Increased Activity of GABAA Receptors Contributes to Postanesthetic Memory Deficits

Total Page:16

File Type:pdf, Size:1020Kb

Increased Activity of GABAA Receptors Contributes to Postanesthetic Memory Deficits Increased activity of GABAA receptors contributes to postanesthetic memory deficits by Agnieszka A. Zurek A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Physiology University of Toronto © Copyright by Agnieszka A. Zurek, 2015 Increased activity of GABAA receptors contributes to postanesthetic memory deficits Agnieszka A. Zurek Doctor of Philosophy Department of Physiology University of Toronto 2015 Abstract General anesthetics are widely used to allow patients to tolerate surgery and to sedate patients in intensive care units. Anesthesia causes long-term memory deficits in laboratory animals, suggesting it could contribute to memory loss in patients. However, the mechanisms underlying postanesthetic memory deficits are unknown. Most anesthetics cause neurodepression by allosterically increasing the activity of γ- aminobutyric acid type A (GABAA) receptors. In particular, positive allosteric modulation of α5 subunit-containing GABAA (α5GABAA) receptors contributes to the acute, amnestic effects of the anesthetic etomidate. Once the anesthetic has been eliminated, allosteric modulation of GABAA receptors is rapidly reversed and it is assumed that GABAA receptors do not contribute to memory deficits that persist after anesthesia. However, previous work from our lab suggests that α5GABAA receptors may play a role in postanesthetic memory loss, as treatment with a drug that inhibits these receptors before anesthesia prevents memory deficits. I hypothesized that exposure to anesthetics results in a sustained increase in α5GABAA receptor activity, which causes memory deficits. ii First, my data showed that α5GABAA receptors are required for postanesthetic memory deficits as wild-type, but not Gabra5 null-mutant mice (Gabra5-/-), exhibit impaired memory performance on the object recognition memory task. These deficits are evident for 24 hours after isoflurane anesthesia and persist for up to 1 week after exposure to the injectable anesthetic etomidate. The mechanism underlying these memory deficits is likely a sustained increase in the function of α5GABAA receptors as a single, in vivo exposure to the anesthetic etomidate (8 mg/kg i.p.) or isoflurane (1.3%, 1 h) increases a tonic inhibitory current that is mediated by α5GABAA receptors and increases cell-surface expression of α5GABAA receptors for least 1 week with full recovery by 2 weeks. Memory deficits in wild-type mice are reversed after anesthesia by inhibiting α5GABAA receptor activity with the inverse agonist L-655,708. Collectively, these results refute the widely-held belief that the function of GABAA receptors returns to baseline after the anesthetic agent has been eliminated. Furthermore, the data present a mechanism and a plausible treatment strategy for postanesthetic memory deficits. iii Acknowledgments I would like to thank my supervisor and mentor Dr. Beverley Orser, without you none of this would be possible. Thank you for your guidance, support, unwavering patience, and all the opportunities that allowed me to develop as a scientist and as a person. I admire your adventurous spirit in science and life. I thank my Supervisory Committee Drs. Evelyn Lambe and Paul Frankland for your advice, support and kindness over the years. Thank you also to Drs. Melanie Woodin, Mike Salter and Milton Charlton for your mentorship and counsel on my project. Thank you to lab alumni, Drs. Loren Martin and Robert Bonin, for your friendship and for always sharing your wisdom with me, especially in times of need. I am very grateful for the contributions of the entire Orser lab. Thank you Dr. Dianshi Wang for being the lab sage, the crusader for perfection, and the patient teacher. Thank you Ella Czerwinska for all your jokes, hugs, and zucchinis, you made me feel at home from day one. Thank you Anine (Jieying) Yu for your immense generosity and help on my project. Thank you to all the summer students I’ve had the pleasure to work with over the years; Burç Aydin, Mohammed Haijha, Erica Bridgwater, Zeenia Aga and Eric Salter – you all taught me so much. Also thank you to everyone who has been a part of the lab family, Dr. Paul Whissell, Irene Lecker, William To, Dr. Sinziana Avramescu, Dr. Antonello Penna, Dr. Gang Li, Dr. Stephen Kemp, Dr. Junhui Wang, Sean Haffey, and Fariya Mostafa. You have taught me the power of teamwork and have made the lab feel like a second home. Most importantly, I would like to thank my family. I thank my parents, Beata and Zdzislaw Zurek, for your love, constant encouragement, and interest in my work, especially over the last decade of university. I will be forever grateful. Lastly, thank you to my partner-in-crime, Peter Dziak, for your love, understanding, and always reassuring me that “yes, I can”. iv List of Contributions Agnieszka Zurek produced all of the results with the exception of those listed below. The behavioural data presented in Chapter 4 were collected with the assistance of Ms. Erica Bridgwater, who performed the experiment with sevoflurane. In Chapter 5, the behavioural studies of mice treated with a sedative dose of etomidate were performed with the assistance of Ms. Erica Bridgwater. Studies of cell-surface expression were performed by Ms. Jieying Yu, Dr. Gang Li, and Mr. Tom Chang. Recordings from cultured neurons were performed with the assistance of Dr. Antonello Penna and Dr. Dianshi Wang. The recordings in astrocyte-neuron and microglia-neuron cocultures were performed by Mr. Sean Haffey and Ms. Irene Lecker. The experiments presented in Appendix 1 were performed with the help of Ms. Zeenia Aga. Dr. Dianshi Wang and Dr. Beverley Orser helped with the writing of the articles published in Anesthesia and Analgesia and in The Journal of Clinical Investigation, modified versions of these articles are presented in Chapters 4 and 5. v Table of Contents Acknowledgments.......................................................................................................................... iv Table of Contents ........................................................................................................................... vi List of Tables ................................................................................................................................. xi List of Figures ............................................................................................................................... xii List of Abbreviations .....................................................................................................................xv List of Appendices ....................................................................................................................... xix Chapter 1. Thesis Structure .......................................................................................................1 1.1 General Overview ................................................................................................................1 1.2 Hypothesis and Specific Aims .............................................................................................2 1.2.1 Hypothesis................................................................................................................2 1.2.2 Specific Aims ...........................................................................................................2 1.3 Thesis Structure ...................................................................................................................3 Chapter 2. General Introduction ................................................................................................5 2.1 Postoperative Cognitive Dysfunction ..................................................................................5 2.1.1 Incidence ..................................................................................................................5 2.1.2 Cognitive Domains Affected by POCD ...................................................................6 2.1.3 Effects on patient outcome.......................................................................................7 2.1.4 Risk factors and potential causes of POCD in patients............................................8 2.2 Memory deficits after surgery and anesthesia in animal models .......................................12 2.2.1 Memory deficits after surgery in animal models ...................................................14 2.2.2 Memory deficits after anesthesia in animal models ...............................................18 2.3 Proposed mechanisms of postanesthetic memory deficits in animals ...............................18 2.3.1 Inflammation and activation of apoptotic pathways ..............................................19 vi 2.3.2 Impaired neurogenesis ...........................................................................................21 2.3.3 Alzheimer Disease-related mechanisms ................................................................21 2.3.4 Potential GABAA receptor-dependent mechanisms ..............................................24 2.4 GABA and GABAA receptor-mediated inhibition ............................................................24 2.4.1 GABA Synthesis and release .................................................................................24 2.4.2 GABA transport and metabolism...........................................................................26 2.4.3 GABA receptors.....................................................................................................27
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0020892 A1 Thompson Et Al
    US 20170020892A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0020892 A1 Thompson et al. (43) Pub. Date: Jan. 26, 2017 (54) USE OF NEGATIVE MODULATORS OF Related U.S. Application Data GABA RECEPTORS CONTAINING ALPHAS SUBUNITS AS FAST ACTING (60) Provisional application No. 61/972,446, filed on Mar. ANTDEPRESSANTS 31, 2014. (71) Applicant: University of Maryland, Baltimore, Publication Classification Baltimore, MD (US) (51) Int. Cl. A 6LX 3/557 (2006.01) (72) Inventors: Scott Thompson, Baltimore, MD (US); A6II 3/53 (2006.01) Mark D. Kvarta, Ellicott City, MD A6II 45/06 (2006.01) (US); Adam Van Dyke, Baltimore, MD (52) U.S. Cl. (US) CPC ........... A61 K3I/55.17 (2013.01); A61K 45/06 (2013.01); A61 K3I/53 (2013.01) (73) Assignee: University of Maryland, Baltimore, Baltimore, MD (US) (57) ABSTRACT Embodiments of the disclosure include methods and com (21) Appl. No.: 15/300,984 positions related to treatment of one or more medical conditions with one or more negative modulators of GABA (22) PCT Filed: Mar. 31, 2015 receptors. In specific embodiments, depression and/or Sui cidability is treated or ameliorated or prevented with one or (86) PCT No.: PCT/US2O15/023667 more negative modulators of GABA receptors, such as a S 371 (c)(1), partial inverse agonist of a GABA receptor comprising an (2) Date: Sep. 30, 2016 alpha5 subunit. Patent Application Publication Jan. 26, 2017. Sheet 1 of 12 US 2017/002O892 A1 ×1/ /|\ Patent Application Publication Jan. 26, 2017. Sheet 3 of 12 US 2017/002O892 A1 & Patent Application Publication Jan.
    [Show full text]
  • Sex Differences in a Transgenic Rat Model of Huntington's Disease
    Human Molecular Genetics, 2008, Vol. 17, No. 17 2595–2609 doi:10.1093/hmg/ddn159 Advance Access published on May 23, 2008 Sex differences in a transgenic rat model of Huntington’s disease: decreased 17b-estradiol levels correlate with reduced numbers of DARPP321 neurons in males 1,{ 1,{ 1 1 2 Felix J. Bode , Michael Stephan , Hendrik Suhling , Reinhard Pabst , Rainer H. Straub , Downloaded from https://academic.oup.com/hmg/article-abstract/17/17/2595/632381 by guest on 27 June 2020 Kerstin A. Raber3, Michael Bonin4, Huu Phuc Nguyen4, Olaf Riess4, Andreas Bauer5,6, Charlotte Sjoberg7,A˚ sa Peterse´n7 and Stephan von Ho¨ rsten1,3,Ã 1Institute of Functional and Applied Anatomy, Medical School of Hannover, 30625 Hannover, Germany, 2Department of Internal Medicine I, University Regensburg, 93042 Regensburg, Germany, 3Experimental Therapy, Franz-Penzoldt- Center, Friedrich-Alexander-University Erlangen-Nu¨rnberg, 91054 Erlangen, Germany, 4Department of Medical Genetics, University of Tu¨bingen, 72076 Tu¨bingen, Germany, 5Institute of Neurosciences and Biophysics, Research Centre Juelich, 52425 Juelich, Germany, 6Department of Neurology, Heinrich-Heine University Duesseldorf, 40001 Duesseldorf, Germany and 7Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden Received March 10, 2008; Revised May 8, 2008; Accepted May 21, 2008 Recent clinical studies have highlighted that female sex hormones represent potential neuroprotective mediators against damage caused by acute and chronic brain diseases. This evidence has been confirmed by experimental studies documenting the protective role of female sex hormones both in vitro and in vivo, although these studies did not specifically focus on Huntington’s disease (HD).
    [Show full text]
  • Cognition and Steroidogenesis in the Rhesus Macaque
    Cognition and Steroidogenesis in the Rhesus Macaque Krystina G Sorwell A DISSERTATION Presented to the Department of Behavioral Neuroscience and the Oregon Health & Science University School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2013 School of Medicine Oregon Health & Science University CERTIFICATE OF APPROVAL This is to certify that the PhD dissertation of Krystina Gerette Sorwell has been approved Henryk Urbanski Mentor/Advisor Steven Kohama Member Kathleen Grant Member Cynthia Bethea Member Deb Finn Member 1 For Lily 2 TABLE OF CONTENTS Acknowledgments ......................................................................................................................................................... 4 List of Figures and Tables ............................................................................................................................................. 7 List of Abbreviations ................................................................................................................................................... 10 Abstract........................................................................................................................................................................ 13 Introduction ................................................................................................................................................................. 15 Part A: Central steroidogenesis and cognition ............................................................................................................
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • Α5gabaa Receptor Activity Sets the Threshold for Long-Term Potentiation and Constrains Hippocampus-Dependent Memory
    The Journal of Neuroscience, April 14, 2010 • 30(15):5269–5282 • 5269 Cellular/Molecular ␣ 5GABAA Receptor Activity Sets the Threshold for Long-Term Potentiation and Constrains Hippocampus-Dependent Memory Loren J. Martin,1 Agnieszka A. Zurek,2 John F. MacDonald,2 John C. Roder,3 Michael F. Jackson,2 and Beverley A. Orser1,2,4 1Institute of Medical Science and 2Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, 3Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada, and 4Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada Synaptic plasticity, which is the neuronal substrate for many forms of hippocampus-dependent learning, is attenuated by GABA type A receptor (GABAAR)-mediated inhibition. The prevailing notion is that a synaptic or phasic form of GABAergic inhibition regulates synaptic plasticity; however, little is known about the role of GABAAR subtypes that generate a tonic or persistent inhibitory conductance. ␣ ␣ We studied the regulation of synaptic plasticity by 5 subunit-containing GABAARs ( 5GABAARs), which generate a tonic inhibitory conductance in CA1 pyramidal neurons using electrophysiological recordings of field and whole-cell potentials in hippocampal slices ؊/؊ ␣ from both wild-type and null mutant mice for the 5 subunit of the GABAAR(Gabra5 mice). In addition, the strength of fear- ␣ associated memory was studied. The results showed that 5GABAAR activity raises the threshold for induction of long-term potentiation in a highly specific band of stimulation frequencies (10–20 Hz) through mechanisms that are predominantly independent of inhibitory ␣ synaptic transmission. The deletion or pharmacological inhibition of 5GABAARs caused no change in baseline membrane potential or inputresistancebutincreaseddepolarizationduring10Hzstimulation.Theencodingofhippocampus-dependentmemorywasregulated ␣ by 5GABAARs but only under specific conditions that generate moderate but not robust forms of fear-associated learning.
    [Show full text]
  • Brain Imaging
    Publications · Brochures Brain Imaging A Technologist’s Guide Produced with the kind Support of Editors Fragoso Costa, Pedro (Oldenburg) Santos, Andrea (Lisbon) Vidovič, Borut (Munich) Contributors Arbizu Lostao, Javier Pagani, Marco Barthel, Henryk Payoux, Pierre Boehm, Torsten Pepe, Giovanna Calapaquí-Terán, Adriana Peștean, Claudiu Delgado-Bolton, Roberto Sabri, Osama Garibotto, Valentina Sočan, Aljaž Grmek, Marko Sousa, Eva Hackett, Elizabeth Testanera, Giorgio Hoffmann, Karl Titus Tiepolt, Solveig Law, Ian van de Giessen, Elsmarieke Lucena, Filipa Vaz, Tânia Morbelli, Silvia Werner, Peter Contents Foreword 4 Introduction 5 Andrea Santos, Pedro Fragoso Costa Chapter 1 Anatomy, Physiology and Pathology 6 Elsmarieke van de Giessen, Silvia Morbelli and Pierre Payoux Chapter 2 Tracers for Brain Imaging 12 Aljaz Socan Chapter 3 SPECT and SPECT/CT in Oncological Brain Imaging (*) 26 Elizabeth C. Hackett Chapter 4 Imaging in Oncological Brain Diseases: PET/CT 33 EANM Giorgio Testanera and Giovanna Pepe Chapter 5 Imaging in Neurological and Vascular Brain Diseases (SPECT and SPECT/CT) 54 Filipa Lucena, Eva Sousa and Tânia F. Vaz Chapter 6 Imaging in Neurological and Vascular Brain Diseases (PET/CT) 72 Ian Law, Valentina Garibotto and Marco Pagani Chapter 7 PET/CT in Radiotherapy Planning of Brain Tumours 92 Roberto Delgado-Bolton, Adriana K. Calapaquí-Terán and Javier Arbizu Chapter 8 PET/MRI for Brain Imaging 100 Peter Werner, Torsten Boehm, Solveig Tiepolt, Henryk Barthel, Karl T. Hoffmann and Osama Sabri Chapter 9 Brain Death 110 Marko Grmek Chapter 10 Health Care in Patients with Neurological Disorders 116 Claudiu Peștean Imprint 126 n accordance with the Austrian Eco-Label for printed matters.
    [Show full text]
  • Radiotracers for SPECT Imaging: Current Scenario and Future Prospects
    Radiochim. Acta 100, 95–107 (2012) / DOI 10.1524/ract.2011.1891 © by Oldenbourg Wissenschaftsverlag, München Radiotracers for SPECT imaging: current scenario and future prospects By S. Adak1,∗, R. Bhalla2, K. K. Vijaya Raj1, S. Mandal1, R. Pickett2 andS.K.Luthra2 1 GE Healthcare Medical Diagnostics, John F Welch Technology Center, Bangalore, India 560066 2 GE Healthcare Medical Diagnostics, The Grove Centre, White Lion Road, Amersham, HP7 9LL, UK (Received October 4, 2010; accepted in final form July 18, 2011) Nuclear medicine / 99m-Technetium / 123-Iodine / ton emission computed tomography (SPECT or less com- Oncological imaging / Neurological imaging / monly known as SPET) and positron emission tomogra- Cardiovascular imaging phy (PET). Both techniques use radiolabeled molecules to probe molecular processes that can be visualized, quanti- fied and tracked over time, thus allowing the discrimination Summary. Single photon emission computed tomography of healthy from diseased tissue with a high degree of con- (SPECT) has been the cornerstone of nuclear medicine and today fidence. The imaging agents use target-specific biological it is widely used to detect molecular changes in cardiovascular, processes associated with the disease being assessed both at neurological and oncological diseases. While SPECT has been the cellular and subcellular levels within living organisms. available since the 1980s, advances in instrumentation hardware, The impact of molecular imaging has been on greater under- software and the availability of new radiotracers that are creating a revival in SPECT imaging are reviewed in this paper. standing of integrative biology, earlier detection and charac- The biggest change in the last decade has been the fusion terization of disease, and evaluation of treatment in human of CT with SPECT, which has improved attenuation correction subjects [1–3].
    [Show full text]
  • REVIEW ARTICLE the Genetics of Autism
    REVIEW ARTICLE The Genetics of Autism Rebecca Muhle, BA*; Stephanie V. Trentacoste, BA*; and Isabelle Rapin, MD‡ ABSTRACT. Autism is a complex, behaviorally de- tribution of a few well characterized X-linked disorders, fined, static disorder of the immature brain that is of male-to-male transmission in a number of families rules great concern to the practicing pediatrician because of an out X-linkage as the prevailing mode of inheritance. The astonishing 556% reported increase in pediatric preva- recurrence rate in siblings of affected children is ϳ2% to lence between 1991 and 1997, to a prevalence higher than 8%, much higher than the prevalence rate in the general that of spina bifida, cancer, or Down syndrome. This population but much lower than in single-gene diseases. jump is probably attributable to heightened awareness Twin studies reported 60% concordance for classic au- and changing diagnostic criteria rather than to new en- tism in monozygotic (MZ) twins versus 0 in dizygotic vironmental influences. Autism is not a disease but a (DZ) twins, the higher MZ concordance attesting to ge- syndrome with multiple nongenetic and genetic causes. netic inheritance as the predominant causative agent. By autism (the autistic spectrum disorders [ASDs]), we Reevaluation for a broader autistic phenotype that in- mean the wide spectrum of developmental disorders cluded communication and social disorders increased characterized by impairments in 3 behavioral domains: 1) concordance remarkably from 60% to 92% in MZ twins social interaction; 2) language, communication, and and from 0% to 10% in DZ pairs. This suggests that imaginative play; and 3) range of interests and activities.
    [Show full text]
  • Enhanced Dendritic Inhibition and Impaired NMDAR Activation in a Mouse Model of Down Syndrome
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Neurobiology of Disease Enhanced dendritic inhibition and impaired NMDAR activation in a mouse model of Down syndrome Jan M. Schulz1, Frederic Knoflach2, Maria-Clemencia Hernandez2 and Josef Bischofberger1 1Department of Biomedicine, University of Basel, Pestalozzistr. 20, CH-4056 Basel, Switzerland 2Pharma Research and Early Development, Discovery Neuroscience Department, F. Hoffmann-La Roche Ltd, Basel, Switzerland https://doi.org/10.1523/JNEUROSCI.2723-18.2019 Received: 22 October 2018 Revised: 9 April 2019 Accepted: 10 April 2019 Published: 18 April 2019 Author contributions: J.M.S., M.C.H., and J.B. designed research; J.M.S. and F.K. performed research; J.M.S. analyzed data; J.M.S. and J.B. wrote the first draft of the paper; J.M.S. and J.B. wrote the paper; F.K., M.C.H., and J.B. edited the paper. Conflict of Interest: The authors declare no competing financial interests. We would like to thank Tom Otis for helpful comments on the manuscript. We thank Selma Becherer and Martine Schwager for mouse genotyping, histochemical stainings and technical assistance, Marie-Claire Pflimlin for some electrophysiological recordings and Andrew Thomas for RO4938581 supply. This work was supported by a Roche Postdoctoral Fellowship and by the Swiss National Science Foundation (SNSF, Project 31003A_176321). The authors declare no competing financial interests. Correspondence: Dr. Josef Bischofberger, Department of Biomedicine, University of Basel, Pestalozzistr. 20, CH-4046 Basel, Switzerland, Phone: +41-61-2672729, E-mail: [email protected] Cite as: J.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • NIH Public Access Author Manuscript Epigenetics
    NIH Public Access Author Manuscript Epigenetics. Author manuscript; available in PMC 2009 June 23. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Epigenetics. 2007 ; 2(2): 126±134. Epigenetics and Neural Developmental Disorders: Washington DC, September 18 and 19, 2006 Xinyu Zhao1,*, ChangHui Pak2, Richard D. Smrt1, and Peng Jin2,* 1 Department of Neuroscience; University of New Mexico School of Medicine; Albuquerque, New Mexico USA 2 Department of Human Genetics; Emory University School of Medicine; Atlanta, Georgia USA Abstract Neural developmental disorders, such as autism, Rett Syndrome, Fragile X syndrome, and Angelman syndrome manifest during early postnatal neural development. Although the genes responsible for some of these disorders have been identified, how the mutations of these genes affect neural development is currently unclear. Emerging evidence suggest that these disorders share common underlying defects in neuronal morphology, synaptic connectivity and brain plasticity. In particular, alterations in dendritic branching and spine morphology play a central role in the pathophysiology of most mental retardation disorders, suggesting that common pathways regulating neuronal function may be affected. Epigenetic modulations, mediated by DNA methylation, RNA-associated silencing, and histone modification, can serve as an intermediate process that imprints dynamic environmental experiences on the “fixed” genome, resulting in stable alterations in phenotypes. Disturbance in epigenetic regulations can lead to inappropriate expression or silencing of genes, causing an array of multi-system disorders and neoplasias. Rett syndrome, the most common form of mental retardation in young girls, is due to l mutation of MECP2, encoding a methylated DNA binding protein that translates DNA methylation into gene repression.
    [Show full text]
  • Physiological Roles of Endogenous Neurosteroids at Α2 Subunit-Containing GABAA Receptors
    Physiological roles of endogenous neurosteroids at α2 subunit-containing GABAA receptors Elizabeth Jane Durkin A thesis submitted to University College London for the degree of Doctor of Philosophy October 2012 Department of Neuroscience, Physiology and Pharmacology University College London Gower Street London WC1E 6BT Declaration 2 Declaration I, Elizabeth Durkin, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis Abstract 3 Abstract Neurosteroids are important endogenous modulators of the major inhibitory neurotransmitter receptor in the brain, the γ-amino-butyric acid type A (GABAA) receptor. They are involved in numerous physiological processes, and are linked to several central nervous system disorders, including depression and anxiety. The neurosteroids allopregnanolone and allo-tetrahydro-deoxy-corticosterone (THDOC) have many effects in animal models (anxiolysis, analgesia, sedation, anticonvulsion, antidepressive), suggesting they could be useful therapeutic agents, for example in anxiety, stress and mood disorders. Neurosteroids potentiate GABA-activated currents by binding to a conserved site within α subunits. Potentiation can be eliminated by hydrophobic substitution of the α1Q241 residue (or equivalent in other α isoforms). Previous studies suggest that α2 subunits are key components in neural circuits affecting anxiety and depression, and that neurosteroids are endogenous anxiolytics. It is therefore possible that this anxiolysis occurs via potentiation at α2 subunit-containing receptors. To examine this hypothesis, α2Q241M knock-in mice were generated, and used to define the roles of α2 subunits in mediating effects of endogenous and injected neurosteroids. Biochemical and imaging analyses indicated that relative expression levels and localization of GABAA receptor α1-α5 subunits were unaffected, suggesting the knock- in had not caused any compensatory effects.
    [Show full text]