Genetic Characterization of the Genus 'Barbus' (Cyprinidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Low-Temperature Tolerances of Tropical Fish with Potential Transgenic Applications In
Canadian Journal of Zoology Low -temperature tolerances of tropical fish with potential transgenic applications in relation to winter water temperatures in Canada Journal: Canadian Journal of Zoology Manuscript ID cjz-2017-0043.R1 Manuscript Type: Article Date Submitted by the Author: 13-Jul-2017 Complete List of Authors: Leggatt, Rosalind; Department of Fisheries and Oceans, CAER Dhillion, Rashpal;Draft University of British Columbia, Zoology; University of Wisconsin Madison, Wisconsin Institute for Discovery - Epigenetics Mimeault, Caroline; Department of Fisheries and Oceans, Aquaculture, Biotechnology and Aquatic Animal Health Branch Johnson, Neville; Department of Fisheries and Oceans, Aquaculture, Biotechnology and Aquatic Animal Health Branch Richards, Jeffrey; University of British Columbia, Department of Zoology Devlin, Robert; Fisheries and Oceans Canada, ANIMAL IMPACT < Discipline, COLD HARDINESS < Discipline, GENETIC Keyword: ENGINEERING < Discipline, TEMPERATURE < Discipline, FRESHWATER < Habitat, TEMPERATE < Habitat, FISH < Taxon https://mc06.manuscriptcentral.com/cjz-pubs Page 1 of 35 Canadian Journal of Zoology 1 1 Low-temperature tolerances of tropical fish with potential transgenic applications in 2 relation to winter water temperatures in Canada 3 R.A. Leggatt, R.S. Dhillon, C. Mimeault, N. Johnson, J.G. Richards, R.H. Devlin 4 5 Corresponding author: R.A. Leggatt: Centre for Aquaculture and the Environment, Centre for 6 Biotechnology and Regulatory Research, Fisheries and Oceans Canada, 4160 Marine 7 Drive, West Vancouver, BC, V7V 1N6, Canada, Email: [email protected], 8 Tel: +1-604-666-7909, Fax: +1-604-666-3474 9 R.S. Dhillon 1: Department of Zoology, University of British Columbia, 4200-6270 University 10 Blvd. Vancouver, BC, V6T 1Z4, Canada, [email protected] 11 C. -
Carp, Bighead (Hypophthalmichthys Nobilis)
Bighead Carp (Hypophthalmichthys nobilis) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, February 2011 Revised, June 2018 Web Version, 8/16/2018 Photo: A. Benson, USGS. Public domain. Available: https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=551. (June 2018). 1 Native Range and Status in the United States Native Range From Jennings (1988): “The bighead carp is endemic to eastern China, […] in the lowland rivers of the north China plain and South China, including the Huai (Huai Ho), Yangtze, Pearl, West (Si Kiang), Han Chiang and Min rivers (Herre 1934; Mori 1936; Chang 1966; Chunsheng et al. 1980).” Status in the United States From Nico et al. (2018): “This species has been recorded from within, or along the borders of, at least 18 states. There is evidence of reproducing populations in the middle and lower Mississippi and Missouri rivers and the species is apparently firmly established in the states of Illinois and Missouri (Burr et al. 1996; Pflieger 1997). Pflieger (1997) received first evidence of natural reproduction, capture of young 1 bighead carp, in Missouri in 1989. Burr and Warren (1993) reported on the taking of a postlarval fish in southern Illinois in 1992. Subsequently, Burr et al. (1996) noted that bighead carp appeared to be using the lower reaches of the Big Muddy, Cache, and Kaskaskia rivers in Illinois as spawning areas. Tucker et al. (1996) also found young-of-the-year in their 1992 and 1994 collections in the Mississippi River of Illinois and Missouri. Douglas et al. (1996) collected more than 1600 larvae of this genus from a backwater outlet of the Black River in Louisiana in 1994. -
Fischen Entwickeln Und Bereits Relativ Weit Entwickelt Den Mutterleib Verlassen
Aulonocara Mix Malawi Kaiserbuntbarsch Systematik: Aquarium: Aquarium: ab 200 l PH: 7.5 - 8.5 GH: 5-20 °dGH Temperatur: 23 - 28 °C Über Aulonocara Mix: Endgröße: bis zu 12 cm Futter: Lebend-, Flocken- & Frostfutter Haltung: Harem Heimat: Malawisee Information: Aulonocaras stammen endemisch aus dem Malawisee. Die farbenprächtigen Buntbarsche ernähren sich in der Natur von Lebendfutter, nehmen im Aquarium aber schnell handelsübliches Futter, das aus Lebend- und Frostfutter, aber auch aus Flockenfutter und Sticks bestehen kann, an. Das Aquarium sollte Steinaufbauten, die Höhlen als Rückzugsgebiete anbieten und einen Sandboden aufweisen. Die Zucht im Aquarium ist einfach. Die Eier werden in einer Mulde im Sand abgelegt und dort befruchtet. Bei Aulonocaras handelt es sich um Maulbrüter, bei denen sich das Weibchen um die Aufzucht kümmert. Service-Info: Dieses Caresheet ist ein kostenloser Service von: Aquarienfreunde Bad Königshofen e.V. Am Kurzentrum 1 97631 Bad Königshofen Telefon: 0176 57 50 73 86 www.aquarienfreundebadkoenigshofen.de Diese Informationen dienen lediglich als Anhaltspunkte. Sie erheben keinen Anspruch auf Vollständigkeit oder Fehlerfreiheit und können keine Fachliteratur ersetzen. Informieren Sie sich zusätzlich z.B. durch ein Fachbuch. Bei Krankheitssymptomen nehmen Sie unbedingt Kontakt zu einem Tierarzt auf. Sollten Sie noch Fragen haben, helfen wir, das Team von Aquarienfreunde Bad Königshofen e.V., Ihnen gerne weiter. Aulonocara Mix (101082) - Caresheet erstellt durch www.hippocampus-bildarchiv.de Poecilia sphenops BLACK Spitzkopf-Molly Systematik: Aquarium: Aquarium: ab 80 l PH: 7.2 - 8.2 GH: 10 - 30 °dGH Temperatur: 22 - 28 °C Über Poecilia sphenops BLACK: Lebenserwartung: ca. 5 Jahre Endgröße: bis zu 10 cm Futter: Grün-, Lebend- & Flockenfutter, Algen Haltung: Gruppe Heimat: Südamerika, Mittelamerika Information: Poecilia sphenops gibt es in vielen Zuchtformen und kommt ursprünglich in Texas, Mexico bis Kolumbien vor. -
Molecular Investigations of the Diversity of Freshwater Fishes Across Three Continents
Molecular Investigations of the Diversity of Freshwater Fishes across Three Continents by Malorie M. Hayes A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 8, 2020 Keywords: Enteromius, Barbus, sub-Saharan Africa, phylogenetics, systematics, Pteronotropis, conservation genetics, Trichomycterus, Guyana Copyright 2020 by Malorie M. Hayes Approved by Jonathan W. Armbruster, Chair, Professor and Director Auburn University Museum of Natural History Department of Biological Sciences Jason E. Bond, Professor and Schlinger Chair in Insect Systematics University of California, Davis Scott R. Santos, Professor and Chair of the Department of Biological Sciences at Auburn University John P. Friel, Director of the Alabama Museum of Natural History Abstract Fishes are the most speciose vertebrates, and incredible diversity can be found within different groups of fish. Due to their physiological limitations, fish are confined to waters, and in freshwater fish, this is restricted to lakes, rivers, and streams. With a constrained habitat like a freshwater system, it can be expected that freshwater fish will show varying levels of diversity depending on a suite of characteristics. Within this dissertation, I examine the diversity of three fish groups: the speciose Enteromius of West Africa, the population genetic diversity of Pteronotropis euryzonus in Alabama and Georgia, and the unexpectedly species rich Trichomycterus from the Guyana highlands. I use molecular methods and geometric morphometrics to determine the systematics of the species and uncover the hidden diversity within their respective groups. When it comes to diversity, the small barbs of Africa are vastly understudied and require a taxonomic revision. -
Liste De Faune Et De Flore
Paysage Lac Tele Lac Tumba BIODIVERSITE DU SITE RAMSAR NGIRI-TUMBA-MAINDOMBE Annexe 1.Liste des espèces de poisson du Site Ngiri-Tumba-Maindombe Liste rouge UICN Famille No Genre Espèce Auteur CITES CMS Statut Année Tendance Ordre des CHARACIFORMES 1 Alestes liebrechtsii Boulenger, 1898 LC 2010 inconnu 2 Alestopetersius bifasciatus Poll, 1967 LC 2010 inconnu 3 Alestopetersius caudalis Boulenger, 1899 LC 2010 inconnu 4 Alestopetersius hilgendorfi Boulenger, 1899 LC 2010 inconnu 5 Alestopetersius leopoldianus Boulenger, 1899 LC 2010 inconnu 6 Bathyaethiops caudomaculatus Pellegrin, 1925 LC 2010 inconnu 7 Brycinus bimaculatus Boulenger, 1899 LC 2010 inconnu 8 Brycinus grandisquamis Boulenger, 1899 LC 2010 inconnu ALESTIDAE 9 Brycinus macrolepidotus Valenciennes, 1850 LC 2010 inconnu 10 Bryconaethiops boulengeri Pellegrin, 1900 LC 2010 inconnu 11 Clupeocharax schoutedeni Pellegrin, 1926 VU 2010 inconnu 12 Hydrocynus goliath Boulenger, 1898 LC 2010 inconnu 13 Hydrocynus vittatus Castelnau, 1861 LC 2010 inconnu 14 Micralestes humilis Boulenger, 1899 LC 2010 inconnu 15 Phenacogrammus altus Boulenger, 1899 LC 2010 inconnu 16 Phenacogrammus deheyni Poll, 1945 LC 2010 inconnu 17 Citharinus gibbosus Boulenger, 1899 LC 2010 inconnu CITHARINIDAE 18 Citharinus macrolepis Boulenger, 1899 LC 2010 inconnu 19 Belonophago hutsebouti Giltay, 1929 LC 2010 inconnu 20 Distichodus antonii Schilthuis, 1891 LC 2010 inconnu DISTICHODONTIDAE 21 Distichodus atroventralis Boulenger, 1898 LC 2010 inconnu 22 Distichodus fasciolatus Boulenger, 1898 LC 2010 inconnu 23 -
Pathogen Susceptibility of Silver Carp (Hypophthalmichthys Molitrix) and Bighead Carp (Hypophthalmichthys Nobilis) in the Wabash River Watershed
Pathogen Susceptibility of Silver Carp (Hypophthalmichthys molitrix) and Bighead Carp (Hypophthalmichthys nobilis) in the Wabash River Watershed FINAL REPORT Kensey Thurner PhD Student Maria S Sepúlveda, Reuben Goforth, Cecon Mahapatra Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907 Jon Amberg, US Geological Service, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603 Eric Leis, US Fish and Widlife Service, La Crosse Fish Health Center, Onalaska, WI 54650 9/22/2014 Silver Carp (top) and Bighead Carp (bottom) caught in the Tippecanoe River, Photos by Alison Coulter Final Report 9/22/2014 - Page 2 Executive Summary The Pathogen Susceptibility of Silver Carp (Hypophthalmichthys molitrix) and Bighead Carp (Hypophthalmichthys nobilis) in the Wabash River Watershed project was undertaken to address the lack of available information regarding pathogens in the highly invasive Silver and Bighead Carps, collectively known as bigheaded carps. Very little is known about the prevalence and effects of parasites, bacteria and viruses on the health of invasive bigheaded carp populations in the United States or the effects of bigheaded carps on the disease risk profile for sympatric, native fish of the U.S. The main objectives of this project were to conduct a systematic survey of parasites, bacteria and viruses of Asian carps and a representative number of native Indiana fish species in the upper and middle Wabash and the lower Tippecanoe Rivers, Indiana; to determine the susceptibility of Asian carps to a representative number of natural pathogens using in vitro approaches; and to involve anglers in the development of a cost effective state-wide surveillance program for documentation of viral diseases of fish. -
A Manual for Commercial Production of the Tiger Barb, ~C~T Etnlnmmi
saeAU-8-97-002 C3 A Manual for Commercial Production of the Tiger Barb, ~c~t etnlnmmI. A T p y P i d T k Sp By: Clyde S. Tamaru, Ph.D. Brian Cole, M.S. Richard Bailey, B.A. Christopher Brown, Ph.o. Center for Tropical and Subtropical Aquaculture Publication Number 129 Commercial Production of Tiger 8arbs ACKNOWLEDGEMENTS This manual is a combined effort of three institutions, United States Department of Agriculture Center for Tropical and Subtropical Aquaculture CTSA!, and University of Hawaii Sea Grant Extension Service SGES! and Aquaculture Development Program ADP!, Department of Land and Natural Resources, State of Hawaii. Financial support for this project was provided by the Center for Tropical and Subtropical Aquaculture through grants from the US Department of Agriculture USDA grant numbers 93-38500-8583 and 94-38500-0065!. Production of the manual is also funded in part by a grant from the National Oceanic and Atmospheric Administration, project kA/AS-1 which is sponsored by the University of Hawaii Sea Grant College Program, School of Ocean Earth Science and Technology SOEST!, under institutional Grant No. NA36RG0507 from NOAA Office of Sea Grant, Department of Commerce, UNIHI-SEAGRANT-TR-96-01. Support for the production of the manual was also provided by the Aquaculture Development Program, Department of Land and Natural Resources, State of Hawaii, as part of their Aquaculture Extension Project with University of Hawaii Sea Grant Extension, Service Contract Nos. 9325 and 9638. The views expressed herein are those of the authors and do not necessarily reflect the views of USDA or any of its sub-agencies. -
Cambodian Journal of Natural History
Cambodian Journal of Natural History Artisanal Fisheries Tiger Beetles & Herpetofauna Coral Reefs & Seagrass Meadows June 2019 Vol. 2019 No. 1 Cambodian Journal of Natural History Editors Email: [email protected], [email protected] • Dr Neil M. Furey, Chief Editor, Fauna & Flora International, Cambodia. • Dr Jenny C. Daltry, Senior Conservation Biologist, Fauna & Flora International, UK. • Dr Nicholas J. Souter, Mekong Case Study Manager, Conservation International, Cambodia. • Dr Ith Saveng, Project Manager, University Capacity Building Project, Fauna & Flora International, Cambodia. International Editorial Board • Dr Alison Behie, Australia National University, • Dr Keo Omaliss, Forestry Administration, Cambodia. Australia. • Ms Meas Seanghun, Royal University of Phnom Penh, • Dr Stephen J. Browne, Fauna & Flora International, Cambodia. UK. • Dr Ou Chouly, Virginia Polytechnic Institute and State • Dr Chet Chealy, Royal University of Phnom Penh, University, USA. Cambodia. • Dr Nophea Sasaki, Asian Institute of Technology, • Mr Chhin Sophea, Ministry of Environment, Cambodia. Thailand. • Dr Martin Fisher, Editor of Oryx – The International • Dr Sok Serey, Royal University of Phnom Penh, Journal of Conservation, UK. Cambodia. • Dr Thomas N.E. Gray, Wildlife Alliance, Cambodia. • Dr Bryan L. Stuart, North Carolina Museum of Natural Sciences, USA. • Mr Khou Eang Hourt, National Authority for Preah Vihear, Cambodia. • Dr Sor Ratha, Ghent University, Belgium. Cover image: Chinese water dragon Physignathus cocincinus (© Jeremy Holden). The occurrence of this species and other herpetofauna in Phnom Kulen National Park is described in this issue by Geissler et al. (pages 40–63). News 1 News Save Cambodia’s Wildlife launches new project to New Master of Science in protect forest and biodiversity Sustainable Agriculture in Cambodia Agriculture forms the backbone of the Cambodian Between January 2019 and December 2022, Save Cambo- economy and is a priority sector in government policy. -
Occasional Papers of the Museum of Zoology University of Michigan Ann Arbor.Michigan
OCCASIONAL PAPERS OF THE MUSEUM OF ZOOLOGY UNIVERSITY OF MICHIGAN ANN ARBOR.MICHIGAN THE CYPRINID DERMOSPHENOTIC AND THE SUBFAMILY RASBORINAE The Cyprinidac, the largest family of fishes, do not lend themselves readily to subfamily classification (Sagemehl, 1891; Regan, 1911 ; Ramaswami, 195513). Nevertheless, it is desirable to divide the family in some way, if only to facilitate investiga- tion. Since Gunther's (1868) basic review of the cyprinids the emphasis in classification has shifted from divisions that are rcadily differentiable to groupings intended to be more nearly phylogenetic. In the course of this change a subfamily classifica- tion has gradually been evolved. Among the most notable contributions to the development of present subfamily concepts are those of Berg (1912), Nikolsky (1954), and Banarescu (e-g. 1968a). The present paper is an attempt to clarify the nature and relationships of one cyprinid subfamily-the Rasborinae. (The group was termed Danioinae by Banarescu, 1968a. Nomen- claturally, Rasborina and Danionina were first used as "family group" names by Giinther; to my knowledge the first authors to include both Rasbora and Danio in a single subfamily with a name bascd on one of these genera were Weber and de Beaufort, 1916, who used Rasborinae.) In many cyprinids, as in most characins, the infraorbital bones form an interconnected series of laminar plates around the lower border of the eye, from the lacrimal in front to the dermo- sphenotic postcrodorsally. This series bears the infraorbital sensory canal, which is usually continued into the cranium above the dcrmosphenotic. The infraorbital chain of laminar plates is generally anchored in position relative to the skull anteriorly and 2 Gosline OCC. -
Carps, Minnows Etc. the Cyprinidae Is One of the Largest Fish Families With
SOF text final l/out 12/12/02 12:16 PM Page 60 4.2.2 Family Cyprinidae: Carps, Minnows etc. The Cyprinidae is one of the largest fish families with more than 1700 species world-wide. There are no native cyprinids in Australia. A number of cyprinids have been widely introduced to other parts of the world with four species in four genera which have been introduced to Australia. There are two species found in the ACT and surrounding area, Carp and Goldfish. Common Name: Goldfish Scientific Name: Carassius auratus Linnaeus 1758 Other Common Names: Common Carp, Crucian Carp, Prussian Carp, Other Scientific Names: None Usual wild colour. Photo: N. Armstrong Biology and Habitat Goldfish are usually associated with warm, slow-flowing lowland rivers or lakes. They are often found in association with aquatic vegetation. Goldfish spawn during summer with fish maturing at 100–150 mm length. Eggs are laid amongst aquatic plants and hatch in about one week. The diet includes small crustaceans, aquatic insect larvae, plant material and detritus. Goldfish in the Canberra region are often heavily infected with the parasitic copepod Lernaea sp. A consignment of Goldfish from Japan to Victoria is believed to be responsible for introducing to Australia the disease ‘Goldfish ulcer’, which also affects salmonid species such as trout. Apart from the introduction of this disease, the species is generally regarded as a ‘benign’ introduction to Australia, with little or no adverse impacts documented. 60 Fish in the Upper Murrumbidgee Catchment: A Review of Current Knowledge SOF text final l/out 12/12/02 12:16 PM Page 61 Distribution, Abundance and Evidence of Change Goldfish are native to eastern Asia and were first introduced into Australia in the 1860s when it was imported as an ornamental fish. -
Xenopus Laevis As Uberxl for Nematodes
African Zoology ISSN: 1562-7020 (Print) 2224-073X (Online) Journal homepage: https://www.tandfonline.com/loi/tafz20 Xenopus laevis as UberXL for nematodes Anneke L Schoeman, Tracy-Lee Joubert, Louis H du Preez & Roman Svitin To cite this article: Anneke L Schoeman, Tracy-Lee Joubert, Louis H du Preez & Roman Svitin (2020): Xenopuslaevis as UberXL for nematodes, African Zoology, DOI: 10.1080/15627020.2019.1681295 To link to this article: https://doi.org/10.1080/15627020.2019.1681295 View supplementary material Published online: 17 Mar 2020. Submit your article to this journal Article views: 13 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tafz20 African Zoology 2020, 55(1): xxx–xxx Copyright © Zoological Society Printed in South Africa — All rights reserved of Southern Africa AFRICAN ZOOLOGY This is the final version of the article that is ISSN 1562-7020 EISSN 2224-073X published ahead of the print and online issue https://doi.org/10.1080/15627020.2019.1681295 Xenopus laevis as UberXL for nematodes Anneke L Schoeman1,2* , Tracy-Lee Joubert1, Louis H du Preez1,3 and Roman Svitin1,3,4 1 African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa 2 Centre of Excellence for Invasion Biology, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa 3 South African Institute for Aquatic Biodiversity, Grahamstown, South Africa 4 Department of Invertebrate Fauna and Systematics, II Schmalhausen Institute of Zoology, Kyiv, Ukraine *Corresponding author, email: [email protected] The effect of invasive species on local parasite dynamics is often overlooked. -
Fish Diversity, Community Structure, Feeding Ecology, and Fisheries of Lower Omo River and the Ethiopian Part of Lake Turkana, East Africa
Fish Diversity, Community Structure, Feeding Ecology, and Fisheries of Lower Omo River and the Ethiopian Part of Lake Turkana, East Africa Mulugeta Wakjira Addis Ababa University June 2016 Cover photos: Lower Omo River at Omorate town about 50 km upstream of the delta (upper photo); Lake Turkana from Ethiopian side (lower photo). © Mulugeta Wakjira and Abebe Getahun Fish diversity, Community structure, Feeding ecology, and Fisheries of lower Omo River and the Ethiopian part of Lake Turkana, East Africa Mulugeta Wakjira A Thesis Submitted to the Department of Zoological Sciences, Addis Ababa University, Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology (Fisheries and Aquatic Sciences) June 2016 ADDIS ABABA UNIVERSITY SCHOOL OF GRADUATE PROGRAM This is to certify that the thesis prepared by Mulugeta Wakjira entitled, "Fish Diversity, Community Structure, Feeding Ecology, and Fisheries of lower Omo River and the Ethiopian part of Lake Turkana, East Africa", and submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology (Fisheries and Aquatic Science) complies with the regulations of the university and meets the accepted standards with respect to originality and quality. Signed by the Examining Committee Examiner (external): Dr. Leo Nagelkerke Signature ____________ Date_________ Examiner (internal): Dr. Elias Dadebo Signature ____________ Date_________ Advisor: Dr. Abebe Getahun Signature ____________ Date__________ ____________________________________________________________ Chair of Department or Graduate Program Coordinator Abstract Ethiopia has a freshwater system in nine major drainage basins which fall into four ichthyofaunal provinces and one subprovince. Omo-Turkana Basin, spanning considerable geographic area in southwestern Ethiopia and northern Kenya, essentially consists of Omo River (also known as Omo-Gibe) and Lake Turkana.