Inferring Queueing Network Models from High-Precision Location Tracking Data

Total Page:16

File Type:pdf, Size:1020Kb

Inferring Queueing Network Models from High-Precision Location Tracking Data University of London Imperial College of Science, Technology and Medicine Department of Computing Inferring Queueing Network Models from High-precision Location Tracking Data Tzu-Ching Horng Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy in Computing of the University of London and the Diploma of Imperial College, May 2013 Abstract Stochastic performance models are widely used to analyse the performance and reliability of systems that involve the flow and processing of customers. However, traditional methods of constructing a performance model are typically manual, time-consuming, intrusive and labour- intensive. The limited amount and low quality of manually-collected data often lead to an inaccurate picture of customer flows and poor estimates of model parameters. Driven by ad- vances in wireless sensor technologies, recent real-time location systems (RTLSs) enable the automatic, continuous and unintrusive collection of high-precision location tracking data, in both indoor and outdoor environment. This high-quality data provides an ideal basis for the construction of high-fidelity performance models. This thesis presents a four-stage data processing pipeline which takes as input high-precision location tracking data and automatically constructs a queueing network performance model approximating the underlying system. The first two stages transform raw location traces into high-level “event logs” recording when and for how long a customer entity requests service from a server entity. The third stage infers the customer flow structure and extracts samples of time delays involved in the system; including service time, customer interarrival time and customer travelling time. The fourth stage parameterises the service process and customer arrival process of the final output queueing network model. To collect large-enough location traces for the purpose of inference by conducting physical ex- periments is expensive, labour-intensive and time-consuming. We thus developed LocTrack- JINQS, an open-source simulation library for constructing simulations with location awareness and generating synthetic location tracking data. Finally we examine the effectiveness of the data processing pipeline through four case studies based on both synthetic and real location tracking data. The results show that the methodology performs with moderate success in inferring multi-class queueing networks composed of single- server queues with FIFO, LIFO and priority-based service disciplines; it is also capable of inferring different routing policies, including simple probabilistic routing, class-based routing and shortest-queue routing. i ii Acknowledgements The completion of this research is largely owe to many of those I have worked with during my study at Imperial College London. I especially would like to express my gratitude to my supervisor Dr. William Knottenbelt, for his generosity, open-mindedness, enthusiasm as well as constant support and guidance during my PhD; and to my colleague Nikolas Anastasiou, for all the work we have done together and our personal friendship. The PhD journey for me has been a long one with countless moments of self-questioning, doubts and confusion. Fortunately, there are many beloved ones always taking my side along the journey. Special thanks to my dearest friends – Pei-Chien Tsai, Tzu-Chun Chen, Cecilia Lopez, Olivier Blesbois – for always being there for me. Last, but most important of all, I owe my parents the deepest gratitude for everything they have given me throughout my life, with their unconditional love. iii iv Dedication This thesis is dedicated to Tzu-Ting Horng, who understands me the most and always has a place in my heart. v vi Contents Abstract i Acknowledgements iii 1 Introduction 1 1.1 Motivation....................................... 1 1.2 Objectives....................................... 7 1.3 Contributions ..................................... 8 1.3.1 Inferring Queueing Network Models from High-precision Location Track- ingData.................................... 8 1.3.2 LocTrackJIQNS................................ 9 1.4 ThesisOutline..................................... 10 1.5 Statement of Originality and Publications . .. 11 2 Background 13 2.1 StochasticProcesses ............................... .. 13 2.1.1 RenewalProcesses .............................. 14 vii viii CONTENTS 2.1.2 PoissonProcesses............................... 15 2.1.3 MarkovChainandMarkovProcesses . 17 2.2 QueueingTheoryandSimpleQueues . 22 2.2.1 Queueingtheory ............................... 23 2.2.2 General birth-and-death process and M/M/1queue............ 27 2.3 QueueingNetwork .................................. 27 2.3.1 JacksonQueueingNetwork. 29 2.3.2 GordonandNewellnetworks. 31 2.3.3 BCMPqueueingnetwork. .. .. 32 2.4 Distribution fitting . 33 2.4.1 Maximum Likelihood Method . 33 2.4.2 EMAlgorithm................................. 34 2.4.3 Statisticalgoodness-of-fittests. .... 36 2.4.4 Kolmogorov-Smirnovtest . .. .. 36 2.4.5 Anderson-Darlingtest ............................ 37 2.4.6 Chi-squaretest ................................ 38 2.4.7 ModelSelectionUsingAIC. .. .. 39 2.5 Phase-type Distributions and their applications in traffic modelling . ...... 40 2.5.1 Overview of phase-type distributions . 42 2.5.2 Fitting traffic measurements with phase-type distributions . ..... 43 2.6 Wireless Real-time Location Systems . .. 47 CONTENTS ix 2.6.1 Localisation Techniques . 47 2.6.2 Wireless Positioning Technologies and Systems . 50 2.6.3 Ultra-wideband(UWB) ........................... 55 2.6.4 WirelessLocalAreaNetwork(WLAN) . 56 2.6.5 Location-aware applications . 57 2.7 OtherRelatedWork ................................. 58 2.7.1 WorkflowMining ............................... 58 2.7.2 Constructing Queueing Models for Performance Analysis of Real-life Sys- tems...................................... 60 3 Inferring Queueing Networks from High-precision Location Tracking Data 64 3.1 Introduction...................................... 64 3.2 Stage1......................................... 65 3.2.1 Output..................................... 67 3.3 Stage2......................................... 68 3.3.1 Inferring locations of service centres . ... 68 3.3.2 Generationofeventtable........................... 74 3.3.3 Output..................................... 76 3.4 Stage3......................................... 78 3.4.1 Customer flow structure mining and extraction of travelling time and interarrivaltimesamples . .. .. 78 3.4.2 Extracting service time traces and inferring service disciplines . ..... 81 x CONTENTS 3.4.3 Output..................................... 85 3.5 Stage4......................................... 85 3.5.1 Performance traces distribution fitting . .. 85 3.5.2 Output..................................... 87 3.6 Summary ....................................... 88 4 LocTrackJINQS: A Location-aware Simulation Tool for Multiclass QN Mod- els 90 4.1 Introduction...................................... 90 4.2 JINQS and Major Extensions in LocTrackJINQS . .... 94 4.3 Implementation .................................... 95 4.3.1 QueueingNetworkStructure. 95 4.3.2 Generating Synthetic Location Tracking Data . .. 99 4.3.3 New Event classes .............................. 99 4.3.4 GraphicUserInterface ............................100 4.4 UserInputsandSimulationOutputs . 100 4.4.1 UserInputs ..................................100 4.4.2 SimulationOutputs..............................103 4.5 SoftwareDemonstration . .. .. .. 104 4.6 Summary .......................................106 5 Case Studies 108 5.1 Case Study 1: Simple Queueing Network . 111 CONTENTS xi 5.1.1 Systemsettings ................................111 5.1.2 Distribution fitting results . 112 5.1.3 Inferred queueing network model and response time analysis . ......113 5.2 Case Study 2: Multiclass Queueing Network with Different Service Disciplines . 116 5.2.1 Systemsettings ................................116 5.2.2 Distribution fitting results . 117 5.2.3 Inferred queueing network model and response time analysis . ......120 5.3 Case Study 3: Queueing Network with Different Routing Policies . ......125 5.3.1 Systemsettings ................................125 5.3.2 Distribution fitting results . 126 5.3.3 Inferred queueing network model and response time analysis . ......128 5.4 CaseStudy4:ExperimentData. 133 5.4.1 Experiment design and settings . 133 5.4.2 Results.....................................134 5.5 Discussion.......................................136 5.5.1 Time delay sample extraction and distribution fitting . 136 5.5.2 Customerflowrouting ............................139 5.5.3 Response time analysis . 140 5.5.4 ComputationTime ..............................140 5.6 Summary .......................................141 6 Conclusion 143 6.1 Summary of Thesis Achievements . 143 6.1.1 Develop a methodology for inferring a queueing network model from high- precisionlocationtrackingdata . 143 6.1.2 Implementation of LocTrackJINQS ...................144 6.1.3 Evaluate the accuracy of the developed data processing pipeline .....144 6.2 Applications......................................145 6.3 Futurework......................................146 6.3.1 Extend the variety of features that can be inferred . ......146 6.3.2 Extensions on LocTrackJINQS ......................147 6.3.3 Online data processing pipeline . 147 6.3.4 Investigate different filtering and smoothing techniques for location track- ingdata ....................................149 6.3.5 Support
Recommended publications
  • The Queueing Network Analyzer
    THE BELL SYSTEM TECHNICAL JOURNAL Vol. 62, No.9, November 1983 Printed in U.S.A. The Queueing Network Analyzer By W. WHITT* (Manuscript received March 11, 1983) This paper describes the Queueing Network Analyzer (QNA), a software package developed at Bell Laboratories to calculate approximate congestion measures for a network of queues. The first version of QNA analyzes open networks of multiserver nodes with the first-come, first-served discipline and no capacity constraints. An important feature is that the external arrival processes need not be Poisson and the service-time distributions need not be exponential. Treating other kinds of variability is important. For example, with packet-switchedcommunication networks we need to describe the conges­ tion resulting from bursty traffic and the nearly constant service times of packets. The general approach in QNA is to approximately characterize the arrival processes by two or three parameters and then analyze the individual nodes separately. The first version of QNA uses two parameters to characterize the arrival processes and service times, one to describe the rate and the other to describe the variability. The nodes are then analyzed as standard GI/G/m queues partially characterized by the first two moments of the interarrival­ time and service-time distributions. Congestion measures for the network as a whole are obtained by assuming as an approximation that the nodes are stochastically independent given the approximate flow parameters. I. INTRODUCTION AND SUMMARY Networks of queues have proven to be useful models to analyze the performance of complex systems such as computers, switching ma­ chines, communications networks, and production job shOpS.1-7 To facilitate the analysis of these models, several software packages have * Bell Laboratories.
    [Show full text]
  • Queueing-Theoretic Solution Methods for Models of Parallel and Distributed Systems·
    1 Queueing-Theoretic Solution Methods for Models of Parallel and Distributed Systems· Onno Boxmat, Ger Koolet & Zhen Liui t CW/, Amsterdam, The Netherlands t INRIA-Sophia Antipolis, France This paper aims to give an overview of solution methods for the performance analysis of parallel and distributed systems. After a brief review of some important general solution methods, we discuss key models of parallel and distributed systems, and optimization issues, from the viewpoint of solution methodology. 1 INTRODUCTION The purpose of this paper is to present a survey of queueing theoretic methods for the quantitative modeling and analysis of parallel and distributed systems. We discuss a number of queueing models that can be viewed as key models for the performance analysis and optimization of parallel and distributed systems. Most of these models are very simple, but display an essential feature of dis­ tributed processing. In their simplest form they allow an exact analysis. We explore the possibilities and limitations of existing solution methods for these key models, with the purpose of obtaining insight into the potential of these solution methods for more realistic complex quantitative models. As far as references is concerned, we have restricted ourselves in the text mainly to key references that make a methodological contribution, and to sur­ veys that give the reader further access to the literature; we apologize for any inadvertent omissions. The reader is referred to Gelenbe's book [65] for a general introduction to the area of multiprocessor performance modeling and analysis. Stochastic Petri nets provide another formalism for modeling and perfor­ mance analysis of discrete event systems.
    [Show full text]
  • Product-Form in Queueing Networks
    Product-form in queueing networks VRIJE UNIVERSITEIT Product-form in queueing networks ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Vrije Universiteit te Amsterdam, op gezag van de rector magnificus dr. C. Datema, hoogleraar aan de faculteit der letteren, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de faculteit der economische wetenschappen en econometrie op donderdag 21 mei 1992 te 15.30 uur in het hoofdgebouw van de universiteit, De Boelelaan 1105 door Richardus Johannes Boucherie geboren te Oost- en West-Souburg Thesis Publishers Amsterdam 1992 Promotoren: prof.dr. N.M. van Dijk prof.dr. H.C. Tijms Referenten: prof.dr. A. Hordijk prof.dr. P. Whittle Preface This monograph studies product-form distributions for queueing networks. The celebrated product-form distribution is a closed-form expression, that is an analytical formula, for the queue-length distribution at the stations of a queueing network. Based on this product-form distribution various so- lution techniques for queueing networks can be derived. For example, ag- gregation and decomposition results for product-form queueing networks yield Norton's theorem for queueing networks, and the arrival theorem implies the validity of mean value analysis for product-form queueing net- works. This monograph aims to characterize the class of queueing net- works that possess a product-form queue-length distribution. To this end, the transient behaviour of the queue-length distribution is discussed in Chapters 3 and 4, then in Chapters 5, 6 and 7 the equilibrium behaviour of the queue-length distribution is studied under the assumption that in each transition a single customer is allowed to route among the stations only, and finally, in Chapters 8, 9 and 10 the assumption that a single cus- tomer is allowed to route in a transition only is relaxed to allow customers to route in batches.
    [Show full text]
  • A Robust Queueing Network Analyzer Based on Indices of Dispersion
    Submitted to INFORMS Journal on Computing manuscript (Please, provide the manuscript number!) Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named jour- nal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print or online or to submit the papers to another publication. A Robust Queueing Network Analyzer Based on Indices of Dispersion Ward Whitt Department of Industrial Engineering and Operations Research, Columbia University, [email protected], Wei You Department of Industrial Engineering and Operations Research, Columbia University, [email protected], We develop a robust queueing network analyzer (RQNA) algorithm to approximate the steady-state per- formance of a single-class open queueing network of single-server queues with Markovian routing, allowing non-renewal external arrival processes and non-exponential service-time distributions. Each flow is partially characterized by its rate and index of dispersion for counts (IDC, i.e., scaled variance-time function). A robust queueing approximation is used to approximate the mean steady-state number of customers and workload (remaining service time) at each queue, given the rate and IDC of the arrival process and the first two moments of the service time. The RQNA algorithm includes subroutines to calculate or estimate the IDC for each external flow, subroutines to solve systems of linear equations to calculate the rates and approximate the IDC's of the internal flows and a feedback elimination procedure.
    [Show full text]
  • Telephone Call Centers: Tutorial, Review, and Research Prospects
    University of Pennsylvania ScholarlyCommons Operations, Information and Decisions Papers Wharton Faculty Research 2003 Telephone Call Centers: Tutorial, Review, and Research Prospects Noah Gans University of Pennsylvania Ger Koole Avishai Mandelbaum Follow this and additional works at: https://repository.upenn.edu/oid_papers Part of the Business Administration, Management, and Operations Commons, Growth and Development Commons, Human Resources Management Commons, and the Operations and Supply Chain Management Commons Recommended Citation Gans, N., Koole, G., & Mandelbaum, A. (2003). Telephone Call Centers: Tutorial, Review, and Research Prospects. manufacturing & Service Operations Management, 5 (2), 79-141. http://dx.doi.org/10.1287/ msom.5.2.79.16071 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/oid_papers/136 For more information, please contact [email protected]. Telephone Call Centers: Tutorial, Review, and Research Prospects Abstract Telephone call centers are an integral part of many businesses, and their economic role is significant and growing. They are also fascinating sociotechnical systems in which the behavior of customers and employees is closely intertwined with physical performance measures. In these environments traditional operational models are of great value—and at the same time fundamentally limited—in their ability to characterize system performance. We review the state of research on telephone call centers. We begin with a tutorial on how call centers function and proceed to survey
    [Show full text]
  • Download File
    A Robust Queueing Network Analyzer Based on Indices of Dispersion Wei You Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 c 2019 Wei You All Rights Reserved ABSTRACT A Robust Queueing Network Analyzer Based on Indices of Dispersion Wei You In post-industrial economies, modern service systems are dramatically changing the daily lives of many people. Such systems are often complicated by uncertainty: service providers usually cannot predict when a customer will arrive and how long the service will be. For- tunately, useful guidance can often be provided by exploiting stochastic models such as queueing networks. In iterating the design of service systems, decision makers usually favor analytical analysis of the models over simulation methods, due to the prohibitive compu- tation time required to obtain optimal solutions for service operation problems involving multidimensional stochastic networks. However, queueing networks that can be solved an- alytically require strong assumptions that are rarely satisfied, whereas realistic models that exhibit complicated dependence structure are prohibitively hard to analyze exactly. In this thesis, we continue the effort to develop useful analytical performance approx- imations for the single-class open queueing network with Markovian routing, unlimited waiting space and the first-come first-served service discipline. We focus on open queueing networks where the external arrival processes are not Poisson and the service times are not exponential. We develop a new non-parametric robust queueing algorithm for the performance ap- proximation in single-server queues. With robust optimization techniques, the underlying stochastic processes are replaced by samples from suitably defined uncertainty sets and the worst-case scenario is analyzed.
    [Show full text]
  • Matrix Geometric Approach for Random Walks
    Matrix geometric approach for random walks Citation for published version (APA): Kapodistria, S., & Palmowski, Z. B. (2017). Matrix geometric approach for random walks: stability condition and equilibrium distribution. Stochastic Models, 33(4), 572-597. https://doi.org/10.1080/15326349.2017.1359096 Document license: CC BY-NC-ND DOI: 10.1080/15326349.2017.1359096 Document status and date: Published: 02/10/2017 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Approximating Heavy Traffic with Brownian Motion
    APPROXIMATING HEAVY TRAFFIC WITH BROWNIAN MOTION HARVEY BARNHARD Abstract. This expository paper shows how waiting times of certain queuing systems can be approximated by Brownian motion. In particular, when cus- tomers exit a queue at a slightly faster rate than they enter, the waiting time of the nth customer can be approximated by the supremum of reflected Brow- nian motion with negative drift. Along the way, we introduce fundamental concepts of queuing theory and Brownian motion. This paper assumes some familiarity of stochastic processes. Contents 1. Introduction 2 2. Queuing Theory 2 2.1. Continuous-Time Markov Chains 3 2.2. Birth-Death Processes 5 2.3. Queuing Models 6 2.4. Properties of Queuing Models 7 3. Brownian Motion 8 3.1. Random Walks 9 3.2. Brownian Motion, Definition 10 3.3. Brownian Motion, Construction 11 3.3.1. Scaled Random Walks 11 3.3.2. Skorokhod Embedding 12 3.3.3. Strong Approximation 14 3.4. Brownian Motion, Variants 15 4. Heavy Traffic Approximation 17 Acknowledgements 19 References 20 Date: November 21, 2018. 1 2 HARVEY BARNHARD 1. Introduction This paper discusses a Brownian Motion approximation of waiting times in sto- chastic systems known as queues. The paper begins by covering the fundamental concepts of queuing theory, the mathematical study of waiting lines. After waiting times and heavy traffic are introduced, we define and construct Brownian motion. The construction of Brownian motion in this paper will be less thorough than other texts on the subject. We instead emphasize the components of the construction most relevant to the final result—the waiting time of customers in a simple queue can be approximated with Brownian motion.
    [Show full text]
  • BUSF 40901-1/CMSC 34901-1: Stochastic Performance Modeling Winter 2014
    BUSF 40901-1/CMSC 34901-1: Stochastic Performance Modeling Winter 2014 Syllabus (January 15, 2014) Instructor: Varun Gupta Office: 331 Harper Center e-mail: [email protected] Phone: 773-702-7315 Office hours: by appointment Class Times: Wed, Fri { 10:10-11:30 am { Harper Center (3A) Final Exam (tentative): March 21, Friday { 8:00-11:00am { Harper Center (3A) Course Website: http://chalk.uchicago.edu Course Objectives This is an introductory course in queueing theory and performance modeling, with applications including but not limited to service operations (healthcare, call centers) and computer system resource management (from datacenter to kernel level). The aim of the course is two-fold: 1. Build insights into best practices for designing service systems (How many service stations should I provision? What speed? How should I separate/prioritize customers based on their service requirements?) 2. Build a basic toolbox for analyzing queueing systems in particular and stochastic processes in general. Tentative list of topics: Open/closed queueing networks; Operational laws; M=M=1 queue; Burke's theorem and reversibility; M=M=k queue; M=G=1 queue; G=M=1 queue; P h=P h=k queues and their solution using matrix-analytic methods; Arrival theorem and Mean Value Analysis; Analysis of scheduling policies (e.g., Last-Come-First Served; Processor Sharing); Jackson network and the BCMP theorem (product form networks); Asymptotic analysis (M=M=k queue in heavy/light traf- fic, Supermarket model in mean-field regime) Prerequisites Exposure to undergraduate probability (random variables, discrete and continuous probability dis- tributions, discrete time Markov chains) and calculus is required.
    [Show full text]
  • Queueing Systems
    Queueing Systems Ivo Adan and Jacques Resing Department of Mathematics and Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands March 26, 2015 Contents 1 Introduction7 1.1 Examples....................................7 2 Basic concepts from probability theory 11 2.1 Random variable................................ 11 2.2 Generating function............................... 11 2.3 Laplace-Stieltjes transform........................... 12 2.4 Useful probability distributions........................ 12 2.4.1 Geometric distribution......................... 12 2.4.2 Poisson distribution........................... 13 2.4.3 Exponential distribution........................ 13 2.4.4 Erlang distribution........................... 14 2.4.5 Hyperexponential distribution..................... 15 2.4.6 Phase-type distribution......................... 16 2.5 Fitting distributions.............................. 17 2.6 Poisson process................................. 18 2.7 Exercises..................................... 20 3 Queueing models and some fundamental relations 23 3.1 Queueing models and Kendall's notation................... 23 3.2 Occupation rate................................. 25 3.3 Performance measures............................. 25 3.4 Little's law................................... 26 3.5 PASTA property................................ 27 3.6 Exercises..................................... 28 4 M=M=1 queue 29 4.1 Time-dependent behaviour........................... 29 4.2 Limiting behavior...............................
    [Show full text]
  • Markovian Queueing Networks
    Richard J. Boucherie Markovian queueing networks Lecture notes LNMB course MQSN September 5, 2020 Springer Contents Part I Solution concepts for Markovian networks of queues 1 Preliminaries .................................................. 3 1.1 Basic results for Markov chains . .3 1.2 Three solution concepts . 11 1.2.1 Reversibility . 12 1.2.2 Partial balance . 13 1.2.3 Kelly’s lemma . 13 2 Reversibility, Poisson flows and feedforward networks. 15 2.1 The birth-death process. 15 2.2 Detailed balance . 18 2.3 Erlang loss networks . 21 2.4 Reversibility . 23 2.5 Burke’s theorem and feedforward networks of MjMj1 queues . 25 2.6 Literature . 28 3 Partial balance and networks with Markovian routing . 29 3.1 Networks of MjMj1 queues . 29 3.2 Kelly-Whittle networks. 35 3.3 Partial balance . 39 3.4 State-dependent routing and blocking protocols . 44 3.5 Literature . 50 4 Kelly’s lemma and networks with fixed routes ..................... 51 4.1 The time-reversed process and Kelly’s Lemma . 51 4.2 Queue disciplines . 53 4.3 Networks with customer types and fixed routes . 59 4.4 Quasi-reversibility . 62 4.5 Networks of quasi-reversible queues with fixed routes . 68 4.6 Literature . 70 v Part I Solution concepts for Markovian networks of queues Chapter 1 Preliminaries This chapter reviews and discusses the basic assumptions and techniques that will be used in this monograph. Proofs of results given in this chapter are omitted, but can be found in standard textbooks on Markov chains and queueing theory, e.g. [?, ?, ?, ?, ?, ?, ?]. Results from these references are used in this chapter without reference except for cases where a specific result (e.g.
    [Show full text]
  • Queueing-Theoretic Solution Methods for Models of Parallel and Distributed Systems
    Queueing-Theoretic Solution Methods for Models of Parallel and Distributed Systems Onno Boxmay, Ger Kooley & Zhen Liuz yCWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands zINRIA Sophia-Antipolis, B.P. 93, 06902 Sophia-Antipolis, France Abstract This paper aims to give an overview of solution methods for the performance analysis of parallel and distributed systems. After a brief review of some important general solution methods, we discuss key models of parallel and distributed systems, and optimization issues, from the viewpoint of solution methodology. AMS Subject Classification (1991): 60K20, 68M20 Keywords & Phrases: queueing, performance evaluation, parallel systems Note: Supported by the European Grant BRA-QMIPS of CEC DG XIII, the second author is also supported by NFI. This paper appeared also in Performance Evaluation of Parallel and Distributed Systems | Solution Methods, O.J. Boxma and G.M. Koole (eds.), CWI, Amsterdam, 1994 (CWI Tract 105 & 106). 1. Introduction The purpose of this paper is to present a survey of queueing theoretic methods for the quantitative modeling and analysis of parallel and distributed systems. We discuss a number of queueing models that can be viewed as key models for the performance analysis and optimization of parallel and distributed systems. Most of these models are very simple, but display an essential feature of distributed processing. In their simplest form they allow an exact analysis. We explore the possibilities and limitations of existing solution methods for these key models, with the purpose of obtaining insight into the potential of these solution methods for more realistic complex quantitative models. As far as references is concerned, we have restricted ourselves in the text mainly to key references that make a methodological contribution, and to surveys that give the reader further access to the literature; we apologize for any inadvertent omissions.
    [Show full text]