Oceanological and Hydrobiological Studies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida)
Taxonomic Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler and Kenneth A. Krieger National Center for Water Quality Research Heidelberg University Tiffin, Ohio, USA 44883 August 2012 Atlas of the Copepods, (Class Crustacea: Subclass Copepoda) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio Acknowledgments The authors are grateful for the funding for this project provided by Dr. David Klarer, Old Woman Creek National Estuarine Research Reserve. We appreciate the critical reviews of a draft of this atlas provided by David Klarer and Dr. Janet Reid. This work was funded under contract to Heidelberg University by the Ohio Department of Natural Resources. This publication was supported in part by Grant Number H50/CCH524266 from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of Centers for Disease Control and Prevention. The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by Section 315 of the Coastal Zone Management Act, as amended. Additional information about the system can be obtained from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, 1305 East West Highway – N/ORM5, Silver Spring, MD 20910. Financial support for this publication was provided by a grant under the Federal Coastal Zone Management Act, administered by the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, Silver Spring, MD. -
Zootaxa 205: 1-19 (2003) ISSN 1175-5326 (Print Edition) ZOOTAXA 205 Copyright © 2003 Magnolia Press ISSN 1175-5334 (Online Edition)
Zootaxa 205: 1-19 (2003) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 205 Copyright © 2003 Magnolia Press ISSN 1175-5334 (online edition) A new species of Moraria (Crustacea: Copepoda: Harpacticoida) from the Laurentian Great Lakes JANET W. REID1 & LYNN T. LESKO2 1 Research Associate, Division of Science and Learning, Virginia Museum of Natural History, Martinsville, Virginia; Correspondence Address: 1100 Cherokee Court, Martinsville, VA 24112-5318, USA; email: [email protected] 2 11123 Boyce Road, Chelsea, MI 48118, USA; email: [email protected] Abstract Moraria hudsoni n. sp. is described from Trails End Bay in Lake Michigan and Prentiss Bay in Lake Huron, Michigan, USA. The new species differs from its congeners in chaetotaxy, body orna- mentation, and other characters. We review published records of members of Moraria from North and Central America; no species is known from South America. Species of this genus have been found in the mountains of southern Mexico, Guatemala, and Honduras, but none of these has been validly described. In North America, eight species have been recorded from Alaska, Canada, and the conterminous USA as far south as North Carolina. We report new geographical records of M. affinis from Virginia, and of both M. cristata and M. virginiana from Maryland and Virginia. We provide a tabular key to aid in identification of the named species of Moraria in North America. Key words: Copepoda, Harpacticoida, Laurentian Great Lakes, taxonomy, new species, Moraria Introduction In collections from the Laurentian Great Lakes made by Patrick L. Hudson and associates of the Great Lakes Science Center at Ann Arbor, Michigan, there appeared a species of the harpacticoid copepod genus Moraria that could not be attributed to any presently known taxon in the genus. -
Elimination of Dengue by Control of Aedes Vector Mosquitoes (Diptera: Culicidae) Utilizing Copepods (Copepoda: Cyclopidae)
International Journal of Bioinformatics and Biomedical Engineering Vol. 1, No. 2, 2015, pp. 101-106 http://www.aiscience.org/journal/ijbbe Elimination of Dengue by Control of Aedes Vector Mosquitoes (Diptera: Culicidae) Utilizing Copepods (Copepoda: Cyclopidae) Muhammad Sarwar * Nuclear Institute for Agriculture & Biology, Faisalabad, Punjab, Pakistan Abstract This paper reports on the information and result of long-term laboratory and field studies on copepods (Copepoda: Cyclopidae) as predators for mosquito control inhabiting in tropic and subtropic environments. Mosquitoes have long been vectors of numerous diseases that affect human health and well-being in many parts of the world. Reducing the use of pesticides against insect vectors is one of the big demands of the society because public has always been against the heavy use of insecticides. Copepods are natural and tiny shrimp-like crustacean with a hearty appetite for feeding on mosquito larvae in water holding areas. The copepods thrive in fresh and marine water, and are valuable tool in battling mosquitoes in artificial containers, roadside ditches, small water pools, clogged downspouts and other wet areas that can breed plenty of mosquitoes. These are especially helpful tools in fighting mosquitoes near public places, where use of certain pesticides is restricted. Copepods are relatively easy to culture, maintain and deliver to the target areas, but getting the cultures started requires some effort and time. Copepods are more efficient predator of younger than of older larvae of mosquito and predation drops considerably for 4 days and older larvae. Copepods though prefer to prey on younger larvae, yet also increasingly attack on older larvae as greater predator densities reduce the supply of younger ones. -
The Sarcoplasmic Reticulum of Striated Muscle of A
THE SARCOPLASMIC RETICULUM OF STRIATED MUSCLE OF A CYCLOPOID COPEPOD WOLF H. FAHRENBACH, Ph.D. From the Department of Anatomy, Harvard Medical School, Boston ABSTRACT The fine structure of the abdominal musculature of the copepod Macrocyclops albidus was investigated by electron microscopy. Tubules penetrate into the muscle fibers from the sarcolemma, continuity between the wall of the tubules and the sarcolemma being clear. A dense network of tubules envelops the myofibrils, its interstices being occupied by cisternal elements. At the Z lines the tubules traverse the interior of myofibrils, giving off branches which course longitudinally within the substance of the myofibrils. These branches are also accompanied by elongate, non-intercommunicating cisternae. Comparison of this fast acting copepod muscle with other vertebrate and invertebrate muscles indicates that the complexity of the tubular system is a function of the myofibrillar geometry, whereas the degree of development of the cisternal system is related to the contraction speed of the muscle. INTRODUCTION The copepod Macrocyclops albidus (Jurine) 1820 internal architecture of these muscles, which (Arthropoda, Crustacea) is one of the most com- were used because of the greater ease of orienta- mon North American copepods. The species is tion, is identical to that of the appendicular a freshwater dweller and measures between 1 and musculature. 2.5 mm in length. In pursuit of its prey or in escaping g predator, the animal is capable of MATERIALS AND METHODS brief, very rapid locomotion, produced by the synchronous, high frequency beating of all of its Macrocydops albidus cultures were obtained from appendages. Both the appendicular and the gen- Carolina Biological Supply Company, Elon, North Carolina. -
The Role of External Factors in the Variability of the Structure of the Zooplankton Community of Small Lakes (South-East Kazakhstan)
water Article The Role of External Factors in the Variability of the Structure of the Zooplankton Community of Small Lakes (South-East Kazakhstan) Moldir Aubakirova 1,2,*, Elena Krupa 3 , Zhanara Mazhibayeva 2, Kuanysh Isbekov 2 and Saule Assylbekova 2 1 Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan 2 Fisheries Research and Production Center, Almaty 050016, Kazakhstan; mazhibayeva@fishrpc.kz (Z.M.); isbekov@fishrpc.kz (K.I.); assylbekova@fishrpc.kz (S.A.) 3 Institute of Zoology, Almaty 050060, Kazakhstan; [email protected] * Correspondence: [email protected]; Tel.: +7-27-3831715 Abstract: The variability of hydrochemical parameters, the heterogeneity of the habitat, and a low level of anthropogenic impact, create the premises for conserving the high biodiversity of aquatic communities of small water bodies. The study of small water bodies contributes to understanding aquatic organisms’ adaptation to sharp fluctuations in external factors. Studies of biological com- munities’ response to fluctuations in external factors can be used for bioindication of the ecological state of small water bodies. In this regard, the purpose of the research is to study the structure of zooplankton of small lakes in South-East Kazakhstan in connection with various physicochemical parameters to understand the role of biological variables in assessing the ecological state of aquatic Citation: Aubakirova, M.; Krupa, E.; ecosystems. According to hydrochemical data in summer 2019, the nutrient content was relatively Mazhibayeva, Z.; Isbekov, K.; high in all studied lakes. A total of 74 species were recorded in phytoplankton. The phytoplankton Assylbekova, S. The Role of External abundance varied significantly, from 8.5 × 107 to 2.71667 × 109 cells/m3, with a biomass from 0.4 Factors in the Variability of the to 15.81 g/m3. -
Food and Parasites – Life-History Decisions in Copepods
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 979 Food and Parasites – Life-history Decisions in Copepods BY LENA SIVARS BECKER ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2004 ! ""# $#%"" & ' & & (' ') *' + ') , -) ""#) . ( / -&0' ) 1 ) 232) #" ) ) 4,5 2$066#0623$0# 4 ' &'+ & + & && &0' ' 0 &&) 4 & ' + & &0' 7 & ' 8 +' '' & ' + & 9 + + ' 0 &&) ' & & : + ' ; +' & + ) ' & + + & + &+ 7 '8 ' & + ' & ) + & ' ; 7 8 + ' ;) 4 +' & + '' ; + ' ;) < & ' + ; ' ' ; + & & ' & ) 4 ' & & + ' + + & + 7"0=>8) . & + ' ' ' + + & +' & + +) ? + & & & ' &0 & ' 0 & & ) *' ' & & & & ) . + + ' '' & ' & ' ' & + 9 & ) *' & & & ' + + ' &0' ) ! " &0' Macrocyclops albidus & Schistocephalus solidus # $ % & & ' & ( )* &+,-. /0 ! @ - , ""# 4,,5 $$"#0 = A 4,5 2$066#0623$0# % %%% 0# !B 7' %CC ))C D E % %%% 0# !B8 ! I. " # $ "% Macrocyclops albidus ' ( ! I. " # $ ' ( " # $ ! I. -
Volume 2, Chapter 10-1: Arthropods: Crustacea
Glime, J. M. 2017. Arthropods: Crustacea – Copepoda and Cladocera. Chapt. 10-1. In: Glime, J. M. Bryophyte Ecology. Volume 2. 10-1-1 Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 10-1 ARTHROPODS: CRUSTACEA – COPEPODA AND CLADOCERA TABLE OF CONTENTS SUBPHYLUM CRUSTACEA ......................................................................................................................... 10-1-2 Reproduction .............................................................................................................................................. 10-1-3 Dispersal .................................................................................................................................................... 10-1-3 Habitat Fragmentation ................................................................................................................................ 10-1-3 Habitat Importance ..................................................................................................................................... 10-1-3 Terrestrial ............................................................................................................................................ 10-1-3 Peatlands ............................................................................................................................................. 10-1-4 Springs ............................................................................................................................................... -
Interspecific Variation, Habitat Complexity and Ovipositional Responses Modulate the Efficacy of Cyclopoid Copepods in Disease Vector Control
Interspecific variation, habitat complexity and ovipositional responses modulate the efficacy of cyclopoid copepods in disease vector control Article Accepted Version Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0 Cuthbert, R. N., Dick, J. T. A. and Callaghan, A. (2018) Interspecific variation, habitat complexity and ovipositional responses modulate the efficacy of cyclopoid copepods in disease vector control. Biological Control, 121. pp. 80-87. ISSN 1049-9644 doi: https://doi.org/10.1016/j.biocontrol.2018.02.012 Available at http://centaur.reading.ac.uk/75932/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: https://www.sciencedirect.com/science/article/pii/S1049964418300847?via%3Dihub To link to this article DOI: http://dx.doi.org/10.1016/j.biocontrol.2018.02.012 Publisher: Elsevier All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online 1 1 Interspecific variation, habitat complexity and ovipositional responses 2 modulate the efficacy of cyclopoid copepods in disease vector control 3 4 Ross N. Cuthberta,b, Jaimie T.A. Dicka and Amanda Callaghanb 5 aInstitute for Global Food Security, School of Biological Sciences, Queen’s University 6 Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland 7 bEnvironmental and Evolutionary Biology, School of Biological Sciences, University of 8 Reading, Harborne Building, Reading, RG6 6AS, England 9 Corresponding author: Ross N. -
Biologische Bewertung Der Grundwasserökosysteme in Deutschland: Untersuchungen Zum Auftreten Der Fauna Auf Unterschiedlichen R
Universität Koblenz‐Landau Campus Landau Institut für Umweltwissenschaften Biologische Bewertung der Grundwasserökosysteme in Deutschland: Untersuchungen zum Auftreten der Fauna auf unterschiedlichen räumlichen Skalen Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften, Fachbereich 7: Natur‐ und Umweltwissenschaften Universität Koblenz‐Landau Campus Landau vorgelegt von: Diplom‐Biologin Heide Stein Tag der mündlichen Prüfung: 1. Berichterstatter: PD Dr. H. J. Hahn, Univ. Koblenz‐Landau, Campus Landau 2. Berichterstatter: Prof. Dr. K. Schwenk, Univ. Koblenz‐Landau, Campus Landau Inhaltsverzeichnis Inhaltsverzeichnis 1 Zusammenfassung…………………………………………………………………..1 2 Einleitung………….…………………………………………………........................7 2.1 Gliederung der Arbeit…………………………………………………….........12 2.2 Hypothesen und Fragestellungen der Arbeit……………………..................13 2.3 Aktueller Stand der gesetzlichen Grundwasserbewertung…………..........15 2.4 Aktueller Stand der biologischen Grundwasserbewertung…………..........18 2.5 Die Invertebratengemeinschaften des Grundwassers…………...................22 2.6 Klassifizierung und Typisierung von Grundwassersystemen und ihren Invertebratengemeinschaften……………………………………..........24 2.7 Literatur…………………………………………………………………………26 3 Ergebnisse und Diskussion....................................................................................34 3.1 Die Untersuchung lokaler und regionaler Effekte auf die Invertebraten‐ gemeinschaften quartärer Lockergesteinsleiter im Erftgebiet (Nordrhein‐ Westfalen) -
Cryptozoic Copepods from Belgium: Diversity and Biogeographic Implications1
Belg. J. Zool., 130 (1): 11-19 January 2000 Cryptozoic copepods from Belgium: diversity and biogeographic implications 1 Frank Fiers and Véronique Ghenne Royal Belgian Institute of Natural Sciences Vautierstraat 29, B-1000 Brussels, Belgium ABSTRACT. During an intensive survey of the presence and distribution of soil nematodes in Belgium, seve- ral samples were found to contain harpacticoid and cyclopoid copepods. Population characteristics could not be studied because the sampling methods were inadequate for the collection of copepods. We report here on the diversity, and discuss the habitat preferences, of those cryptozoic copepods. Four cyclopoid and 13 harpacticoid species were identified. One cyclopoid and eight harpacticoids have not been previously reported from Belgium. Species of Morariinae and Canthocamptinae were encountered in nearly every type of habitat. The presence of the hypogean cyclopoid Graeteriella unisetigera in leaf litter was unexpected and we discuss its distribution in Europe. Based on those observations, the concept of the importance of leaf litter in the dispersion of stygofauna and its population maintenance is advanced. KEY WORDS: Copepoda, Cyclopoida, Harpacticoida, Cryptozoic copepods, Belgium. INTRODUCTION tial part of the soil fauna and are widely distributed in the Japanese forests on Hokkaido and the northern part of That free-living harpacticoid and cyclopoid copepods Honshu. In addition, the same author reported on may form an important component of the cryptozoic harpacticoids that were collected in mountain forests microfauna in moist forest litter was first recognized at under subarctic conditions. The species richness in humid the end of the last century (DENDY, 1895: see REID, 1986). leaf litter at higher altitudes was shown by DUMONT et al. -
Mountain Ponds and Lakes Monitoring 2016 Results from Lassen Volcanic National Park, Crater Lake National Park, and Redwood National Park
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Mountain Ponds and Lakes Monitoring 2016 Results from Lassen Volcanic National Park, Crater Lake National Park, and Redwood National Park Natural Resource Data Series NPS/KLMN/NRDS—2019/1208 ON THIS PAGE Unknown Darner Dragonfly perched on ground near Widow Lake, Lassen Volcanic National Park. Photograph by Patrick Graves, KLMN Lakes Crew Lead. ON THE COVER Summit Lake, Lassen Volcanic National Park Photograph by Elliot Hendry, KLMN Lakes Crew Technician. Mountain Ponds and Lakes Monitoring 2016 Results from Lassen Volcanic National Park, Crater Lake National Park, and Redwood National Park Natural Resource Data Series NPS/KLMN/NRDS—2019/1208 Eric C. Dinger National Park Service 1250 Siskiyou Blvd Ashland, Oregon 97520 March 2019 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Data Series is intended for the timely release of basic data sets and data summaries. Care has been taken to assure accuracy of raw data values, but a thorough analysis and interpretation of the data has not been completed. Consequently, the initial analyses of data in this report are provisional and subject to change. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. -
Full Text in Pdf Format
DISEASES OF AQUATIC ORGANISMS Published June 18 Dis, aquat. Org. Horizontal transmission and subsequent development of Amblyospora californica (Microsporida: Amblyosporidae) in the intermediate and definitive hosts James J. Becnel US Department of Agriculture, Agricultural Research Service, Medical and Veterinary Entomology Research Laboratory, PO Box 14565, Gainesville, Florida 32604, USA ABSTRACT: Amblyospora californica (type species) was transmitted horizontally by feeding meiospores from larvae of Culex tarsalis (definitive host) to the copepod Macrocyclops albidus (a new intermediate host) and, conversely, by feeding spores produced in adult copepods to larval mosquitoes. Key features of the developmental sequence resulting from the 2 transmissions were demonstrated with both light and electron microscopy. Development in the copepod started with uninucleate sporoplasms from the ingested meiospores, included merogony by binary division of uninucleate meronts, sporogony by binary (usually) or multiple division and production of uninucleate-lanceolate spores within individual envelopes. Development in the mosquito began with uninucleate sporoplasms from the ingested lanceolate spores, included a first merogony (gametogony), plasmogamy, nuclear assoclation, a second merogony and dlsporous sporulation with the production of Nosema-llke spores in the adult female. This female represents a parental generat~onthat transmits the Infection transovanally (vertically) to male and female progeny. By combining results of this study with published data on development in filial generation mosquitoes, it was possible to outline the complete life cycle. INTRODUCTION lation sequence in infected male progeny ended with spores in groups of 8 (meiospores). Because of sirni- The microsporidiunl currently known as Amblyo- larities between T legeri and the microsporidium from spora californica was first described parasitizing the fat Culex tarsalis, they suggested that T.