Ordovician) in Northern Illinois
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stratographic Coloumn of Iowa
Iowa Stratographic Column November 4, 2013 QUATERNARY Holocene Series DeForest Formation Camp Creek Member Roberts Creek Member Turton Submember Mullenix Submember Gunder Formation Hatcher Submember Watkins Submember Corrington Formation Flack Formation Woden Formation West Okoboji Formation Pleistocene Series Wisconsinan Episode Peoria Formation Silt Facies Sand Facies Dows Formation Pilot Knob Member Lake Mills Member Morgan Member Alden Member Noah Creek Formation Sheldon Creek Formation Roxana/Pisgah Formation Illinoian Episode Loveland Formation Glasford Formation Kellerville Memeber Pre-Illinoian Wolf Creek Formation Hickory Hills Member Aurora Memeber Winthrop Memeber Alburnett Formation A glacial tills Lava Creek B Volcanic Ash B glacial tills Mesa Falls Volcanic Ash Huckleberry Ridge Volcanic Ash C glacial tills TERTIARY Salt & Pepper sands CRETACEOUS "Manson" Group "upper Colorado" Group Niobrara Formation Fort Benton ("lower Colorado ") Group Carlile Shale Greenhorn Limestone Graneros Shale Dakota Formation Woodbury Member Nishnabotna Member Windrow Formation Ostrander Member Iron Hill Member JURASSIC Fort Dodge Formation PENNSYLVANIAN (subsystem of Carboniferous System) Wabaunsee Group Wood Siding Formation Root Formation French Creek Shale Jim Creek Limestone Friedrich Shale Stotler Formation Grandhaven Limestone Dry Shale Dover Limestone Pillsbury Formation Nyman Coal Zeandale Formation Maple Hill Limestone Wamego Shale Tarkio Limestone Willard Shale Emporia Formation Elmont Limestone Harveyville Shale Reading Limestone Auburn -
Rock Stratigraphy of the Silurian System in Northeastern and Northwestern Illinois
2UJ?. *& "1 479 S 14.GS: CIR479 STATE OF ILLINOIS c. 1 DEPARTMENT OF REGISTRATION AND EDUCATION Rock Stratigraphy of the Silurian System in Northeastern and Northwestern Illinois H. B. Willman GEOLOGICAL ILLINOIS ""SURVEY * 10RM* APR 3H986 ILLINOIS STATE GEOLOGICAL SURVEY John C. Frye, Chief Urbano, IL 61801 CIRCULAR 479 1973 CONTENTS Page Abstract 1 Introduction 1 Time-stratigraphic classification 3 Alexandrian Series 5 Niagaran Series 5 Cayugan Series 6 Regional correlations 6 Northeastern Illinois 6 Development of the classification 9 Wilhelmi Formation 12 Schweizer Member 13 Birds Member 13 Elwood Formation 14 Kankakee Formation 15 Drummond Member 17 Offerman Member 17 Troutman Member 18 Plaines Member 18 Joliet Formation 19 Brandon Bridge Member 20 Markgraf Member 21 Romeo Member 22 Sugar Run Formation . „ 22 Racine Formation 24 Northwestern Illinois 26 Development of the classification 29 Mosalem Formation 31 Tete des Morts Formation 33 Blanding Formation 35 Sweeney Formation 36 Marcus Formation 3 7 Racine Formation 39 References 40 GEOLOGIC SECTIONS Northeastern Illinois 45 Northwestern Illinois 52 FIGURES Figure 1 - Distribution of Silurian rocks in Illinois 2 2 - Classification of Silurian rocks in northeastern and northwestern Illinois 4 3 - Correlation of the Silurian formations in Illinois and adjacent states 7 - CM 4 Distribution of Silurian rocks in northeastern Illinois (modified from State Geologic Map) 8 - lis. 5 Silurian strata in northeastern Illinois 10 ^- 6 - Development of the classification of the Silurian System in |§ northeastern Illinois 11 7 - Distribution of Silurian rocks in northwestern Illinois (modified ;0 from State Geologic Map) 2 7 8 - Silurian strata in northwestern Illinois 28 o 9 - Development of the classification of the Silurian System in CO northwestern Illinois 30 10 - Index to stratigraphic units described in the geologic sections • • 46 ROCK STRATIGRAPHY OF THE SILURIAN SYSTEM IN NORTHEASTERN AND NORTHWESTERN ILLINOIS H. -
Download Printable Version of the Geology and Why It Matters Story
Geology and Why it Matters This story was made with Esri's Story Map Journal. Read the interactive version on the web at http://arcg.is/qrG8W. The geology, landforms and land features are extremely important components of watersheds. They influence water quality, hydrology and watershed resiliency. Every watershed has critical areas where water interacts with and mobilizes contaminants, including non-point and point source contributions to surface water bodies. Where and how nutrients, bacteria and/or pesticides are mobilized to reach surface water can be better understood through a careful study of subsurface hydrology, or hydrogeology, which, according to the Iowa Geological and Water Survey Bureau, “allows better identification for sources, pathways and delivery points for groundwater and contaminants transported through the watershed’s subsurface geological plumbing system.” Diagram courtesy of Iowa DNR Iowa Geological Survey The highly developed karst topography and highly permeable bedrock layers of the Upper Iowa River increase the depth from which actively circulating groundwater contributes to stream flows, making an understanding of the hydrogeology even more important. Fortunately, the Iowa Geological and Water Survey Bureau completed a detailed mapping project of bedrock geologic units, key subsurface horizons, and surficial karst features in the Iowa portion of the Upper Iowa River watershed in 2011. The project “provides information on the subsurface part of the watersheds, which is necessary for evaluating the vulnerability of groundwater to nonpoint-source contamination, the groundwater contributions to surface water contamination, and for targeting best management practices for water quality improvements.” The map on the right shows the surface elevation of bedrock in the state of Iowa and the Upper Iowa River Watershed. -
Deep Oil Possibilities of the Illinois Basin
s Ccc 36? STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION DEEP OIL POSSIBILITIES OF THE ILLINOIS BASIN Alfred H. Bell Elwood Atherton T. C. Buschbach David H. Swann ILLINOIS STATE GEOLOGICAL SURVEY John C. Frye, Chief URBANA CIRCULAR 368 1964 . DEEP OIL POSSIBILITIES OF THE ILLINOIS BASIN Alfred H. Bell, Elwood Atherton, T. C. Buschbach, and David H. Swann ABSTRACT The Middle Ordovician and younger rocks of the Illinois Basin, which have yielded 3 billion barrels of oil, are underlain by a larger volume of virtually untested Lower Ordovician and Cambrian rocks. Within the region that has supplied 99 percent of the oil, where the top of the Middle Ordovician (Trenton) is more than 1,000 feet be- low sea level, less than 8 inches of hole have been drilled per cubic mile of the older rocks. Even this drilling has been near the edges; and in the central area, which has yielded five- sixths of the oil, only one inch of test hole has been drilled per cubic mile of Lower Ordovician and Cambrian. Yet drilling depths are not excessive, ranging from 6,000 to 14,000 feet to the Precambrian. More production may be found in the Middle Ordovician Galena Limestone (Trenton), thus extending the present productive regions. In addition, new production may be found in narrow, dolomitized fracture zones in the tight limestone facies on the north flank of the basin . The underlying Platteville Limestone is finer grained and offers fewer possibilities. The Joachim Dolomite oil- shows occur in tight sandstone bodies that should have commercial porosity in some re- gions. -
Bedrock Geology of Dodge County, Wisconsin (Wisconsin Geological
MAP 508 • 2021 Bedrock geology of Dodge County, Wisconsin DODGE COUNTY Esther K. Stewart 88°30' 88°45' 88°37'30" 88°52'30" 6 EXPLANATION OF MAP UNITS Tunnel City Group, undivided (Furongian; 0–155 ft) FOND DU LAC CO 630 40 89°0' 6 ! 6 20 ! 10 !! ! ! A W ! ! 1100 W ! GREEN LAKE CO ! ! ! WW ! ! ! ! DG-92 ! ! ! 1100 B W! Includes Lone Rock and Mazomanie Formations. These formations are both DG-53 W ! «49 ! CORRELATION OF MAP UNITS !! ! 7 ! !W ! ! 43°37'30" R16E _tc EL709 DG-1205 R15E W R14E R15E DG-24 W! ! 1 Quaternary ! 980 ! W W 1 ! ! ! 6 DG-34 6 _ ! 1 R17E Os Lake 1 R16E 6 interbedded and laterally discontinuous and therefore cannot be mapped 1 6 W ! ! 1100 !! 175 940 Waupun DG-51 ! 980 « Oa ! R13E 6 Emily R14E W ! 43°37'30" ! ! ! 41 ¤151 B «49 ! ! ! ! Opc ! Drew «68 ! W ! East ! ! ! individually at this scale in Dodge County. Overlies Elk Mound Group across KW313 940 ! ! ! ! ! ! 940 ! W B ! ! - ! ! W ! ! ! ! ! ! !! Waupun ! W ! Undifferentiated sediment ! ! W! B 000m Cr W! ! º Libby Cr ! 3 INTRUSIVE SUPRACRUSTAL 3 1020 ! ! Waupun ! DG-37 W ! ! º 1020 a sharp contact. W ! 50 50 N ! ! KS450 ! ! ! IG300 ! B B Airport ! RO703 ! ! Brownsville ! ! ! ! ! ! 1060 ! ROCKS W ! ! ROCKS Unconsolidated sediments deposited by modern and glacial processes. 940 ° ! Qu ! W Br Rock SQ463 B ! Pink, gray, white, and green; coarse- to fine-grained; moderately to poorly 980 B River B B ! ! KT383 ! ! Generally 20–60 feet (ft) thick; ranges from absent where bedrock crops ! !! ! ! ! ! ! Su Lower Silurian ° ! ! ! ! ! 940 860 ! ! ! ! ! ! ! ! ! ! sorted; glauconitic sandstone, siltstone, and mudstone with variable W ! B B B ! ! ! 980 ! ! ! 780 ! Kummel !! out to more than 200 ft thick in preglacial bedrock valleys. -
Preliminary Geological Feasibility Report
R. L. LANGENHEfM, JR. EGN 111 DEPT. GEOL. UNIV. ILLINOIS 234 N.H. B., 1301 W. GREEN ST. URBANA, ILLINOIS 61801 Geological-Geotechnical Studies for Siting the Superconducting Super Collider in Illinois Preliminary Geological Feasibility Report J. P. Kempton, R.C. Vaiden, D.R. Kolata P.B. DuMontelle, M.M. Killey and R.A. Bauer Maquoketa Group Galena-Platteville Groups Illinois Department of Energy and Natural Resources ENVIRONMENTAL GEOLOGY NOTES 111 STATE GEOLOGICAL SURVEY DIVISION 1985 Geological-Geotechnical Studies for Siting the Superconducting Super Collider in Illinois Preliminary Geological Feasibility Report J.P. Kempton, R.C. Vaiden, D.R. Kolata P.B. DuMontelle, M.M. Killey and R.A. Bauer ILLINOIS STATE GEOLOGICAL SURVEY Morris W. Leighton, Chief Natural Resources Building 615 East Peabody Drive Champaign, Illinois 61820 ENVIRONMENTAL GEOLOGY NOTES 111 1985 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/geologicalgeotec1 1 1 kemp 1 INTRODUCTION 1 Superconducting Super Collider 1 Proposed Site in Illinois 2 Geologic and Hydrogeologic Factors 3 REGIONAL GEOLOGIC SETTING 5 Sources of Data 5 Geologic Framework 6 GEOLOGIC FRAMEWORK OF THE ILLINOIS SITE 11 General 1 Bedrock 12 Cambrian System o Ordovician System o Silurian System o Pennsylvanian System Bedrock Cross Sections 18 Bedrock Topography 19 Glacial Drift and Surficial Deposits 21 Drift Thickness o Classification, Distribution, and Description of the Drift o Banner Formation o Glasford Formation -
Oxygen Isotopic Composition of Ferric Oxides from Recent Soil, Hydrologic, and Marine Environments
Geochimica et Cosmochimica Acta, Vol. 64, No. 13, pp. 2221–2231, 2000 Copyright © 2000 Elsevier Science Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/00 $20.00 ϩ .00 PII S0016-7037(00)00351-3 Oxygen isotopic composition of ferric oxides from recent soil, hydrologic, and marine environments 1, 2 3 HUIMING BAO, *PAUL L. KOCH, and MARK H. THIEMENS 1Department of Chemistry and Biochemistry, Mail Code 0356, 9500 Gilman Drive, University of California San Diego, La Jolla, CA 92093, USA 2Department of Earth Sciences, University of California, Santa Cruz, CA 95064, USA 3Department of Chemistry and Biochemistry, Mail Code 0356, University of California San Diego, La Jolla, CA 92093, USA (Received September 27, 1999; accepted in revised form January 24, 2000) Abstract—Low-temperature synthesis experiments on ferric oxide–water systems have resulted in disparate oxygen isotope fractionation–temperature (␣-T) curves. In this study, recent ferric oxides, mostly goethites of Holocene age, were collected and analyzed from a variety of modern soil, stream, and marine environments, where formation temperature and the oxygen isotopic composition (␦18O) of the water from which ferric oxides precipitated can be independently measured or estimated. This allows comparison of experimental ␣-T relationships with data from natural systems. Selective dissolution methods were refined for the pretreatment of fine-grained minerals in order to obtain reliable ␦18O values for pure and crystalline ferric oxides. The difference (⌬␦18O) between the ␦18O value of goethite and that of local mean meteoric water ranges from Ϫ1.5 to ϩ6.3‰ for soil goethites from New Jersey, Indiana, Michigan, Iowa, South Dakota, and Taiwan. -
Geology and Oil Production in the Tuscola Area, Illinois
124 KUItOfS GEOLOGICAL S SURVEY LIBRARY 14.GS: 4^ ^ CIR 424 :. 1 STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION Geology and Oil Production in the Tuscola Area, Illinois H. M. Bristol Ronald Prescott ILLINOIS STATE GEOLOGICAL SURVEY John C. Frye, Chief URBANA CIRCULAR 424 1968 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/geologyoilproduc424bris GEOLOGY AND OIL PRODUCTION IN THE TUSCOLA AREA, ILLINOIS H. M. Bristol and Ronald Prescott ABSTRACT The Tuscola Anticline, in east-central Illinois, lies astride the complex LaSalle Anticlinal Belt and dips steeply westward into the Fairfield Basin and gradually eastward into the Murdock Syncline. The anticline is broken into two structural highs, the Hayes Dome and the Shaw Dome. Pleistocene sediments, 50 to 250 feet thick, cover the area. Pennsylvanian sediments cover much of the area, thinning to expose an inlier of Mississippian, Devonian, and Silurian rock north of Tuscola. The basal Cambrian for- mation, the Mt. Simon Sandstone, is penetrated by only two wells. Oil production from the Kimmswick (Trenton) com- menced in 1962 from the R. D. Ernest No. 1 Schweighart well, near Hayes, and as of January 1, 1968, approximately 30 wells were producing oil. Cumulative oil production as of January 1, 1968, is approximately 94,000 barrels. The potential pay zone is confined to the upper 5 to 100 feet of structure and to the upper 125 feet of the Kimmswick, whose permeability ranges from 0.1 to 2. millidarcys, av- eraging 0.6, and whose porosity ranges from 2 to 12 per- cent. -
3D Ichnofabrics in Shale Gas Reservoirs
3D ICHNOFABRICS IN SHALE GAS RESERVOIRS By @ Małgorzata Bednarz A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Earth Sciences Memorial University of Newfoundland October 2014 St. John’s Newfoundland Abstract This PhD research project uses three-dimensional ichnology to address issues of shale- hydrocarbon reservoir quality and provides new tools for ichnofabric analysis and ichnotaxonomic considerations. The study presents deterministic (devoid of conceptual simplifications and interpretations) visualizations of the true spatial geometry of the aff. Chondrites, aff. Phycosiphon and Nereites trace fossils and models the three-dimensional arrangements of the burrow components. The volumetric reconstructions of the real geometry of the trace fossils allowed for their comparison with the previously established visualizations and for reconsideration of pre-existing palaeobiological models. To date three-dimensional understanding of the majority of trace fossils is presented as conceptual drawings available only on two-dimensional media. Such reconstructions are extrapolated mainly from observations of cross sections of burrows from core and outcrop and do not allow for realistic volumetric quantification and full elucidation of complex trace fossil geometries in the context of the host-sediment. The new methodology based on precise serial grinding and volume-visualization presented herein addresses this gap in ichnological knowledge, and is especially useful for examination of the ichnofabric contained in mudstones and muddy siltstones where the application or non-destructive methods of 3D reconstructions as CT scanning or MRI is impossible owing to the rock petrological characteristics (e.g., low burrow-matrix density difference). -
IGS 2015B-Maquoketa Group
,QGLDQD*HRORJLFDO6XUYH\ $ERXW8V_,*66WDII_6LWH0DS_6LJQ,Q ,*6:HEVLWHIGS Website Search ,1',$1$ *(2/2*,&$/6859(< +20( *HQHUDO*HRORJ\ (QHUJ\ 0LQHUDO5HVRXUFHV :DWHUDQG(QYLURQPHQW *HRORJLFDO+D]DUGV 0DSVDQG'DWD (GXFDWLRQDO5HVRXUFHV 5HVHDUFK ,QGLDQD*HRORJLF1DPHV,QIRUPDWLRQ6\VWHP'HWDLOV 9LHZ&DUW 7ZHHW *1,6 0$482.(7$*5283 $ERXWWKH,*1,6 $JH 6HDUFKIRUD7HUP 2UGRYLFLDQ 6WUDWLJUDSKLF&KDUW 7\SHGHVLJQDWLRQ 7\SHORFDOLW\7KH0DTXRNHWD6KDOHZDVQDPHGE\:KLWH S IRUH[SRVXUHVRIEOXHDQGEURZQVKDOH 025(,*65(6285&(6 WKDWDJJUHJDWHIW P LQWKLFNQHVVDORQJWKH/LWWOH0DTXRNHWD5LYHULQ'XEXTXH&RXQW\,RZD *UD\DQG6KDYHU 5HODWHG%RRNVWRUH,WHPV +LVWRU\RIXVDJH 6LQFHLWVILUVWXVHWKHWHUPKDVVSUHDGJUDGXDOO\HDVWZDUGLQWKHSURFHVVEHFRPLQJDJURXSWKDWHPEUDFHVVHYHUDO IRUPDWLRQV *UD\DQG6KDYHU ,WLVQRZXVHGWKURXJKRXW,OOLQRLV :LOOPDQDQG%XVFKEDFKS ZDV H[WHQGHGLQWRQRUWKZHVWHUQ,QGLDQDE\*XWVWDGW DQGZDVDGRSWHGIRUXVHLQDJURXSVHQVHWKURXJKRXW,QGLDQD 5(/$7('6,7(6 E\*UD\ *UD\DQG6KDYHU 86*6*(2/(; 'HVFULSWLRQ 1RUWK$PHULFDQ6WUDWLJUDSKLF $VGHVFULEHGE\*UD\ WKH0DTXRNHWD*URXSLQ,QGLDQDLVDZHVWZDUGWKLQQLQJZHGJHIW P WKLFNLQ &RGH VRXWKHDVWHUQ,QGLDQDDQGIW P WKLFNLQQRUWKZHVWHUQ,QGLDQD *UD\DQG6KDYHU ,WFRQVLVWVSULQFLSDOO\RI $$3*&2681$&KDUW VKDOH DERXWSHUFHQW OLPHVWRQHFRQWHQWLVPLQLPDOWKURXJKRXWPRVWRI,QGLDQDEXWLQFUHDVHVSURPLQHQWO\LQWKH VRXWKHDVWVRWKDWSDUWVRIWKHJURXSDUHLQSODFHVGRPLQDQWO\OLPHVWRQH *UD\DQG6KDYHU 7KHORZHUSDUWRIWKH JURXSLVHYHU\ZKHUHDOPRVWHQWLUHO\VKDOHDQGWKHORZHUSDUWRIWKHVKDOHLVGDUNEURZQWRQHDUO\EODFN *UD\DQG 6KDYHU $VDFRQVHTXHQFHRIWKLVSDWWHUQRIURFNGLVWULEXWLRQWZRVFKHPHVRIQRPHQFODWXUHDUHXVHGLQVXEGLYLVLRQRIWKH 0DTXRNHWD*URXSLQ,QGLDQD -
Technical Report : Illinois Natural Areas Inventory
illliii'p ]i i iiiilffl,'isiPSi fJi J! ! tUl! on or '"'^" before ,he La.es. Da.e !;S;ed ^1" .H.'W I .') 2001 MAR JUL 14 ^4 I 3 2003 AUG 1 8 1994 JIOV J^;.; 'J 4 M J! J OCT 9 1996 14 m 1 3 Wr1337 2007 JUL 1 8 DEC 07 1997 »r! I 1997 APR 91998 MAR 1811393 LI6I—O-l09« ILLINOIS NATURAL AREAS INVENTORY TECHNICAL REPORT UNIVERSITY OF AT L . _ .-AIGN BOOKSIAQKa TECHNICAL REPORT ILLINOIS NATURAL AREAS INVENTORY performed under contract to the ILLINOIS DEPARTMENT OF CONSERVATION by the DEPARTMENT OF LANDSCAPE ARCHITECTURE UNIVERSITY OF ILLINOIS • URBANA-CHAMPAIGN and the NATURAL LAND INSTITUTE ROCKFORD, ILLINOIS This study was conducted for the State of Illinois pursuant to Contract #50-75-226 of the Illinois De- partment of Conservation. The study was financed in part through a planning grant from the Heritage Conservation and Recreation Service, U.S. Depart- ment of the Interior, under provisions of the Land and Water Conservation Fund Act of 1965 (PL 88-578). Illinois Department of Conservation personnel re- sponsible for preparing the Request for Proposals and coordinating the work included John Schweg- man, contract liaison officer, and Dr. Edward Hoff- man, Dr. Robert Lee, Marlin Bowles, and Robert Schanzle. Published November 1978 Illinois Natural Areas Inventory, Urbana For additional Information Natural Areas Section Illinois Department of Conservation 605 Stratton Building Springfield, Illinois 62706 Dv\ '^^ Thf Illinois Natural Areas hwfutory u'os a 3-year project to find and describe natural areas for the Illinois Department of Consen'ation. -
12. Bioturbation and Trace Fossils in Deep Sea Sediments of the Walvis Ridge, Southeastern Atlantic, Leg 741
12. BIOTURBATION AND TRACE FOSSILS IN DEEP SEA SEDIMENTS OF THE WALVIS RIDGE, SOUTHEASTERN ATLANTIC, LEG 741 Dieter K. Fütterer, Geologisch-Palàontologisches Institut der Universitàt Kiel, D-2300 Kiel, Federal Republic of Germany ABSTRACT Trace fossil distribution present in pelagic carbonates cored on the Walvis Ridge during Deep Sea Drilling Project Leg 74 are described. A characteristic deep-sea trace fossil assemblage comprising the cosmopolitan ichnogenera Planolites, Chondrites, Zoophycos, and Teichichnus was found at paleo-water-depths ranging from a few hundred to about 4500 m. Paleodepth distribution indicates that Zoophycos has changed its environmental preference from relatively shallow water in the Cretaceous into deeper water in the late Paleocene. Thus Zoophycos can be used as a paleodepth indicator in the bathyal environment if its stratigraphic age is known. INTRODUCTION Cretaceous age. Normal subsidence of the Walvis Ridge produced paleodepth core profiles passing from rela- Bioturbation is the churning, stirring, and reworking tively shallow initial paleo-water-depths continuously to of a sediment by bottom-dwelling benthic organisms. In their present-day positions, which are in some cases most cases it obliterates primary sedimentary structures 2000 m deeper. and thus any information on the environmental con- Continuous coring by the hydraulic piston corer ditions during sedimentation. Increasing bioturbation (HPC) produced very good recovery and only minor eventually results in a nearly complete homogenization drilling disturbance in the unconsolidated sediments. of the sediment. These prerequisites offered an ideal opportunity to col- However, distinctly shaped sedimentary features pro- lect continuous data on the distribution of trace fossils duced by the activity of bottom-dwelling organisms through time and to relate those data to systematic (known as trace fossils, ichnofossils, or lebensspuren) changes in water depths in the open ocean.