Sexual Selection and Speciation in Mammals, Butterflies and Spiders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dna Sequence Data Indicates the Polyphyl Y of the Family Ctenidae (Araneae )
1993. The Journal of Arachnology 21 :194–201 DNA SEQUENCE DATA INDICATES THE POLYPHYL Y OF THE FAMILY CTENIDAE (ARANEAE ) Kathrin C . Huber', Thomas S . Haider2, Manfred W . Miiller2, Bernhard A . Huber' , Rudolf J. Schweyen2, and Friedrich G . Barth' : 'Institut fair Zoologie, Althanstr . 14; 1090 Wien; and 2lnstitut fur Mikrobiologie and Genetik; Dr. Bohrgasse 9 ; 1030 Wien (Vienna), Austria . ABSTRACT. Mitochondrial DNA fragments comprising more than 400 bases of the 16S rDNA from nine spider species have been sequenced: Cupiennius salei, C. getazi, C. coccineus and Phoneutria boliviensis (Ctenidae), Pisaura mirabilis, Dolomedes fimbriatus (Pisauridae), Pardosa agrestis (Lycosidae), Clubiona pallidula (Clubi- onidae) and Ryuthela nishihirai (syn. Heptathela nishihirai; Heptathelidae: Mesothelae). Sequence divergence ranges from 3–4% among Cupiennius species and up to 36% in pairwise comparisons of the more distantly related spider DNAs. Maximally parsimonious gene trees based on these sequences indicate that Phoneutri a and Cupiennius are the most distantly related species of the examined Lycosoidea . The monophyly of the family Ctenidae is therefore doubted ; and a revision of the family, which should include DNA-data, is needed . Cupiennius salei (Ctenidae) is one of the most get a high copy number of the DNA segment of extensively studied species of spiders (see Lach - interest. The PCR depends on the availability of muth et al. 1985). The phylogeny of the Ctenidae , oligonucleotides that specifically bind to the a mainly South and Central American family, i s flanking sequences of this DNA segment. These poorly understood ; and systematists propose oligonucleotides serve as primers for a polymer- highly contradicting views on its classification ization reaction that copies the segment in vitro. -
Araneae: Lycosidae) in Winter Oilseed Rape
Eur. J. Entomol. 108: 609–614, 2011 http://www.eje.cz/scripts/viewabstract.php?abstract=1660 ISSN 1210-5759 (print), 1802-8829 (online) Landscape structure affects activity density, body size and fecundity of Pardosa wolf spiders (Araneae: Lycosidae) in winter oilseed rape THOMAS DRAPELA1, 3, THOMAS FRANK1, XAVER HEER2, DIETMAR MOSER1, 4 and JOHANN G. ZALLER1* 1 Institute of Zoology, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences Vienna, Gregor Mendel Straße 33, A-1180 Vienna, Austria 2 Eichenweg 6, CH-5036 Oberentfelden, Switzerland 3 Research Institute of Organic Agriculture (FiBL Austria), A-1070 Vienna, Austria 4 Vienna Institute for Nature Conservation and Analyses (VINCA), A-1090 Vienna, Austria Key words. Agroecology, Araneae, Lycosidae, Pardosa agrestis, generalist predator, Brassica napus, oilseed rape, landscape, multiple spatial scales Abstract. In large parts of Europe Pardosa spp. (Lycosidae) are among the most abundant wolf spiders in arable fields and poten- tially important natural control agents of pests. We studied the influence of landscape factors on activity density, adult body size and fecundity of P. agrestis in 29 winter oilseed rape fields (Brassica napus L.) in Eastern Austria using pitfall traps. Landscape data were obtained for eight circular landscape sections around each field (radii 250–2000 m). Multivariate regression models were used to analyze the data. Activity density was highest when the length of strips of grassy road-sides in the surroundings was highest and distance to the next grassy fallow lowest. Body size was negatively related to activity density and to the length of road-side strips and positively to woody areas in the vicinity of the fields. -
Nuclear DNA Analyses in Genetic Studies of Populations: Practice, Problems and Prospects
Molecular Ecology (2003) 12, 563–584 INVITEDBlackwell Publishing Ltd. REVIEW Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects DE-XING ZHANG* and GODFREY M. HEWITT† *State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 19 Zhongguancun Road, Beijing 100080, PR China, †School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK Abstract Population-genetic studies have been remarkably productive and successful in the last dec- ade following the invention of PCR technology and the introduction of mitochondrial and microsatellite DNA markers. While mitochondrial DNA has proven powerful for genea- logical and evolutionary studies of animal populations, and microsatellite sequences are the most revealing DNA markers available so far for inferring population structure and dynamics, they both have important and unavoidable limitations. To obtain a fuller picture of the history and evolutionary potential of populations, genealogical data from nuclear loci are essential, and the inclusion of other nuclear markers, i.e. single copy nuclear poly- morphic (scnp) sequences, is clearly needed. Four major uncertainties for nuclear DNA analyses of populations have been facing us, i.e. the availability of scnp markers for carry- ing out such analysis, technical laboratory hurdles for resolving haplotypes, difficulty in data analysis because of recombination, low divergence levels and intraspecific multi- furcation evolution, and the utility of scnp markers for addressing population-genetic ques- tions. In this review, we discuss the availability of highly polymorphic single copy DNA in the nuclear genome, describe patterns and rate of evolution of nuclear sequences, sum- marize past empirical and theoretical efforts to recover and analyse data from scnp markers, and examine the difficulties, challenges and opportunities faced in such studies. -
Araneae) Parasite–Host Association
2006. The Journal of Arachnology 34:273–278 SHORT COMMUNICATION FIRST UNEQUIVOCAL MERMITHID–LINYPHIID (ARANEAE) PARASITE–HOST ASSOCIATION David Penney: Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK. E-mail: [email protected] Susan P. Bennett: Biological Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK. ABSTRACT. The first description of a Mermithidae–Linyphiidae parasite–host association is presented. The nematode is preserved exiting the abdomen of the host, which is a juvenile Tenuiphantes species (Araneae, Linyphiidae), collected from the Isle of Mull, UK. An updated taxonomic list of known mer- mithid spider hosts is provided. The ecology of known spider hosts with regard to the direct and indirect life cycles of mermithid worms suggests that both occur in spiders. Keywords: Aranimermis, Isle of Mull, Linyphiidae, Mermithidae, Nematoda Nematode parasites of spiders are restricted to an updated and taxonomically correct list in Table the family Mermithidae but are not uncommon 1. Here we describe the first Mermithidae–Liny- (Poinar 1985, 1987) and were first reported almost phiidae parasite–host association and discuss the two and a half centuries ago (Roesel 1761). How- ecology of known spider hosts with regard to the ever, given the difficulty of identifying and rearing life cycles of mermithid worms. post-parasitic juvenile mermithids, they have re- This paper concerns three spider specimens, one ceived inadequate systematic treatment (Poinar with a worm in situ and two that are presumed to 1985). In addition, the complete life history is have been parasitized, but from which the worms known for only one species of these spider parasites have emerged and are lost. -
The Genetic Legacy of the Quaternary Ice Ages
review article The genetic legacy of the Quaternary ice ages Godfrey Hewitt School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK ............................................................................................................................................................................................................................................................................ Global climate has fluctuated greatly during the past three million years, leading to the recent major ice ages. An inescapable consequence for most living organisms is great changes in their distribution, which are expressed differently in boreal, temperate and tropical zones. Such range changes can be expected to have genetic consequences, and the advent of DNA technology provides most suitable markers to examine these. Several good data sets are now available, which provide tests of expectations, insights into species colonization and unexpected genetic subdivision and mixture of species. The genetic structure of human populations may be viewed in the same context. The present genetic structure of populations, species and communities has been mainly formed by Quaternary ice ages, and genetic, fossil and physical data combined can greatly help our understanding of how organisms were so affected. The study of palaeoclimates is a particularly active research field that These severe climatic oscillations produced great changes in species is producing much data and increasingly coherent explanations. distributions, and these have been described in some detail, particularly The Earth’s climate became cooler through the Tertiary (65 million from the fossil records of pollen and beetles in Europe and North years (Myr)) with frequent oscillations that increased in amplitude America1,9. Species went extinct over large parts of their range, some and lead to the series of major ice ages of the Quaternary (2.4 Myr to dispersed to new locations, some survived in refugia and then the present). -
Pesticide Additives Can Weaken the Predatory Activity of Spiders
Pesticide additives can weaken the predatory activity of spiders Two chemicals used as co-formulants in pesticides have been found to reduce the predatory behaviour of the wolf spider Pardosa agrestis, an insect predator found within agricultural landscapes. A third co-formulant was found 17 June 2016 not to affect the predatory behaviour of females and increased the prey behaviour of Issue 459 male spiders. This is the first time that pesticide additives have been shown to alter Subscribe to free the predatory activity of a potential biological control agent of crop pests. weekly News Alert Surfactants are a common component of pesticides. They are conventionally mixed Source: Niedobova, J., with liquid pesticides in order to increase dispersal of the pesticide through plant cuticles or Hula, V. & Michalko, R. to reduce the surface tension of insect exoskeletons, meaning the surface is unable to repel (2016). Sublethal effect of the liquid pesticide. agronomical surfactants on the spider Pardosa The use of surfactants has increased globally over the last decade, with global consumption agrestis. Environmental of these chemicals increasing at a rate of 5% annually. Possible cumulative effects with Pollution 213:84-89. DOI: other compounds of a pesticide on non-target insects are subject to a risk assessment 10.1016/j.envpol.2016.02. ahead of authorisation, but the impact of surfactants alone on the range of non-target insect 005. species is rarely studied. Recent research has indicated that surfactants alone may have an even more negative effect on insects than pesticides themselves, including on beneficial Contact: species such as pollinators. -
Life History Strategies of Different Developmental Rates: Causes and Consequences
1949 Life history strategies of different developmental rates: causes and consequences Thesis for the Degree of Doctor of Philosophy (PhD) by Zoltán Rádai Supervisors: Prof. Zoltán Barta Prof. Ferenc Samu UNIVERSITY OF DEBRECEN Doctoral Council of Natural Sciences and Information Technology Doctoral School of Juhász-Nagy Pál Debrecen, 2020 Hereby I declare that I prepared this thesis within the Doctoral Council of Natural Sciences and Information Technology, Doctoral School of Juhász-Nagy Pál , University of Debrecen in order to obtain a PhD Degree in Natural Sciences at Debrecen University. The results published in the thesis are not reported in any other PhD theses. Debrecen, 2020. ……………………………………. Zoltán Rádai Hereby I confirm that Zoltán Rádai candidate conducted his studies with my supervision within the Biodiversity Doctoral Program of the Doctoral School of Juhász-Nagy Pál between 2015 and 2019. The independent studies and research work of the candidate significantly contributed to the results published in the thesis. I also declare that the results published in the thesis are not reported in any other theses. I support the acceptance of the thesis. Debrecen, 2020. ……………………………………. Prof. Zoltán Barta Hereby I confirm that Zoltán Rádai candidate conducted his studies with my supervision within the Biodiversity Doctoral Program of the Doctoral School of Juhász-Nagy Pál between 2015 and 2019. The independent studies and research work of the candidate significantly contributed to the results published in the thesis. I also declare that the results published in the thesis are not reported in any other theses. I support the acceptance of the thesis. Debrecen, 2020. ……………………………………. Prof. Ferenc Samu Life history strategies of different developmental rates: causes and consequences Dissertation submitted in partial fulfilment of the requirements for the doctoral (PhD) degree in Biology Written by Zoltán Rádai certified Biologist in the framework of the Juhász-Nagy Pál Doctoral School of the University of Debrecen (Biodiversity programme) Dissertation advisors: Dr. -
On the Pardosa Monticola-Species Group from Iran
On the Pardosa monticola-species group from Iran (Araneae: Lycosidae) Yuri M. Marusik, Francesco Ballarin, Mikhail M. Omelko Abstract. A survey of species belonging to the Pardosa monticola species group from Iran is pre- sented. A new species, P. persica sp. n., from Fars Province is described on the basis of both sex- es. Two species, P. buchari Ovtsharenko, 1979 and P. pontica (Thorell, 1875), are reported from Iran for the first time. All the three species are illustrated. Earlier records of P. agrestis (Westring, 1861), P. agricola (Thorell, 1856), P. monticola (Clerck, 1757) and P. palustris (Linnaeus, 1758), from Iran appear to have been based on misidentifications of P. buchari and P. pontica. Key words. Iran, spider, new species, new record, Pardosa monticola-group. Introduction The spider fauna of Iran is relatively poorly studied with respect to species diversity. Only 244 species of spiders were reported in 2006 (SAHRA 2006). Neighboring Turkey and Azer- baijan are much better studied with over 600 species reported in each of these countries (BAYRAM et al. 2012, OTTO & TRAMP 2011). In adjacent Turkmenistan, the number of known species is about 400 (MIKHAILOV, pers. comm.). The spiders of Iran are also poorly known from a taxonomic aspect. So far, only eight Pardosa species are known to occur in Iran (SAHRA 2006). Of them five species, P. agrestis (Westring, 1861), P. agricola (Thorell, 1856), P. condolens (O.P.-Cambridge, 1885), P. monticola (Clerck, 1757) and P. palustris (Linnaeus, 1758), belong to the monticola-group according to MARUSIK & FRITZÉN (2009). The Pardosa monticola-group is the second largest species-group of the genus with more than 25 species known, mainly with European and Caucasian distribution (MARUSIK & FRITZÉN 2009). -
Arctic Biodiversity Assessment
566 Arctic Biodiversity Assessment The lesser snow goose Chen c. caerulescens shows an approximate east-west cline in their Nearctic breeding distribution in frequency of pale or dark morphs, with blue morphs most common in the east. Although studies of fitness components failed to uncover any adaptive advantage associated with either morph, geese show strong mating preference based on the color of their parents, leading to assortative mating. Queen Maud Gulf Bird Sanctuary, Nunavut, Canada. Photo: Gustaf Samelius. 567 Chapter 17 Genetics Lead Author Joseph A. Cook Contributing Authors Christian Brochmann, Sandra L. Talbot, Vadim B. Fedorov, Eric B. Taylor, Risto Väinölä, Eric P. Hoberg, Marina Kholodova, Kristinn P. Magnusson and Tero Mustonen Contents Summary ..............................................................568 17.5. Recommendations and conservation measures ������������������582 17.1. Introduction .....................................................568 17.5.1. Call for immediate development of freely available, specimen-based archives ...................................582 17.2. Systematics, phylogenetics and phylogeography ................569 17.5.1.1. Build European, Asian and North American 17.2.1. Systematics ................................................569 tissue archives .....................................582 17.2.1.1. Phylogenetics and taxonomy �����������������������569 17.5.2. Expand biodiversity informatics ............................582 17.2.1.2. Systematics and phylogenetics in Arctic species ....569 17.5.2.1. Connect GenBank, EMBL and DDJB to Archives .....582 17.2.2. Phylogeography – setting the stage for interpreting 17.5.2.2. Connect GenBank (Genomics) to GIS applications ..583 changing environmental conditions ........................571 17.5.2.3. Stimulate emerging pathogen investigations 17.2.2.1. Influence of dynamic climates on structuring through integrated inventories ���������������������583 Arctic diversity .....................................571 17.5.2.4. Develop educational interfaces and portals for 17.2.2.2. -
Submission to Nature Reviews Genetics
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2014 Genomics and the origin of species Seehausen, Ole ; Butlin, Roger K ; Keller, Irene ; Wagner, Catherine E ; Boughman, Janette W ; Hohenlohe, Paul A ; Peichel, Catherine L ; Saetre, Glenn-Peter ; Bank, Claudia ; Brännström, Ake ; Brelsford, Alan ; Clarkson, Chris S ; Eroukhmanoff, Fabrice ; Feder, Jeffrey L ; Fischer, Martin C; Foote, Andrew D ; Franchini, Paolo ; Jiggins, Chris D ; Jones, Felicity C ; Lindholm, Anna K ; Lucek, Kay ; Maan, Martine E ; Marques, David A ; Martin, Simon H ; Matthews, Blake ; Meier, Joana I ; Möst, Markus ; Nachman, Michael W ; Nonaka, Etsuko ; Rennison, Diana J ; Schwarzer, Julia ; Watson, Eric T ; Westram, Anja M ; Widmer, Alex Abstract: Speciation is a fundamental evolutionary process, the knowledge of which is crucial for under- standing the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work,we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics. DOI: https://doi.org/10.1038/nrg3644 Posted at the Zurich -
Using Phylogeographic Analyses of Gene Trees to Test Species Status and Processes
MEC1199.fm Page 779 Monday, March 12, 2001 6:55 PM Molecular Ecology (2001) 10, 779–791 UsingBlackwell Science, Ltd phylogeographic analyses of gene trees to test species status and processes ALAN R. TEMPLETON Department of Biology, Campus Box 1137, Washington University, St. Louis, Missouri 63130–4899, USA Abstract A gene tree is an evolutionary reconstruction of the genealogical history of the genetic vari- ation found in a sample of homologous genes or DNA regions that have experienced little or no recombination. Gene trees have the potential of straddling the interface between intra- and interspecific evolution. It is precisely at this interface that the process of speciation occurs, and gene trees can therefore be used as a powerful tool to probe this interface. One application is to infer species status. The cohesion species is defined as an evolutionary lineage or set of lineages with genetic exchangeability and/or ecological interchangeability. This species concept can be phrased in terms of null hypotheses that can be tested rigorously and objectively by using gene trees. First, an overlay of geography upon the gene tree is used to test the null hypothesis that the sample is from a single evolutionary lineage. This phase of testing can indicate that the sampled organisms are indeed from a single lineage and therefore a single cohesion species. In other cases, this null hypothesis is not rejected due to a lack of power or inadequate sampling. Alternatively, this null hypothesis can be rejected because two or more lineages are in the sample. The test can identify lineages even when hybridization and lineage sorting occur. -
Do Adult Female Lycosids Feed During the Period of Maternal Care?
388 Bull. Br. arachnol. Soc. (2000) 11 (9), 388–390 Do adult female lycosids feed during the period of reports on the feeding status of maternal females maternal care? differ. In the course of a comprehensive study on the feeding habits of three species of Pardosa wolf spiders, I Martin Nyffeler gathered a large set of data on the activities of females in Zoological Institute, Division of Ecology, various stages of their adult life, which allowed an University of Berne, Baltzerstr. 3, investigation of the question whether maternal females CH-3012 Berne, Switzerland stop or resume feeding. Summary Material and methods It has been stated in some literature reports that in the highly cannibalistic wolf spiders (Lycosidae) the adult This study was conducted during two consecutive females do not feed while engaged in maternal care (i.e. their years in cereal fields belonging to the Swiss Federal predatory behaviour is inhibited), whereas other reports Research Station for Agroecology and Agriculture near based on laboratory studies indicate that maternal females Zurich. During 104.5 h (from mid-May to mid-August resume feeding. During a two-year field study on the feeding habits of the wolf spiders Pardosa agrestis, P. palustris and in the first year and from mid-May to mid-July in P. amentata, I had the opportunity to investigate the the second year), the soil surface of the fields was question whether in these species maternal females do feed thoroughly searched for wolf spiders. Each time a spider (or not). Overall, 25 instances of wolf spider mothers was encountered, it was recorded whether it was in feeding during the period of maternal care are reported.