The Effect of Chronic Alcohol Abuse on the Benzodiazepine Receptor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cognition and Steroidogenesis in the Rhesus Macaque
Cognition and Steroidogenesis in the Rhesus Macaque Krystina G Sorwell A DISSERTATION Presented to the Department of Behavioral Neuroscience and the Oregon Health & Science University School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2013 School of Medicine Oregon Health & Science University CERTIFICATE OF APPROVAL This is to certify that the PhD dissertation of Krystina Gerette Sorwell has been approved Henryk Urbanski Mentor/Advisor Steven Kohama Member Kathleen Grant Member Cynthia Bethea Member Deb Finn Member 1 For Lily 2 TABLE OF CONTENTS Acknowledgments ......................................................................................................................................................... 4 List of Figures and Tables ............................................................................................................................................. 7 List of Abbreviations ................................................................................................................................................... 10 Abstract........................................................................................................................................................................ 13 Introduction ................................................................................................................................................................. 15 Part A: Central steroidogenesis and cognition ............................................................................................................ -
The Human Carotid Body Expression of Oxygen Sensing and Signaling Genes of Relevance for Anesthesia
PERIOPERATIVE MEDICINE Anesthesiology 2010; 113:1270–9 Copyright © 2010, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins The Human Carotid Body Expression of Oxygen Sensing and Signaling Genes of Relevance for Anesthesia Malin Jonsson Fagerlund, M.D., Ph.D.,* Jessica Kåhlin, M.D.,† Anette Ebberyd, B.M.A.,‡ Gunnar Schulte, Ph.D.,§ Souren Mkrtchian, M.D., Ph.D.,ʈ Lars I. Eriksson, M.D., Ph.D., F.R.C.A.# Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/113/6/1270/252613/0000542-201012000-00011.pdf by guest on 28 September 2021 ABSTRACT with DNA microarrays, real-time polymerase chain reaction, Background: Hypoxia is a common cause of adverse events and immunohistochemistry. in the postoperative period, where respiratory depression due Results: We found gene expression of the oxygen-sensing ϩ to residual effects of drugs used in anesthesia is an important pathway, heme oxygenase 2, and the K channels TASK ϩ underlying factor. General anesthetics and neuromuscular (TWIK-related acid sensitive K channel)-1 and BK (large- blocking agents reduce the human ventilatory response to conductance potassium channel). In addition, we show the hypoxia. Although the carotid body (CB) is the major oxygen expression of critical receptor subunits such as ␥-aminobu- ␣  ␥ sensor in humans, critical oxygen sensing and signaling path- tyric acid A ( 2, 3, and 2), nicotinic acetylcholine recep- ␣ ␣  ways have been investigated only in animals so far. Thus, the tors ( 3, 7, and 2), purinoceptors (A2A and P2X2), and aim of this study was to characterize the expression of key the dopamine D2 receptor. genes and localization of their products involved in the hu- Conclusions: In unique samples of the human CB, we here man oxygen sensing and signaling pathways with a focus on demonstrate presence of critical proteins in the oxygen-sens- receptor systems and ion channels of relevance in anesthesia. -
Structural Basis for Potentiation by Alcohols and Anaesthetics in a Ligand-Gated Ion Channel
ARTICLE Received 10 Jul 2012 | Accepted 28 Feb 2013 | Published 16 Apr 2013 DOI: 10.1038/ncomms2682 Structural basis for potentiation by alcohols and anaesthetics in a ligand-gated ion channel Ludovic Sauguet1,2,3,4,*, Rebecca J. Howard5,w,*, Laurie Malherbe1,2,3,4,UiS.Lee5, Pierre-Jean Corringer3,4, R. Adron Harris5 & Marc Delarue1,2 Ethanol alters nerve signalling by interacting with proteins in the central nervous system, particularly pentameric ligand-gated ion channels. A recent series of mutagenesis experi- ments on Gloeobacter violaceus ligand-gated ion channel, a prokaryotic member of this family, identified a single-site variant that is potentiated by pharmacologically relevant concentra- tions of ethanol. Here we determine crystal structures of the ethanol-sensitized variant in the absence and presence of ethanol and related modulators, which bind in a transmembrane cavity between channel subunits and may stabilize the open form of the channel. Structural and mutagenesis studies defined overlapping mechanisms of potentiation by alcohols and anaesthetics via the inter-subunit cavity. Furthermore, homology modelling show this cavity to be conserved in human ethanol-sensitive glycine and GABA(A) receptors, and to involve residues previously shown to influence alcohol and anaesthetic action on these proteins. These results suggest a common structural basis for ethanol potentiation of an important class of targets for neurological actions of ethanol. 1 Unite´ de Dynamique Structurale des Macromole´cules, Institut Pasteur, F-75015 Paris, France. 2 UMR 3258, Centre National de la Recherche Scientifique, F-75015 Paris, France. 3 Groupe Re´cepteurs-Canaux, Institut Pasteur, F-75015 Paris, France. 4 Unite´ de Recherche Associe´e 2182, Centre National de la Recherche Scientifique, F-75015 Paris, France. -
GABA Receptors
D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43. -
Dynamic Regulation of the GABAA Receptor Function by Redox Mechanisms S
Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2016/07/20/mol.116.105205.DC1 1521-0111/90/3/326–333$25.00 http://dx.doi.org/10.1124/mol.116.105205 MOLECULAR PHARMACOLOGY Mol Pharmacol 90:326–333, September 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics MINIREVIEW—A LATIN AMERICAN PERSPECTIVE ON ION CHANNELS Dynamic Regulation of the GABAA Receptor Function by Redox Mechanisms s Daniel J. Calvo and Andrea N. Beltrán González Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Downloaded from ¨Dr. Héctor N. Torres¨ (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina (D.J.C., A.N.B.G.) Received May 15, 2016; accepted July 14, 2016 ABSTRACT molpharm.aspetjournals.org Oxidizing and reducing agents, which are currently involved normally present in neurons and glia or are endogenously in cell metabolism and signaling pathways, can regulate fast generated in these cells under physiologic states or during inhibitory neurotransmission mediated by GABA receptors in the oxidative stress (e.g., hydrogen peroxide, superoxide and hy- nervous system. A number of in vitro studies have shown that droxyl radicals, nitric oxide, ascorbic acid, and glutathione), diverse redox compounds, including redox metabolites and induce potentiating or inhibiting actions on different native and reactive oxygen and nitrogen species, modulate phasic and recombinant GABAA receptor subtypes. Based on these results, it tonic responses mediated by neuronal GABAA receptors through is thought that redox signaling might represent a homeostatic both presynaptic and postsynaptic mechanisms. -
Neonatal Clonazepam Administration Induced Long-Lasting Changes in GABAA and GABAB Receptors
International Journal of Molecular Sciences Article Neonatal Clonazepam Administration Induced Long-Lasting Changes in GABAA and GABAB Receptors Hana Kubová 1,* , Zde ˇnkaBendová 2,3 , Simona Moravcová 2,3 , Dominika Paˇcesová 2,3, Luisa Rocha 4 and Pavel Mareš 1 1 Institute of Physiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic; [email protected] 2 Faculty of Science, Charles University, 12800 Prague, Czech Republic; [email protected] (Z.B.); [email protected] (S.M.); [email protected] (D.P.) 3 National Institute of Mental Health, 25067 Klecany, Czech Republic 4 Pharmacobiology Department, Center of Research and Advanced Studies, Mexico City 14330, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +420-2-4106-2565 Received: 31 March 2020; Accepted: 28 April 2020; Published: 30 April 2020 Abstract: Benzodiazepines (BZDs) are widely used in patients of all ages. Unlike adults, neonatal animals treated with BZDs exhibit a variety of behavioral deficits later in life; however, the mechanisms underlying these deficits are poorly understood. This study aims to examine whether administration of clonazepam (CZP; 1 mg/kg/day) in 7–11-day-old rats affects Gama aminobutyric acid (GABA)ergic receptors in both the short and long terms. Using RT-PCR and quantitative autoradiography, we examined the expression of the selected GABAA receptor subunits (α1, α2, α4, γ2, and δ) and the GABAB B2 subunit, and GABAA, benzodiazepine, and GABAB receptor binding 48 h, 1 week, and 2 months after treatment discontinuation. Within one week after CZP cessation, the expression of the α2 subunit was upregulated, whereas that of the δ subunit was downregulated in both the hippocampus and cortex. -
The Role of GABRA2 in Risk for Conduct Disorder and Alcohol and Drug Dependence Across Developmental Stages
Behavior Genetics, Vol. 36, No. 4, July 2006 (Ó 2006) DOI: 10.1007/s10519-005-9041-8 The Role of GABRA2 in Risk for Conduct Disorder and Alcohol and Drug Dependence across Developmental Stages Danielle M. Dick,1,9 Laura Bierut,1 Anthony Hinrichs,1 Louis Fox,1 Kathleen K. Bucholz,1 John Kramer,2 Samuel Kuperman,2 Victor Hesselbrock,3 Marc Schuckit,4 Laura Almasy,5 Jay Tischfield,6 Bernice Porjesz,7 Henri Begleiter,7 John Nurnberger Jr.,8 Xiaoling Xuei,8 Howard J. Edenberg,8 and Tatiana Foroud8 Received Apr. 28 2005—Final Dec. 22 2005 We use findings from the behavior genetics literature about how genetic factors (latently) influence alcohol dependence and related disorders to develop and test hypotheses about the risk associated with a specific gene, GABRA2, across different developmental stages. This gene has previously been associated with adult alcohol dependence in the Collaborative Study of the Genetics of Alcoholism (COGA) sample [Edenberg, H. J., Dick, D. M., Xuei, X., Tian, H., Almasy, L., Bauer, L. O., Crowe, R., Goate, A., Hesselbrock, V., Jones, K. A., Kwon, J., Li, T. K., Nurnberger Jr., J. I., OÕConnor, S. J., Reich, T., Rice, J., Schuckit, M., Porjesz, B., Foroud, T., and Begleiter, H. (2004). Am. J. Hum. Genet. 74:705–714] and other studies [Covault, J., Gelernter, J., Hesselbrock, V., Nellissery, M., and Kranzler, H. R. (2004). Am. J. Med. Genet. B Neuropsychiatr. Genet. 129B:104–109; Lappalainen, J., Krupitsky, E., Remizov, M., Pchelina, S., Taraskina, A., Zvartau, E., Somberg, L. K., Covault, J., Kranzler, H. R., Krystal, J., and Gelernter, J. -
Brain Imaging
Publications · Brochures Brain Imaging A Technologist’s Guide Produced with the kind Support of Editors Fragoso Costa, Pedro (Oldenburg) Santos, Andrea (Lisbon) Vidovič, Borut (Munich) Contributors Arbizu Lostao, Javier Pagani, Marco Barthel, Henryk Payoux, Pierre Boehm, Torsten Pepe, Giovanna Calapaquí-Terán, Adriana Peștean, Claudiu Delgado-Bolton, Roberto Sabri, Osama Garibotto, Valentina Sočan, Aljaž Grmek, Marko Sousa, Eva Hackett, Elizabeth Testanera, Giorgio Hoffmann, Karl Titus Tiepolt, Solveig Law, Ian van de Giessen, Elsmarieke Lucena, Filipa Vaz, Tânia Morbelli, Silvia Werner, Peter Contents Foreword 4 Introduction 5 Andrea Santos, Pedro Fragoso Costa Chapter 1 Anatomy, Physiology and Pathology 6 Elsmarieke van de Giessen, Silvia Morbelli and Pierre Payoux Chapter 2 Tracers for Brain Imaging 12 Aljaz Socan Chapter 3 SPECT and SPECT/CT in Oncological Brain Imaging (*) 26 Elizabeth C. Hackett Chapter 4 Imaging in Oncological Brain Diseases: PET/CT 33 EANM Giorgio Testanera and Giovanna Pepe Chapter 5 Imaging in Neurological and Vascular Brain Diseases (SPECT and SPECT/CT) 54 Filipa Lucena, Eva Sousa and Tânia F. Vaz Chapter 6 Imaging in Neurological and Vascular Brain Diseases (PET/CT) 72 Ian Law, Valentina Garibotto and Marco Pagani Chapter 7 PET/CT in Radiotherapy Planning of Brain Tumours 92 Roberto Delgado-Bolton, Adriana K. Calapaquí-Terán and Javier Arbizu Chapter 8 PET/MRI for Brain Imaging 100 Peter Werner, Torsten Boehm, Solveig Tiepolt, Henryk Barthel, Karl T. Hoffmann and Osama Sabri Chapter 9 Brain Death 110 Marko Grmek Chapter 10 Health Care in Patients with Neurological Disorders 116 Claudiu Peștean Imprint 126 n accordance with the Austrian Eco-Label for printed matters. -
Radiotracers for SPECT Imaging: Current Scenario and Future Prospects
Radiochim. Acta 100, 95–107 (2012) / DOI 10.1524/ract.2011.1891 © by Oldenbourg Wissenschaftsverlag, München Radiotracers for SPECT imaging: current scenario and future prospects By S. Adak1,∗, R. Bhalla2, K. K. Vijaya Raj1, S. Mandal1, R. Pickett2 andS.K.Luthra2 1 GE Healthcare Medical Diagnostics, John F Welch Technology Center, Bangalore, India 560066 2 GE Healthcare Medical Diagnostics, The Grove Centre, White Lion Road, Amersham, HP7 9LL, UK (Received October 4, 2010; accepted in final form July 18, 2011) Nuclear medicine / 99m-Technetium / 123-Iodine / ton emission computed tomography (SPECT or less com- Oncological imaging / Neurological imaging / monly known as SPET) and positron emission tomogra- Cardiovascular imaging phy (PET). Both techniques use radiolabeled molecules to probe molecular processes that can be visualized, quanti- fied and tracked over time, thus allowing the discrimination Summary. Single photon emission computed tomography of healthy from diseased tissue with a high degree of con- (SPECT) has been the cornerstone of nuclear medicine and today fidence. The imaging agents use target-specific biological it is widely used to detect molecular changes in cardiovascular, processes associated with the disease being assessed both at neurological and oncological diseases. While SPECT has been the cellular and subcellular levels within living organisms. available since the 1980s, advances in instrumentation hardware, The impact of molecular imaging has been on greater under- software and the availability of new radiotracers that are creating a revival in SPECT imaging are reviewed in this paper. standing of integrative biology, earlier detection and charac- The biggest change in the last decade has been the fusion terization of disease, and evaluation of treatment in human of CT with SPECT, which has improved attenuation correction subjects [1–3]. -
A Human Stem Cell-Derived Test System for Agents Modifying Neuronal N
Archives of Toxicology (2021) 95:1703–1722 https://doi.org/10.1007/s00204-021-03024-0 IN VITRO SYSTEMS A human stem cell‑derived test system for agents modifying neuronal 2+ N‑methyl‑D‑aspartate‑type glutamate receptor Ca ‑signalling Stefanie Klima1,2 · Markus Brüll1 · Anna‑Sophie Spreng1,3 · Ilinca Suciu1,3 · Tjalda Falt1 · Jens C. Schwamborn4 · Tanja Waldmann1 · Christiaan Karreman1 · Marcel Leist1,5 Received: 28 October 2020 / Accepted: 4 March 2021 / Published online: 13 March 2021 © The Author(s) 2021 Abstract Methods to assess neuronal receptor functions are needed in toxicology and for drug development. Human-based test systems that allow studies on glutamate signalling are still scarce. To address this issue, we developed and characterized pluripotent stem cell (PSC)-based neural cultures capable of forming a functional network. Starting from a stably proliferating neu- roepithelial stem cell (NESC) population, we generate “mixed cortical cultures” (MCC) within 24 days. Characterization by immunocytochemistry, gene expression profling and functional tests (multi-electrode arrays) showed that MCC contain various functional neurotransmitter receptors, and in particular, the N-methyl-D-aspartate subtype of ionotropic glutamate receptors (NMDA-R). As this important receptor is found neither on conventional neural cell lines nor on most stem cell- derived neurons, we focused here on the characterization of rapid glutamate-triggered Ca2+ signalling. Changes of the intra- 2+ cellular free calcium ion concentration ([Ca ]i) were measured by fuorescent imaging as the main endpoint, and a method to evaluate and quantify signals in hundreds of cells at the same time was developed. We observed responses to glutamate in the low µM range. -
Gabaergic Signaling Linked to Autophagy Enhances Host Protection Against Intracellular Bacterial Infections
ARTICLE DOI: 10.1038/s41467-018-06487-5 OPEN GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infections Jin Kyung Kim1,2,3, Yi Sak Kim1,2,3, Hye-Mi Lee1,3, Hyo Sun Jin4, Chiranjivi Neupane 2,5, Sup Kim1,2,3, Sang-Hee Lee6, Jung-Joon Min7, Miwa Sasai8, Jae-Ho Jeong 9,10, Seong-Kyu Choe11, Jin-Man Kim12, Masahiro Yamamoto8, Hyon E. Choy 9,10, Jin Bong Park 2,5 & Eun-Kyeong Jo1,2,3 1234567890():,; Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the brain; however, the roles of GABA in antimicrobial host defenses are largely unknown. Here we demonstrate that GABAergic activation enhances antimicrobial responses against intracel- lular bacterial infection. Intracellular bacterial infection decreases GABA levels in vitro in macrophages and in vivo in sera. Treatment of macrophages with GABA or GABAergic drugs promotes autophagy activation, enhances phagosomal maturation and antimicrobial responses against mycobacterial infection. In macrophages, the GABAergic defense is mediated via macrophage type A GABA receptor (GABAAR), intracellular calcium release, and the GABA type A receptor-associated protein-like 1 (GABARAPL1; an Atg8 homolog). Finally, GABAergic inhibition increases bacterial loads in mice and zebrafish in vivo, sug- gesting that the GABAergic defense plays an essential function in metazoan host defenses. Our study identified a previously unappreciated role for GABAergic signaling in linking antibacterial autophagy to enhance host innate defense against intracellular bacterial infection. 1 Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea. 2 Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea. -
Neurochemical Mechanisms Underlying Alcohol Withdrawal
Neurochemical Mechanisms Underlying Alcohol Withdrawal John Littleton, MD, Ph.D. More than 50 years ago, C.K. Himmelsbach first suggested that physiological mechanisms responsible for maintaining a stable state of equilibrium (i.e., homeostasis) in the patient’s body and brain are responsible for drug tolerance and the drug withdrawal syndrome. In the latter case, he suggested that the absence of the drug leaves these same homeostatic mechanisms exposed, leading to the withdrawal syndrome. This theory provides the framework for a majority of neurochemical investigations of the adaptations that occur in alcohol dependence and how these adaptations may precipitate withdrawal. This article examines the Himmelsbach theory and its application to alcohol withdrawal; reviews the animal models being used to study withdrawal; and looks at the postulated neuroadaptations in three systems—the gamma-aminobutyric acid (GABA) neurotransmitter system, the glutamate neurotransmitter system, and the calcium channel system that regulates various processes inside neurons. The role of these neuroadaptations in withdrawal and the clinical implications of this research also are considered. KEY WORDS: AOD withdrawal syndrome; neurochemistry; biochemical mechanism; AOD tolerance; brain; homeostasis; biological AOD dependence; biological AOD use; disorder theory; biological adaptation; animal model; GABA receptors; glutamate receptors; calcium channel; proteins; detoxification; brain damage; disease severity; AODD (alcohol and other drug dependence) relapse; literature review uring the past 25 years research- science models used to study with- of the reasons why advances in basic ers have made rapid progress drawal neurochemistry as well as a research have not yet been translated Din understanding the chemi- reluctance on the part of clinicians to into therapeutic gains and suggests cal activities that occur in the nervous consider new treatments.