Life History Strategies of Different Developmental Rates: Causes and Consequences

Total Page:16

File Type:pdf, Size:1020Kb

Life History Strategies of Different Developmental Rates: Causes and Consequences 1949 Life history strategies of different developmental rates: causes and consequences Thesis for the Degree of Doctor of Philosophy (PhD) by Zoltán Rádai Supervisors: Prof. Zoltán Barta Prof. Ferenc Samu UNIVERSITY OF DEBRECEN Doctoral Council of Natural Sciences and Information Technology Doctoral School of Juhász-Nagy Pál Debrecen, 2020 Hereby I declare that I prepared this thesis within the Doctoral Council of Natural Sciences and Information Technology, Doctoral School of Juhász-Nagy Pál , University of Debrecen in order to obtain a PhD Degree in Natural Sciences at Debrecen University. The results published in the thesis are not reported in any other PhD theses. Debrecen, 2020. ……………………………………. Zoltán Rádai Hereby I confirm that Zoltán Rádai candidate conducted his studies with my supervision within the Biodiversity Doctoral Program of the Doctoral School of Juhász-Nagy Pál between 2015 and 2019. The independent studies and research work of the candidate significantly contributed to the results published in the thesis. I also declare that the results published in the thesis are not reported in any other theses. I support the acceptance of the thesis. Debrecen, 2020. ……………………………………. Prof. Zoltán Barta Hereby I confirm that Zoltán Rádai candidate conducted his studies with my supervision within the Biodiversity Doctoral Program of the Doctoral School of Juhász-Nagy Pál between 2015 and 2019. The independent studies and research work of the candidate significantly contributed to the results published in the thesis. I also declare that the results published in the thesis are not reported in any other theses. I support the acceptance of the thesis. Debrecen, 2020. ……………………………………. Prof. Ferenc Samu Life history strategies of different developmental rates: causes and consequences Dissertation submitted in partial fulfilment of the requirements for the doctoral (PhD) degree in Biology Written by Zoltán Rádai certified Biologist in the framework of the Juhász-Nagy Pál Doctoral School of the University of Debrecen (Biodiversity programme) Dissertation advisors: Dr. Zoltán Barta, Dr. Ferenc Samu The comprehensive examination board: chairperson: Dr. Attila V. Molnár members: Dr. Ádám Zoltán Lendvai Dr. Péter László Pap The date of the comprehensive examination: 2018. 11. 19. The official opponents of the dissertation: Dr. Tamás Szűts ................................................. Dr. Csongor I. Vágási ................................................. The evaluation committee: chairperson: ................................................. ................................................. members: ................................................. ................................................. ................................................. ................................................. ................................................. ................................................. ................................................. ................................................. The date of the dissertation defence: ................................................. Table of Contents ACKNOWLEDGEMENTS..................................................................................................1 CHAPTER I.....................................................................................................................5 I.1 GENERAL INTRODUCTION.......................................................................................5 I.1.1 Variation in life histories...............................................................................5 I.1.2 Variation in developmental rate and cohort splitting....................................9 I.1.3 Specific background and hypotheses...........................................................12 I.2 OBJECTIVES AND RESULTS....................................................................................19 Study 1: Effect of weather conditions on cohort splitting in a wolf spider species........................................................................................................19 Study 2: Pace of life and behaviour: rapid development is linked with increased activity and voracity in the wolf spider Pardosa agrestis......................................21 Study 3: Consequences of rapid development owing to cohort splitting: just how costly is to hurry?....................................................................................23 Study 4: Antibacterial immune functions of subadults and adults in a semelparous spider................................................................................................25 Study 5: Sex-dependent immune response in a semelparous spider......................27 I.3 GENERAL DISCUSSION...........................................................................................29 I.4 CONCLUSIONS........................................................................................................39 I.5 KEY FINDINGS........................................................................................................40 I.6 ÖSSZEFOGLALÁS....................................................................................................41 I.7 JELENTŐSEBB EREDMÉNYEK.................................................................................42 I.8 REFERENCES..........................................................................................................43 CHAPTER II.................................................................................................................55 II.1 LIST OF PUBLISHED RESEARCH ARTICLES...........................................................55 II.1.1 Publications relevant for the dissertation.........................................................55 II.1.2 Additional publications.....................................................................................56 II.2 RESEARCH ITEMS.................................................................................................57 Study 1: Effect of weather conditions on cohort splitting in a wolf spider species........................................................................................................58 Study 2: Pace of life and behaviour: rapid development is linked with increased activity and voracity in the wolf spider Pardosa agrestis......................................62 Study 3: Consequences of rapid development owing to cohort splitting: just how costly is to hurry?....................................................................................69 Study 4: Antibacterial immune functions of subadults and adults in a semelparous spider................................................................................................84 Study 5: Sex-dependent immune response in a semelparous spider....................107 ACKNOWLEDGEMENTS I’m very grateful to my supervisors, Dr. Zoltán Barta and Dr. Ferenc Samu, for their scientific and personal support throughout the years of my dissertation work: they always readily provided both council and freedom for my research. I am forever in- debted to Johanna Kiss, Dr. Gábor Kardos, Ferenc Báthori, Szabolcs Ádám and Alex Váradi, not only for their immense amount of help and countless constructive dis- cussions, but for their supportive friendship as well. The work of my students, Péter Kiss and Dávid Nagy, is also much appreciated, without whom many of the work would have been much more laborious, if not unfeasible. I’m also thankful for the help of a great number (if not all) of the people at the MTA-DE Behavioural Eco- logy Research Group, and indeed, the Department of Evolutionary Zoology and Hu- man Biology, where I learned much more than scientific research. Many others helped me in addition from other departments of our University as well, such as from the Department of Botany, Department of Biotechnology and Microbiology, Department of Ecology, and Institute of Immunology, for which I am so thankful; most of all I am much obliged to Dr. Attila Bácsi, for his repeated technical aid and several thoughtful discourses. Although unfortunately scarcely, but I was privileged to enjoy the friendly support of many members of the Hungarian arachnologists, es- pecially so of Balázs Kiss, whose previous work on Pardosa agrestis I relied heavily on. I furthermore owe immense gratitude to Dr. Agnieszka Babczyńska, Dr. Jacek Francikowski, Bartosz Baran, and Michał Krzyzowski, not only for their profes- sional assistance and collaborations, but for their most heart warming friendship as well, as am I, in fact, beholden to everyone for their kindness and helpfulness at the Department of Animal Physiology and Ecotoxicology (University of Silesia in Katowice). I particularly appreciated the ever-enthusiastic and amicable support of Dr. Orsolya Valkó and Dr. Balázs Deák, who provided a place in their extremely friendly and productive research group. Naturally, special thanks is owed to my fam- ily for supporting my endeavour to pursue seemingly alien concepts, treading on a path that does not appear to have light on its end as of yet. 1 During my PhD I was supported by an award of National Talent Program (NTP- EFÖ-P-15-0328), by the Programme of Fellowships under the Polish National Com- mission for UNESCO financed by the Polish Ministry of Science and Higher Educa- tion, and by two mobility scholarships of Erasmus+ (GfNA-II-C-Annex IV-I- Erasmus+ HE-2015). The studies presented in the dissertation were supported by the Higher Education Institutional Excellence Program of the
Recommended publications
  • Dna Sequence Data Indicates the Polyphyl Y of the Family Ctenidae (Araneae )
    1993. The Journal of Arachnology 21 :194–201 DNA SEQUENCE DATA INDICATES THE POLYPHYL Y OF THE FAMILY CTENIDAE (ARANEAE ) Kathrin C . Huber', Thomas S . Haider2, Manfred W . Miiller2, Bernhard A . Huber' , Rudolf J. Schweyen2, and Friedrich G . Barth' : 'Institut fair Zoologie, Althanstr . 14; 1090 Wien; and 2lnstitut fur Mikrobiologie and Genetik; Dr. Bohrgasse 9 ; 1030 Wien (Vienna), Austria . ABSTRACT. Mitochondrial DNA fragments comprising more than 400 bases of the 16S rDNA from nine spider species have been sequenced: Cupiennius salei, C. getazi, C. coccineus and Phoneutria boliviensis (Ctenidae), Pisaura mirabilis, Dolomedes fimbriatus (Pisauridae), Pardosa agrestis (Lycosidae), Clubiona pallidula (Clubi- onidae) and Ryuthela nishihirai (syn. Heptathela nishihirai; Heptathelidae: Mesothelae). Sequence divergence ranges from 3–4% among Cupiennius species and up to 36% in pairwise comparisons of the more distantly related spider DNAs. Maximally parsimonious gene trees based on these sequences indicate that Phoneutri a and Cupiennius are the most distantly related species of the examined Lycosoidea . The monophyly of the family Ctenidae is therefore doubted ; and a revision of the family, which should include DNA-data, is needed . Cupiennius salei (Ctenidae) is one of the most get a high copy number of the DNA segment of extensively studied species of spiders (see Lach - interest. The PCR depends on the availability of muth et al. 1985). The phylogeny of the Ctenidae , oligonucleotides that specifically bind to the a mainly South and Central American family, i s flanking sequences of this DNA segment. These poorly understood ; and systematists propose oligonucleotides serve as primers for a polymer- highly contradicting views on its classification ization reaction that copies the segment in vitro.
    [Show full text]
  • Araneae: Lycosidae) in Winter Oilseed Rape
    Eur. J. Entomol. 108: 609–614, 2011 http://www.eje.cz/scripts/viewabstract.php?abstract=1660 ISSN 1210-5759 (print), 1802-8829 (online) Landscape structure affects activity density, body size and fecundity of Pardosa wolf spiders (Araneae: Lycosidae) in winter oilseed rape THOMAS DRAPELA1, 3, THOMAS FRANK1, XAVER HEER2, DIETMAR MOSER1, 4 and JOHANN G. ZALLER1* 1 Institute of Zoology, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences Vienna, Gregor Mendel Straße 33, A-1180 Vienna, Austria 2 Eichenweg 6, CH-5036 Oberentfelden, Switzerland 3 Research Institute of Organic Agriculture (FiBL Austria), A-1070 Vienna, Austria 4 Vienna Institute for Nature Conservation and Analyses (VINCA), A-1090 Vienna, Austria Key words. Agroecology, Araneae, Lycosidae, Pardosa agrestis, generalist predator, Brassica napus, oilseed rape, landscape, multiple spatial scales Abstract. In large parts of Europe Pardosa spp. (Lycosidae) are among the most abundant wolf spiders in arable fields and poten- tially important natural control agents of pests. We studied the influence of landscape factors on activity density, adult body size and fecundity of P. agrestis in 29 winter oilseed rape fields (Brassica napus L.) in Eastern Austria using pitfall traps. Landscape data were obtained for eight circular landscape sections around each field (radii 250–2000 m). Multivariate regression models were used to analyze the data. Activity density was highest when the length of strips of grassy road-sides in the surroundings was highest and distance to the next grassy fallow lowest. Body size was negatively related to activity density and to the length of road-side strips and positively to woody areas in the vicinity of the fields.
    [Show full text]
  • Araneae) Parasite–Host Association
    2006. The Journal of Arachnology 34:273–278 SHORT COMMUNICATION FIRST UNEQUIVOCAL MERMITHID–LINYPHIID (ARANEAE) PARASITE–HOST ASSOCIATION David Penney: Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK. E-mail: [email protected] Susan P. Bennett: Biological Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK. ABSTRACT. The first description of a Mermithidae–Linyphiidae parasite–host association is presented. The nematode is preserved exiting the abdomen of the host, which is a juvenile Tenuiphantes species (Araneae, Linyphiidae), collected from the Isle of Mull, UK. An updated taxonomic list of known mer- mithid spider hosts is provided. The ecology of known spider hosts with regard to the direct and indirect life cycles of mermithid worms suggests that both occur in spiders. Keywords: Aranimermis, Isle of Mull, Linyphiidae, Mermithidae, Nematoda Nematode parasites of spiders are restricted to an updated and taxonomically correct list in Table the family Mermithidae but are not uncommon 1. Here we describe the first Mermithidae–Liny- (Poinar 1985, 1987) and were first reported almost phiidae parasite–host association and discuss the two and a half centuries ago (Roesel 1761). How- ecology of known spider hosts with regard to the ever, given the difficulty of identifying and rearing life cycles of mermithid worms. post-parasitic juvenile mermithids, they have re- This paper concerns three spider specimens, one ceived inadequate systematic treatment (Poinar with a worm in situ and two that are presumed to 1985). In addition, the complete life history is have been parasitized, but from which the worms known for only one species of these spider parasites have emerged and are lost.
    [Show full text]
  • Pesticide Additives Can Weaken the Predatory Activity of Spiders
    Pesticide additives can weaken the predatory activity of spiders Two chemicals used as co-formulants in pesticides have been found to reduce the predatory behaviour of the wolf spider Pardosa agrestis, an insect predator found within agricultural landscapes. A third co-formulant was found 17 June 2016 not to affect the predatory behaviour of females and increased the prey behaviour of Issue 459 male spiders. This is the first time that pesticide additives have been shown to alter Subscribe to free the predatory activity of a potential biological control agent of crop pests. weekly News Alert Surfactants are a common component of pesticides. They are conventionally mixed Source: Niedobova, J., with liquid pesticides in order to increase dispersal of the pesticide through plant cuticles or Hula, V. & Michalko, R. to reduce the surface tension of insect exoskeletons, meaning the surface is unable to repel (2016). Sublethal effect of the liquid pesticide. agronomical surfactants on the spider Pardosa The use of surfactants has increased globally over the last decade, with global consumption agrestis. Environmental of these chemicals increasing at a rate of 5% annually. Possible cumulative effects with Pollution 213:84-89. DOI: other compounds of a pesticide on non-target insects are subject to a risk assessment 10.1016/j.envpol.2016.02. ahead of authorisation, but the impact of surfactants alone on the range of non-target insect 005. species is rarely studied. Recent research has indicated that surfactants alone may have an even more negative effect on insects than pesticides themselves, including on beneficial Contact: species such as pollinators.
    [Show full text]
  • On the Pardosa Monticola-Species Group from Iran
    On the Pardosa monticola-species group from Iran (Araneae: Lycosidae) Yuri M. Marusik, Francesco Ballarin, Mikhail M. Omelko Abstract. A survey of species belonging to the Pardosa monticola species group from Iran is pre- sented. A new species, P. persica sp. n., from Fars Province is described on the basis of both sex- es. Two species, P. buchari Ovtsharenko, 1979 and P. pontica (Thorell, 1875), are reported from Iran for the first time. All the three species are illustrated. Earlier records of P. agrestis (Westring, 1861), P. agricola (Thorell, 1856), P. monticola (Clerck, 1757) and P. palustris (Linnaeus, 1758), from Iran appear to have been based on misidentifications of P. buchari and P. pontica. Key words. Iran, spider, new species, new record, Pardosa monticola-group. Introduction The spider fauna of Iran is relatively poorly studied with respect to species diversity. Only 244 species of spiders were reported in 2006 (SAHRA 2006). Neighboring Turkey and Azer- baijan are much better studied with over 600 species reported in each of these countries (BAYRAM et al. 2012, OTTO & TRAMP 2011). In adjacent Turkmenistan, the number of known species is about 400 (MIKHAILOV, pers. comm.). The spiders of Iran are also poorly known from a taxonomic aspect. So far, only eight Pardosa species are known to occur in Iran (SAHRA 2006). Of them five species, P. agrestis (Westring, 1861), P. agricola (Thorell, 1856), P. condolens (O.P.-Cambridge, 1885), P. monticola (Clerck, 1757) and P. palustris (Linnaeus, 1758), belong to the monticola-group according to MARUSIK & FRITZÉN (2009). The Pardosa monticola-group is the second largest species-group of the genus with more than 25 species known, mainly with European and Caucasian distribution (MARUSIK & FRITZÉN 2009).
    [Show full text]
  • Do Adult Female Lycosids Feed During the Period of Maternal Care?
    388 Bull. Br. arachnol. Soc. (2000) 11 (9), 388–390 Do adult female lycosids feed during the period of reports on the feeding status of maternal females maternal care? differ. In the course of a comprehensive study on the feeding habits of three species of Pardosa wolf spiders, I Martin Nyffeler gathered a large set of data on the activities of females in Zoological Institute, Division of Ecology, various stages of their adult life, which allowed an University of Berne, Baltzerstr. 3, investigation of the question whether maternal females CH-3012 Berne, Switzerland stop or resume feeding. Summary Material and methods It has been stated in some literature reports that in the highly cannibalistic wolf spiders (Lycosidae) the adult This study was conducted during two consecutive females do not feed while engaged in maternal care (i.e. their years in cereal fields belonging to the Swiss Federal predatory behaviour is inhibited), whereas other reports Research Station for Agroecology and Agriculture near based on laboratory studies indicate that maternal females Zurich. During 104.5 h (from mid-May to mid-August resume feeding. During a two-year field study on the feeding habits of the wolf spiders Pardosa agrestis, P. palustris and in the first year and from mid-May to mid-July in P. amentata, I had the opportunity to investigate the the second year), the soil surface of the fields was question whether in these species maternal females do feed thoroughly searched for wolf spiders. Each time a spider (or not). Overall, 25 instances of wolf spider mothers was encountered, it was recorded whether it was in feeding during the period of maternal care are reported.
    [Show full text]
  • Annual Wildflower Strips As a Tool for Enhancing Functional Biodiversity
    agronomy Article Annual Wildflower Strips as a Tool for Enhancing Functional Biodiversity in Rye Fields in an Organic Cultivation System Krzysztof Kujawa 1,*, Zdzisław Bernacki 1, Jolanta Kowalska 2 , Anna Kujawa 1, Maria Oleszczuk 1, Paweł Sienkiewicz 3 and Dariusz Sobczyk 1 1 Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60-809 Pozna´n, Poland; [email protected] (Z.B.); [email protected] (A.K.); [email protected] (M.O.); [email protected] (D.S.) 2 Department of Organic Agriculture and Environmental Protection, Institute of Plant Protection—National Research Institute, Władysława W˛egorka20, 60-318 Pozna´n,Poland; [email protected] 3 Department of Entomology and Environmental Protection, Pozna´nUniversity of Life Sciences, Wojska Polskiego 28, 60-637 Pozna´n,Poland; [email protected] * Correspondence: [email protected] Received: 26 September 2020; Accepted: 30 October 2020; Published: 2 November 2020 Abstract: Ecological intensification of agriculture (e.g., with the use of wildflower strips) is being currently discussed as a mean for gaining high yields, preserving high biodiversity of farmland. The aim of this study was to assess the efficiency of annual wildflower strips (WFSs) established in rye field (RF) in (1) increasing species richness and abundance in terms of beneficial arthropod groups (carabids, ground spiders, plant spiders, butterflies, insect pollinators and plant-dwelling insect predators), (2) decreasing the abundance of insect pests, (3) decreasing damages of the crop, and (4) increasing the yield. The field survey was carried out in 2019, in two WFSs and in the adjacent crop field at the distances of 3, 9, 21 and 45 m.
    [Show full text]
  • Plant Nectar Contributes to the Survival, Activity, Growth
    PLANT NECTAR CONTRIBUTES TO THE SURVIVAL, ACTIVITY, GROWTH, AND FECUNDITY OF THE NECTAR-FEEDING WANDERING SPIDER CHEIRACANTHIUM INCLUSUM (HENTZ) (ARANEAE: MITURGIDAE) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Robin M. Taylor, B.A, M.A. ***** The Ohio State University 2004 Dissertation Committee: Approved by Dr. Richard A. Bradley, Advisor Dr. Thomas E. Hetherington _____________________________ Dr. W. Mitch Masters Advisor Department of Evolution, Ecology, and Organismal Biology ABSTRACT Spiders are valued for their predation of insect pests, and, evaluated as an “assemblage” of species that employ different predatory strategies, constitute a natural biological control, particularly in agricultural crops. Spiders are obligate carnivores, requiring prey for normal growth, development, and reproduction. Because biologists have worked under the assumption that spiders are exclusively carnivorous, studies of the ecology of spiders and their acquisition and allocation of energy have assumed that prey is the single object of any spider’s foraging. The discovery in 1984 that orb-weaving spiderlings benefited nutritionally from pollen grains incidentally trapped by their webs, which they eat and recycle, was noteworthy. Growing evidence indicates that a large group of spiders may routinely exploit another plant-based food source: plant nectar. Observations of nectar feeding have been reported among crab spiders (Thomisidae), jumping spiders (Salticidae), and running spiders (Anyphaenidae, Clubionidae, and Corinnidae), all non-webbuilding wanderers that occupy vegetation. Spiders have the capacity to detect and digest plant nectar, and spiders that wander in vegetation are able to encounter nectar. Lab experiments show that newly-emerged, prey-deprived spiders live longer if they are provided with sucrose, a nectar proxy.
    [Show full text]
  • Abstract Impact of an Atrazine-Based Herbicide On
    ABSTRACT IMPACT OF AN ATRAZINE-BASED HERBICIDE ON AN AGROBIONT WOLF SPIDER by Jake A. Godfrey For animals that live in association with humans, a key ecological question is how anthropogenic factors influence their behavior and life history. While major negative effects are obvious, subtle non-lethal responses to anthropogenic stimuli may provide insight into the features that lead to the success of species that thrive in habitats heavily impacted by humans. Here I explored the influence of the herbicide atrazine on the behavior and various life history traits exhibited by a wolf spider that is found in agroecosystems where this herbicide is commonly applied. In my first experiment, exposure to atrazine altered activity patterns of this spider. In my second experiment, exposure delayed maturation and increased the probability of spiders having a faulty molt. Atrazine also decreased the probability of producing an egg sac after mating, increased mass of egg sacs that were produced, and negatively impacted adult lifespans. These results suggest that the atrazine based herbicides that are routinely applied to agricultural fields result in altered behavior and life history traits of these spiders and may therefore influence the community of predators and their effects on the food web in complex ways. IMPACT OF AN ATRAZINE-BASED HERBICIDE ON AN AGROBIONT WOLF SPIDER A Thesis Submitted to the Faculty of Miami University in partial fulfillment of the requirements for the degree of Master of Science by Jake A. Godfrey Miami University Oxford, Ohio 2017 Advisor: Ann L. Rypstra Reader: Michelle D. Boone Reader: Alan B. Cady Reader: Ann L.
    [Show full text]
  • 1 Interdemic Variation of Cannibalism in a Wolf Spider (Pardosa Monticola
    Interdemic variation of cannibalism in a wolf spider (Pardosa monticola) inhabiting different habitat types1 Jeroen VANDEN BORREa, Dries BONTEa and Jean-Pierre MAELFAITa,b a Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium b Institute of Nature Conservation, Brussels, Belgium Correspondence: Jeroen Vanden Borre, Terrestrial Ecology Unit, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium. E-mail: [email protected] Running title Varying cannibalism rates in a wolf spider 1 This article was published in Ecological Entomology by Blackwell Publishing on behalf of the Royal Entomological Society. The full bibliographic reference to the definitive version, available at onlinelibrary.wiley.com, is: Vanden Borre J., Bonte D. & Maelfait J.-P. (2006). Interdemic variation of cannibalism in a wolf spider (Pardosa monticola) inhabiting different habitat types. Ecological Entomology 31 (2): 99-105. DOI: 10.1111/j.0307-6946.2006.00770.x 1 Abstract. 1. Cannibalism was investigated in the wolf spider Pardosa monticola (Clerck) using spiders collected from four populations with varying densities, inhabiting two different coastal dune habitat types. Sampled individuals were randomly paired and immediately tested for their cannibalism propensity. 2. The occurrence of cannibalism was found to be influenced by the size (cephalothorax width) of both the smaller and the larger spider of a pair. Larger size differences enhanced cannibalism. 3. Cannibalism rates were not significantly different in spiders from high-density compared to low-density populations. Cannibalism rates showed however large variability between habitat types, with higher rates in spiders from dune grasslands than from dune slacks. This is suggested to result from differences in prey availability throughout the growing season between both habitat types.
    [Show full text]
  • Formatting Your Paper for Submission in the Moorea
    THE INFLUENCE OF SIZE ON CANNIBALISM AND PREDATION IN HUNGRY WOLF SPIDERS (LYCOSIDAE, HOGNA CRISPIPES) DAISY N. GONZALEZ Integrative Biology, University of California, Berkeley, California 94720 USA Abstract. Size is an important factor that affects cannibalism in wolf spiders (Lycosidae). This study investigated the time for cannibalism to occur among pairs of different sized, hungry wolf spiders. In addition, the preference for smaller conspecific prey in the presence of larger alternative prey was examined. This study was the first to look at cannibalism in the wolf spider species found on Mo’orea, Hogna crispipes. Like other genera within the Lycosid family, which are known to have cannibalistic tendencies, Hogna c. spiders are capable of cannibalizing. Cannibalism occurred in 87.5% of the spider pairs. Of the spiders that did not cannibalize, a majority were of the same size. In addition, in the pairs of spiders that did cannibalize there was a strong negative relationship between the time for cannibalism to occur and the difference in size between pairs of spiders. This relationship followed a trend, where the spider pairs that were more similar in size generally took longer to cannibalize than the spider pairs that had larger size differences (>3mm). Lastly medium sized spiders did not have a predation preference for smaller conspecifics over larger alternative prey. This study provides a foundation about cannibalism in H. crispipes. Key words: conspecific; prey preference; generalist predator; Surinam cockroaches; Mo’orea, French Polynesia INTRODUCTION One example of important generalist predators are wolf spiders (Lycosidae). Like Arthropod generalist predators, which other valuable generalist predators, wolf are not limited to specific prey, can have both spiders also serve as important biological positive and negative effects on the ecology control agents by predating on arthropod and composition of terrestrial arthropod pests in agricultural crop fields.
    [Show full text]
  • Phantom Spiders: Notes on Dubious Spider Species from Europe
    Arachnologische Mitteilungen 50: 65-80 Karlsruhe, November 2015 Phantom spiders: notes on dubious spider species from Europe Rainer Breitling, Martin Lemke, Tobias Bauer, Michael Hohner, Arno Grabolle & Theo Blick doi: 10.5431/aramit5010 Abstract. A surprisingly large number of European spider species have never been reliably rediscovered since their first description many decades ago. Most of these are probably synonymous with other species or unidentifiable, due to insufficient descriptions or missing type material. Here we discuss about 50 of these cases, declare some names as nomina dubia and establish the following new or re-confirmed synonymies: Agelena mengeella Strand, 1942 = Allagelena gracilens (C. L. Koch, 1841) syn. conf.; Anyphaena accentuata obscura (Sundevall, 1831) = Anyphae- na accentuata (Walckenaer, 1802) syn. conf.; Anyphaena accentuata obscura Lebert, 1877 = Anyphaena accentuata (Walckenaer, 1802) syn. nov.; Araneus diadematus stellatus C. L. Koch, 1836 = Araneus diadematus Clerck, 1757 syn. nov.; Araneus diadematus islandicus (Strand, 1906) = Araneus diadematus Clerck, 1757 syn. nov.; Araneus quadratus minimus Simon, 1929 = Araneus quadratus Clerck, 1757 syn. nov.; Araneus quadratus subviridis (Franganillo, 1913) = Araneus quadratus Clerck, 1757 syn. nov.; Centromerus unctus (L. Koch, 1870) = Leptorhoptrum robustum (Westring, 1851) syn. nov.; Clubiona caliginosa Simon, 1932 = Clubiona germanica Thorell, 1871 syn. nov.; Coelotes atropos anomalus Hull, 1955 = Coelotes atropos (Walckenaer, 1830) syn. nov.; Coelotes atropos silvestris Hull, 1955 = Coelotes atropos (Walckenaer, 1830) syn. nov.; Coelotes obesus Simon, 1875 = Pireneitega pyrenaea (Simon, 1870) syn. conf.; Coelotes simoni Strand, 1907 = Coelotes solitarius (L. Koch, 1868) syn. nov.; Diplocephalus semiglobosus (Westring, 1861) nomen oblitum = Entelecara congenera (O. P.-Cambridge, 1879) syn. nov.; Drassodes voigti (Bösenberg, 1899) = Scotophaeus blackwalli (Thorell, 1871) syn.
    [Show full text]