Reducing GABAA Α5 Receptor-Mediated Inhibition Rescues Functional and Neuromorphological Deficits in a Mouse Model of Down Synd
The Journal of Neuroscience, February 27, 2013 • 33(9):3953–3966 • 3953 Neurobiology of Disease ␣ Reducing GABAA 5 Receptor-Mediated Inhibition Rescues Functional and Neuromorphological Deficits in a Mouse Model of Down Syndrome Carmen Martínez-Cue´,1 Paula Martínez,1 Noemí Rueda,1 Rebeca Vidal,1,3,4 Susana García,1 Vero´nica Vidal,1 Andrea Corrales,1 Juan A. Montero,2 A´ngel Pazos,1,3,4 Jesu´s Flo´rez,1 Rodolfo Gasser,5 Andrew W. Thomas,5 Michael Honer,5 Fre´de´ric Knoflach,5 Jose Luis Trejo,6 Joseph G. Wettstein,5 and Maria-Clemencia Herna´ndez5 Departments of 1Physiology and Pharmacology and 2Anatomy and Cellular Biology, Faculty of Medicine, University of Cantabria, E-39011 Santander, Spain, 3Institute of Biomedicine and Biotechnology (University of Cantabria–Spanish National Research Council–Cantabria Research, Development and Innovation), E-39011 Santander, Spain, 4Center for Biomedical Research Network on Mental Health, Health Institute Carlos III, E-28029 Madrid, Spain, 5F. Hoffmann-La Roche, Pharma Research and Early Development, Discovery and Translational Area Neuroscience, CH-4070 Basel, Switzerland, and 6Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, Spanish National Research Council, E-28002 Madrid, Spain Down syndrome (DS) is associated with neurological complications, including cognitive deficits that lead to impairment in intellectual functioning. Increased GABA-mediated inhibition has been proposed as a mechanism underlying deficient cognition in the Ts65Dn (TS) mousemodelofDS.WeshowthatchronictreatmentofthesemicewithRO4938581(3-bromo-10-(difluoromethyl)-9H-benzo͓f͔imidazo[1, ␣ 5-a][1,2,4]triazolo[1,5-d][1,4]diazepine), a selective GABAA 5 negative allosteric modulator (NAM), rescued their deficits in spatial learning and memory, hippocampal synaptic plasticity, and adult neurogenesis.
[Show full text]