of obtaining insight into the potential of these solution methods for more realistic complex quantitative models. As far as references is concerned, we have restricted ourselves in the text mainly to key references that make a methodological contribution, and to sur­ veys that give the reader further access to the literature; we apologize for any inadvertent omissions. The reader is referred to Gelenbe's book [65] for a general introduction to the area of multiprocessor performance modeling and analysis. Stochastic Petri nets provide another formalism for modeling and perfor­ mance analysis of discrete event systems.
    [Show full text]
  • Introduction to Queueing Theory Review on Poisson Process
    Contents ELL 785–Computer Communication Networks Motivations Lecture 3 Discrete-time Markov processes Introduction to Queueing theory Review on Poisson process Continuous-time Markov processes Queueing systems 3-1 3-2 Circuit switching networks - I Circuit switching networks - II Traffic fluctuates as calls initiated & terminated Fluctuation in Trunk Occupancy Telephone calls come and go • Number of busy trunks People activity follow patterns: Mid-morning & mid-afternoon at All trunks busy, new call requests blocked • office, Evening at home, Summer vacation, etc. Outlier Days are extra busy (Mother’s Day, Christmas, ...), • disasters & other events cause surges in traffic Providing resources so Call requests always met is too expensive 1 active • Call requests met most of the time cost-effective 2 active • 3 active Switches concentrate traffic onto shared trunks: blocking of requests 4 active active will occur from time to time 5 active Trunk number Trunk 6 active active 7 active active Many Fewer lines trunks – minimize the number of trunks subject to a blocking probability 3-3 3-4 Packet switching networks - I Packet switching networks - II Statistical multiplexing Fluctuations in Packets in the System Dedicated lines involve not waiting for other users, but lines are • used inefficiently when user traffic is bursty (a) Dedicated lines A1 A2 Shared lines concentrate packets into shared line; packets buffered • (delayed) when line is not immediately available B1 B2 C1 C2 (a) Dedicated lines A1 A2 B1 B2 (b) Shared line A1 C1 B1 A2 B2 C2 C1 C2 A (b)
    [Show full text]
  • EUROPEAN CONFERENCE on QUEUEING THEORY 2016 Urtzi Ayesta, Marko Boon, Balakrishna Prabhu, Rhonda Righter, Maaike Verloop
    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016 Urtzi Ayesta, Marko Boon, Balakrishna Prabhu, Rhonda Righter, Maaike Verloop To cite this version: Urtzi Ayesta, Marko Boon, Balakrishna Prabhu, Rhonda Righter, Maaike Verloop. EUROPEAN CONFERENCE ON QUEUEING THEORY 2016. Jul 2016, Toulouse, France. 72p, 2016. hal- 01368218 HAL Id: hal-01368218 https://hal.archives-ouvertes.fr/hal-01368218 Submitted on 19 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. EUROPEAN CONFERENCE ON QUEUEING THEORY 2016 Toulouse July 18 – 20, 2016 Booklet edited by Urtzi Ayesta LAAS-CNRS, France Marko Boon Eindhoven University of Technology, The Netherlands‘ Balakrishna Prabhu LAAS-CNRS, France Rhonda Righter UC Berkeley, USA Maaike Verloop IRIT-CNRS, France 2 Contents 1 Welcome Address 4 2 Organization 5 3 Sponsors 7 4 Program at a Glance 8 5 Plenaries 11 6 Takács Award 13 7 Social Events 15 8 Sessions 16 9 Abstracts 24 10 Author Index 71 3 1 Welcome Address Dear Participant, It is our pleasure to welcome you to the second edition of the European Conference on Queueing Theory (ECQT) to be held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT in Toulouse.
    [Show full text]
  • Queueing Theory
    Queueing theory Agner Krarup Erlang, a Danish engineer who worked for the Copenhagen Telephone Exchange, published the first paper on what would now be called queueing theory in 1909.[8][9][10] He modeled the number of telephone calls arriving at an exchange by a Poisson process and solved the M/D/1 queue in 1917 and M/D/k queueing model in 1920.[11] In Kendall’s notation: • M stands for Markov or memoryless and means ar- rivals occur according to a Poisson process • D stands for deterministic and means jobs arriving at the queue require a fixed amount of service • k describes the number of servers at the queueing node (k = 1, 2,...). If there are more jobs at the node than there are servers then jobs will queue and wait for service Queue networks are systems in which single queues are connected The M/M/1 queue is a simple model where a single server by a routing network. In this image servers are represented by serves jobs that arrive according to a Poisson process and circles, queues by a series of retangles and the routing network have exponentially distributed service requirements. In by arrows. In the study of queue networks one typically tries to an M/G/1 queue the G stands for general and indicates obtain the equilibrium distribution of the network, although in an arbitrary probability distribution. The M/G/1 model many applications the study of the transient state is fundamental. was solved by Felix Pollaczek in 1930,[12] a solution later recast in probabilistic terms by Aleksandr Khinchin and Queueing theory is the mathematical study of waiting now known as the Pollaczek–Khinchine formula.[11] lines, or queues.[1] In queueing theory a model is con- structed so that queue lengths and waiting time can be After World War II queueing theory became an area of [11] predicted.[1] Queueing theory is generally considered a research interest to mathematicians.
    [Show full text]
  • Delay Models in Data Networks
    3 Delay Models in Data Networks 3.1 INTRODUCTION One of the most important perfonnance measures of a data network is the average delay required to deliver a packet from origin to destination. Furthennore, delay considerations strongly influence the choice and perfonnance of network algorithms, such as routing and flow control. For these reasons, it is important to understand the nature and mechanism of delay, and the manner in which it depends on the characteristics of the network. Queueing theory is the primary methodological framework for analyzing network delay. Its use often requires simplifying assumptions since, unfortunately, more real- istic assumptions make meaningful analysis extremely difficult. For this reason, it is sometimes impossible to obtain accurate quantitative delay predictions on the basis of queueing models. Nevertheless, these models often provide a basis for adequate delay approximations, as well as valuable qualitative results and worthwhile insights. In what follows, we will mostly focus on packet delay within the communication subnet (i.e., the network layer). This delay is the sum of delays on each subnet link traversed by the packet. Each link delay in tum consists of four components. 149 150 Delay Models in Data Networks Chap. 3 1. The processinR delay between the time the packet is correctly received at the head node of the link and the time the packet is assigned to an outgoing link queue for transmission. (In some systems, we must add to this delay some additional processing time at the DLC and physical layers.) 2. The queueinR delay between the time the packet is assigned to a queue for trans- mission and the time it starts being transmitted.
    [Show full text]
  • Matrix Geometric Approach for Random Walks
    Matrix geometric approach for random walks Citation for published version (APA): Kapodistria, S., & Palmowski, Z. B. (2017). Matrix geometric approach for random walks: stability condition and equilibrium distribution. Stochastic Models, 33(4), 572-597. https://doi.org/10.1080/15326349.2017.1359096 Document license: CC BY-NC-ND DOI: 10.1080/15326349.2017.1359096 Document status and date: Published: 02/10/2017 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Improving Queuing System Throughput Using Distributed Mean Value Analysis to Control Network Congestion
    Communications and Network, 2015, 7, 21-29 Published Online February 2015 in SciRes. http://www.scirp.org/journal/cn http://dx.doi.org/10.4236/cn.2015.71003 Improving Queuing System Throughput Using Distributed Mean Value Analysis to Control Network Congestion Faisal Shahzad1, Muhammad Faheem Mushtaq1, Saleem Ullah1*, M. Abubakar Siddique2, Shahzada Khurram1, Najia Saher1 1Department of Computer Science & IT, The Islamia University of Bahawalpur, Bahawalpur, Pakistan 2College of Computer Science, Chongqing University, Chongqing, China Email: [email protected], [email protected], *[email protected], [email protected], [email protected], [email protected] Received 12 June 2014; accepted 30 January 2015; published 2 February 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract In this paper, we have used the distributed mean value analysis (DMVA) technique with the help of random observe property (ROP) and palm probabilities to improve the network queuing system throughput. In such networks, where finding the complete communication path from source to destination, especially when these nodes are not in the same region while sending data between two nodes. So, an algorithm is developed for single and multi-server centers which give more in- teresting and successful results. The network is designed by a closed queuing network model and we will use mean value analysis to determine the network throughput (β) for its different values. For certain chosen values of parameters involved in this model, we found that the maximum net- work throughput for β ≥ 0.7 remains consistent in a single server case, while in multi-server case for β ≥ 0.5 throughput surpass the Marko chain queuing system.
    [Show full text]
  • BUSF 40901-1/CMSC 34901-1: Stochastic Performance Modeling Winter 2014
    BUSF 40901-1/CMSC 34901-1: Stochastic Performance Modeling Winter 2014 Syllabus (January 15, 2014) Instructor: Varun Gupta Office: 331 Harper Center e-mail: [email protected] Phone: 773-702-7315 Office hours: by appointment Class Times: Wed, Fri { 10:10-11:30 am { Harper Center (3A) Final Exam (tentative): March 21, Friday { 8:00-11:00am { Harper Center (3A) Course Website: http://chalk.uchicago.edu Course Objectives This is an introductory course in queueing theory and performance modeling, with applications including but not limited to service operations (healthcare, call centers) and computer system resource management (from datacenter to kernel level). The aim of the course is two-fold: 1. Build insights into best practices for designing service systems (How many service stations should I provision? What speed? How should I separate/prioritize customers based on their service requirements?) 2. Build a basic toolbox for analyzing queueing systems in particular and stochastic processes in general. Tentative list of topics: Open/closed queueing networks; Operational laws; M=M=1 queue; Burke's theorem and reversibility; M=M=k queue; M=G=1 queue; G=M=1 queue; P h=P h=k queues and their solution using matrix-analytic methods; Arrival theorem and Mean Value Analysis; Analysis of scheduling policies (e.g., Last-Come-First Served; Processor Sharing); Jackson network and the BCMP theorem (product form networks); Asymptotic analysis (M=M=k queue in heavy/light traf- fic, Supermarket model in mean-field regime) Prerequisites Exposure to undergraduate probability (random variables, discrete and continuous probability dis- tributions, discrete time Markov chains) and calculus is required.
    [Show full text]
  • Queing Theory
    QUEUING THEORY Jaroslav Sklenar Department of Statistics and Operations Research University of Malta Contents Introduction 1 Elements of Queuing Systems 2 Kendall Classification 3 Birth and Death Processes 4 Poisson Process 4.1 Merging and Splitting Poisson Processes 4.2 Model M/G/ 5 Model M/M/1 5.1 PASTA 6 General Results 6.1 Markovian Systems with State Dependent Rates 7 Model with Limited Capacity 8 Multichannel Model 9 Model with Limited Population 9.1 Model with Spares 10 Other Markovian Models 10.1 Multichannel with Limited Capacity and Limited Population 10.2 Multichannel with Limited Capacity and Unlimited Population 10.3 Erlang’s Loss Formula 10.4 Model with Unlimited Service 11 Model M/G/1 12 Simple Non-Markovian Models 13 Queuing Networks 13.1 Feed Forward Networks 13.2 Open Jackson Networks 13.3 Closed Jackson Networks 14 Selected Advanced Models 14.1 State Dependent Rates Generalized 14.2 Impatience 14.3 Bulk Input 14.4 Bulk Service 14.5 Systems with Priorities 14.6 Model G/M/1 15 Other Results and Methods References Appendices Introduction This text is supposed to be used in courses oriented to basic theoretical background and practical application of most important results of Queuing Theory. The assumptions are always clearly explained, but some proofs and derivations are either presented in appendices or skipped. After reading this text, the reader is supposed to understand the basic ideas, and to be able to apply the theoretical results in solving practical problems. Symbols used in this text are unified with the book [1].
    [Show full text]