Mollusca: Bivalvia: Lucinidae) from Australia: Revision of Genera and Description of Three New Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Curriculum Vitae
DR. EVELYN E. GAISER George M. Barley, Jr. Endowed Chair, Institute of Environment Professor, Department of Biological Sciences Florida International University Miami, FL 33199 305-348-6145 (phone), 305-348-4096 (fax), [email protected] EDUCATION 1997 Ph.D. University of Georgia, Athens, Georgia, Institute of Ecology 1991 M.S. Iowa State University, Ames, Iowa, Department of Animal Ecology 1989 B.S. Kent State University, Kent, Ohio, Department of Biology ACADEMIC AND PROFESSIONAL APPOINTMENTS 2018-present George M. Barley, Jr. Endowed Chair of Everglades Research, Institute of Environment, Florida International University, Miami, FL 2014 – 2018 Executive Director, School of Environment, Arts and Society and Associate Dean, College of Arts, Sciences and Education, Florida International University, Miami, FL 2012-present Professor, Department of Biological Sciences, Florida International University, Miami, FL 2006-2012 Associate Professor, Department of Biological Sciences, Florida International University, Miami, FL 2008-present Research Associate, Archbold Biological Station, Lake Placid, FL 2001- 2006 Assistant Professor, Department of Biological Sciences, Florida International University, Miami, FL 1997-2001 Assistant Research Scientist, Southeast Environmental Research Center, Florida International University, Miami, FL 1991-1997 Research/Teaching Assistant, Institute of Ecology, University of Georgia, Athens, GA and Savannah River Ecology Lab, Aiken, SC 1989-1991 Research/Teaching Assistant, Department of Animal Ecology, Iowa State University, Ames, IA and Iowa Lakeside Laboratory, Milford, IA 1987-1988 Research Technician, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH ADMINISTRATIVE SERVICE AT FLORIDA INTERNATIONAL UNIVERSITY 2014 – 2018 Executive Director, School of Environment, Arts and Society and Associate Dean, College of Arts, Sciences and Education. I served as the academic leader of one of three schools in the College of Arts, Sciences and Education. -
Patterns of Propeller Scarring of Seagrass in Florida Bay
National Park Service U.S. Department of the Interior South Florida Natural Resources Center Everglades National Park RESOURCE EVALUATION REPORT SFNRC Technical Series 2008:1 PATTERNS OF PROPELLER SCARRING OF SEAGRASS IN FLORIDA BAY Associations with Physical and Visitor Use Factors and Implications for Natural Resource Management PATTERNS OF PROPELLER SCARRING OF SEAGRASS IN FLORIDA BAY Associations with Physical and Visitor Use Factors and Implications for Natural Resource Management RESOURCE EVALUATION REPORT SFNRC Technical Series 2008:1 South Florida Natural Resources Center Everglades National Park Homestead, Florida National Park Service U.S. Department of the Interior Cover photograph of north end of Lower Arsnicker Key by Lori Oberhofer, ENP ii South Florida Natural Resources Center Technical Series (2008:1) Patterns of Propeller Scarring of Seagrass in Florida Bay iii Patterns of Propeller Scarring of Seagrass in Florida Bay: Associations with Physical and Visitor Use Factors and Implications for Natural Resource Management RESOURCE EVALUATION REPORT SFNRC Technical Series 2008:1 EXECUTive SummarY of approximately 10, i.e., there may be as many as 3250 miles of scars in Florida Bay. Everglades National Park (ENP) encompasses over 200,000 Substantially more scarring was identified in this study hectares of marine environments, including most of Florida than in a previous study conducted in 1995. Bay. The ENP portion of Florida Bay was federally designated as submerged wilderness in 1978. Much of Florida Bay sup- ports submerged aquatic vegetation comprised of seagrass Patterns and Associations that provides vast areas of habitat for recreationally and com- mercially important fish and invertebrates. Florida Bay is a The majority of scarring was identified in depths below 3.0 premier shallow-water recreational fishing destination and it ft and scarring density tends to increase with decreasing is heavily used by recreational boaters for access to produc- depth. -
Corals of Rottnest Island Mscience Pty Ltd June 2012 Volume 1, Issue 1
Corals of Rottnest Island MScience Pty Ltd June 2012 Volume 1, Issue 1 MARINE RESEARCH Produced with the Assistance of the Rottnest Island Authority Cover picture courtesy of H. Shortland Jones * Several of the images in this publication are not from Rottnest and were sourced from corals.aims.gov.au courtesy of Dr JEN Veron Contents What are hard corals? ...........................................................................................4 Corals at Rottnest Island .....................................................................................5 Coral Identification .............................................................................................5 Hard corals found at Rottnest Island ...............................................................6 Faviidae ............................................................................................................7 Acroporidae and Pocilloporidae ....................................................................11 Dendrophyllidae ............................................................................................13 Mussidae ......................................................................................................15 Poritidae .......................................................................................................17 Siderastreidae ..............................................................................................19 Coral Identification using a customised key ................................................21 Terms used -
Special Issue3.7 MB
Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird -
Cloaked Bivalve Oocytes
The Scientific Naturalist Ecology, 100(12), 2019, e02818 © 2019 by the Ecological Society of America entirely benthic development (Ockelman 1958, Collin and Giribet 2010). The next question is, obviously: What makes it? Because the bivalve germinal epithelium has no secre- tory cells, and no auxiliary cells have been observed con- Cloaked bivalve oocytes: lessons in structing such a feature around developing oocytes, the evolution, ecology, and scientific most likely origin is the oocyte itself—and this has also been reported in unpublished work (cited in Gros et al. awareness 1997). Histological sections show a thin cloak around young oocytes (not shown), and a very thick one around 1 PETER G. BENINGER AND DAPHNE CHEREL mature oocytes (Fig. 1B). Manuscript received 20 March 2019; revised 15 May 2019; With respect to evolutionary lessons, coated oocytes accepted 17 June 2019. Corresponding Editor: John Pastor. have been observed in species from four of the six Faculte des Sciences, Universite de Nantes, 2 rue de la subclasses of the Bivalvia. There appears to be no Houssiniere, 44322 Nantes Cedex, France. taxonomic or evolutionary pattern in their occurrence; 1 E-mail: [email protected] they are found both in the primitive Cryptodonta and in the much later Heterodonta and Anomalodesmata Citation: Beninger, P. G., and D. Cherel. 2019. Cloaked (Table 1). In each of these subclasses, there are also bivalve oocytes: lessons in evolution, ecology, and scien- many species without coated oocytes, even within the tific awareness. Ecology 100(12):e02818. 10.1002/ecy.2818 same family (e.g., Pectinidae and Veneridae). The possi- bility that this is the result of multiple convergent evolu- Key words: bivalves; coat; mucopolysaccharides; oocytes; scien- tions of an identical character seems so remote as to be tific awareness. -
Embryonic and Larval Development of Ensis Arcuatus (Jeffreys, 1865) (Bivalvia: Pharidae)
EMBRYONIC AND LARVAL DEVELOPMENT OF ENSIS ARCUATUS (JEFFREYS, 1865) (BIVALVIA: PHARIDAE) FIZ DA COSTA, SUSANA DARRIBA AND DOROTEA MARTI´NEZ-PATIN˜O Centro de Investigacio´ns Marin˜as, Consellerı´a de Pesca e Asuntos Marı´timos, Xunta de Galicia, Apdo. 94, 27700 Ribadeo, Lugo, Spain (Received 5 December 2006; accepted 19 November 2007) ABSTRACT The razor clam Ensis arcuatus (Jeffreys, 1865) is distributed from Norway to Spain and along the British coast, where it lives buried in sand in low intertidal and subtidal areas. This work is the first study to research the embryology and larval development of this species of razor clam, using light and scanning electron microscopy. A new method, consisting of changing water levels using tide simulations with brief Downloaded from https://academic.oup.com/mollus/article/74/2/103/1161011 by guest on 23 September 2021 dry periods, was developed to induce spawning in this species. The blastula was the first motile stage and in the gastrula stage the vitelline coat was lost. The shell field appeared in the late gastrula. The trocho- phore developed by about 19 h post-fertilization (hpf) (198C). At 30 hpf the D-shaped larva showed a developed digestive system consisting of a mouth, a foregut, a digestive gland followed by an intestine and an anus. Larvae spontaneously settled after 20 days at a length of 378 mm. INTRODUCTION following families: Mytilidae (Redfearn, Chanley & Chanley, 1986; Fuller & Lutz, 1989; Bellolio, Toledo & Dupre´, 1996; Ensis arcuatus (Jeffreys, 1865) is the most abundant species of Hanyu et al., 2001), Ostreidae (Le Pennec & Coatanea, 1985; Pharidae in Spain. -
Cockburn Sound's World War II Anti
1 Contents Acknowledgements Introduction Project aims and methodology Historical background Construction of the World War II Cockburn Sound naval base and boom defences Demolition and salvage Dolphin No.60 2010 site inspections Conclusions Significance Statement of cultural significance Legal protection Recommendations References Appendix 1 – GPS Positions 2 Acknowledgements Thanks to Jeremy Green, Department of Maritime Archaeology for geo- referencing the Public Works Department plans. Thanks to Joel Gilman and Kelly Fleming at the Heritage Council of Western Australia for assistance with legal aspects of the protection of the Dolphin No.60 site. Thanks to Mr Earle Seubert, Historian and Secretary, Friends of Woodman Point for providing valuable information regarding the history and demolition of the boom net and Woodman Point sites. Also to Mr Gary Marsh (Friends of Woodman Point) and Mr Matthew Hayes (Operations Manager, Woodman Point Recreation Camp). Matt Carter thanks the Our World Underwater Scholarship Society (OWUSS) and Rolex for enabling him to assist the WA Museum with this project. Thanks to Marie-Amande Coignard for assistance with the diving inspections. Thanks to Timothy Wilson for the cover design. Cover images Public Works Department Plan 29706 Drawing No.7 Dolphin No.60 (National Archives of Australia) Diver inspecting Dolphin No.60 site (Patrick Baker/ WA Museum) Type ‘A’ anti-boat hurdles (Australian War Memorial) 3 Introduction The Cockburn Sound anti-submarine boom defences were a major engineering project undertaken during World War II to protect the approaches to Cockburn Sound, and the northern boom defences spanned 9.37 km of seabed. In 1964 the timber pylons and dolphins were demolished with explosives and the steel nets were cut and dropped onto the seabed (Jeffery 1988). -
The Global Distribution and Status of Seagrass Ecosystems
The global distribution and status of seagrass ecosystems ^^ ^^^H Discussion paper prepared for tlie UNEP-WCWIC Global Seagrass Workshop St Pete's Beach, Florida, 9 November, 2001 Prepared by: Mark D. Spalding, Michelle L. Taylor, Sergio Martins, Edmund P. Green, and Mary Edwards WA.. WORLD CONSERVATION MONITORING CENTRE Digitized by tine Internet Archive in 2010 witii funding from UNEP-WCIVIC, Cambridge Iittp://www.archive.org/details/globaldistributi01spal The global distribution and status of seagrass ecosystems Discussion paper prepared for tlie UNEP-WCIVIC Global Seagrass Workshop St Pete's Beach, Florida, 9 November, 2001 Prepared by: Mark D. Spalding, Michelle L. Taylor, Sergio Martins, Edmund P. Green, and Mary Edwards With assistance from: Mark Taylor and Corinna Ravilious Table of Contents Introduction to the workshop 2 The global distribution and status of seagrass ecosystems 3 Introduction 3 Definitions 3 The diversity of seagrasses 3 Species distribution 4 Associated Species 6 Productivity and biomass 7 The distribution and area of seagrass habitat 8 The value of seagrasses 13 Threats to seagrasses 13 Management Interventions 14 Bibliography; 16 29 Annex 1 : Seagrass Species Lists by Country Annex 2 - Species distribution maps 34 Annex 3 - Seagrass distribution maps 68 74 Annex 4 -Full list of MPAs by country ; /4^ ] UNEP WCMC Introduction to the workshop The Global Seagrass Workshop of 9 November 2001 has been set up with the expressed aim to develop a global synthesis on the distribution and status of seagrasses world-wide. Approximately 20 seagrass experts from 14 counu-ies, representing all of the major seagrass regions of the world have been invited to share their knowledge and expertise. -
Reproductive Characteristics and Strategies of Reducing-System Bivalves
Comparative Biochemistry and Physiology Part A 126 (2000) 1–16 www.elsevier.com/locate/cbpa Review Reproductive characteristics and strategies of reducing-system bivalves Marcel Le Pennec a, Peter G. Beninger b,* a Institut Uni6ersitaire Europe´endelaMer, Place Nicolas Copernic, Technopoˆle Brest-Iroise, 29280 Plouzane´, France b Laboratoire de Biologie Marine, Faculte´ des Sciences, Uni6ersite´ de Nantes, 44322 Nantes ce´dex, France Received 23 September 1999; received in revised form 15 February 2000; accepted 25 February 2000 Abstract The reproductive biology of Type 3 reducing-system bivalves (those whose pallial cavity is irrigated with water rich in reducing substances) is reviewed, with respect to size-at-maturity, sexuality, reproductive cycle, gamete size, symbiont transmission, and larval development/dispersal strategies. The pattern which emerges from the fragmentary data is that these organisms present reproductive particularities associated with their habitat, and with their degree of reliance on bacterial endosymbionts. A partial exception to this pattern is the genus Bathymodiolus, which also presents fewer trophic adaptations to the reducing environment, suggesting a bivalent adaptive strategy. A more complete understand- ing of the reproductive biology of Type 3 bivalves requires much more data, which may not be feasible for some aspects in the deep-sea species. © 2000 Elsevier Science Inc. All rights reserved. Keywords: Reproduction; Bivalves; Reducing; Hydrothermal 1. Introduction 1979; Jannasch 1985; Smith 1985; Morton 1986; Reid and Brand, 1986; Distel and Felbeck 1987; Interest in the biology of marine reducing sys- Diouris et al. 1989; Tunnicliffe 1991; Le Pennec et tems has surged since the discovery of deep-sea al., 1995a). In contrast, general principles of the vents and associated fauna (Corliss et al., 1979). -
TREATISE ONLINE Number 48
TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North -
Zootaxa, Mollusca, Vetigastropoda
ZOOTAXA 714 New species of Australian Scissurellidae (Mollusca: Gastropoda: Vetigastropoda) with remarks on Australian and Indo-Malayan species DANIEL L. GEIGER & PATTY JANSEN Magnolia Press Auckland, New Zealand DANIEL L. GEIGER & PATTY JANSEN New species of Australian Scissurellidae (Mollusca: Gastropoda: Vetigastropoda) with remarks on Australian and Indo-Malayan species (Zootaxa 714) 72 pp.; 30 cm. 4 November 2004 ISBN 1-877354-66-X (Paperback) ISBN 1-877354-67-8 (Online edition) FIRST PUBLISHED IN 2004 BY Magnolia Press P.O. Box 41383 Auckland 1030 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2004 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) Zootaxa 714: 1–72 (2004) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 714 Copyright © 2004 Magnolia Press ISSN 1175-5334 (online edition) New species of Australian Scissurellidae (Mollusca: Gastropoda: Vetigastropoda) with remarks on Australian and Indo-Malayan species DANIEL L. GEIGER1 & PATTY JANSEN2 1 Santa Barbara Museum of Natural History, 2559 Puesta del Sol Road, Santa Barbara, CA 93105, USA. E- mail: [email protected] 2 P. O. Box 345, Lindfield, NSW 2070, Australia. E-mail: [email protected] Table of contents Abstract . -
Trade Guide Contents
WESTERN AUSTRALIA Trade Guide Contents Welcome to Rottnest Island 3 How to get to Rottnest Island 4 Visit all year round 5 A peaceful Class A nature reserve 5 Getting around 6 Rottnest Island’s top ten experiences 7 Accommodation 9 Dining and Refreshments 10 Internationally Ready Product 11 Rottnest Island business contacts 16 Rottnest Island map 18-19 All details correct at time of printing June 2021 2 Welcome to Rottnest Rottnest Island’s photogenic ambassador, Island the quokka, skyrocketed Western Australia’s favourite WESTERN AUSTRALIA’S island paradise to international fame PREMIER ISLAND ESCAPE! after high-profile celebrities including Roger Federer, Margot Robbie and Located less than 20 kilometres from Chris Hemsworth posted selfies with Western Australia’s world-renowned these cute, native marsupials on their port city of Fremantle, Rottnest Island social media channels. is an easily accessible nature No wonder quokkas are considered the lover’s paradise. happiest animals on Earth; they inhabit Rottnest Island is so close to Perth Australia’s most beautiful island. It’s easy that it’s visible from coastal vantage to see why our visitors love it here as points on clear days, which is much as they do. most often the case for Australia’s sunniest capital city. WESTERN Rottnest Island, or ‘Rotto’, as it’s AUSTRALIA affectionately known by locals, has been the destination of choice for Western Australians for generations, is also a “must see” destination for Hillarys people visiting Western Australia from interstate and overseas. Perth Rottnest Island Fremantle 3 How to get to Rottnest Island Hillarys 45 mins Rottnest Island’s pristine turquoise bays, Perth aquatic activities, walking trails, historic attractions and abundance of wildlife Rottnest Island 90 mins are just a short ferry ride from Perth, Fremantle or Hillarys Ferry Terminals.