Paving the Way for Therapy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dynamics of Plasma Biomarkers in Down Syndrome: the Relative Levels of Aβ42 Decrease with Age, Whereas NT1 Tau and Nfl Increase
Dynamics of plasma biomarkers in Down syndrome: the relative levels of Aβ42 decrease with age, whereas NT1 tau and NfL increase David Mengel University of Tuebingen Wen Liu Brigham and Women's Hospital Robert J. Glynn Brigham and Women's Hospital Dennis J. Selkoe Brigham and Women's Hospital Andre Strydom King's College London Florence Lai Massachusetts General Hospital H. Diana Rosas Massachusetts General Hospital Amy Torres Massachusetts General Hospital Vasiliki Patsiogiannis Massachusetts General Hospital Brian Skotko Massachusetts General Hospital Dominic Walsh ( [email protected] ) Brigham and Women's Hospital and Harvard Medical School Research Keywords: Alzheimer’s disease, amyloid, Down syndrome, dementia, neurolament light, Simoa Posted Date: January 29th, 2020 DOI: https://doi.org/10.21203/rs.2.18106/v2 Page 1/23 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Alzheimer's Research and Therapy on March 19th, 2020. See the published version at https://doi.org/10.1186/s13195-020-00593-7. Page 2/23 Abstract Background Down syndrome (DS) is the most common genetic cause of Alzheimer’s Disease (AD), but diagnosis of AD in DS is challenging due to the intellectual disability which accompanies DS. When disease-modifying agents for AD are approved, reliable biomarkers will be required to identify when and how long people with DS should undergo treatment. Three cardinal neuropathological features characterize AD, and AD in DS – Aβ amyloid plaques, tau neurobrillary tangles, and neuronal loss. Here, we quantied plasma biomarkers of all 3 neuropathological features in a large cohort of people with DS aged from 3 months to 68 years. -
42711 IPEG Programmaboekje
19 th Biennial Conference 19th Biennial Conference October 26th – 30th 2016 October 26 Nijmegen, the Netherlands th – 30 th 2016 Nijmegen, the Netherlands 2016 Nijmegen, 42711 IPEG programmaboekje omslag.indd 1 06-10-16 17:52 The “International Pharmaco-EEG Society, Association for Electrophysiological Brain Research in Preclinical and Clinical Pharmacology and Related Fields” (IPEG) is a non-profit organization, established in 1980 and composed of scientists and researchers actively involved in electrophysiological brain research in preclinical and clinical pharmacology, neurotoxicology and related areas of interest. my.thesis nl for the design of your Thesis & to show your Thesis 42711 IPEG programmaboekje omslag.indd 2 06-10-16 17:52 IPEG 2016 in Nijmegen | 1 Welcome to Nijmegen, dear attendants of the 19th IPEG meeting. Nijmegen, a 2000 year old city; Nijmegen, a Roman and a medieval city; Nijmegen, the home town of the first catholic university funded by the Faithfull to improve education of a suppressed part of the Netherlands; Nijmegen, the city that heavily suffered in WWII; Nijmegen, the home town of the Donders Institute. Nijmegen, as we hope and trust, your home town for the upcoming IPEG meeting. As you all know, electrophysiological brain research has a long tradition going back as far as 1875 when the first report on the animal electroencephalogram (EEG) was published by Caton. The often forgotten Polish physiologist Adolf Beck was also a EEG pioneer many years before Hans Berger’s initial reports. Beck recorded electrical potentials in several brain areas evoked by peripheral sensory stimuli. Using this technique, Beck localised various centres in the brain of several animal species and described desynchronization in electrical brain potentials. -
19Th Biennial IPEG Meeting Nijmegen, the Netherlands
Neuropsychiatric Electrophysiology 2016, 2(Suppl 1):8 DOI 10.1186/s40810-016-0021-4 MEETINGABSTRACTS Open Access 19th biennial IPEG Meeting Nijmegen, The Netherlands. 26-30 October 2016 Published: 29 November 2016 Training course measures. This will be illustrated by means of pertinent examples. These include elucidating the mechanisms of stimulant action re- A1 mediating deficient impulse control and the role of the cannabinoid Thalamocortical sleep oscillations system in human working memory, as well as drug effects on Igor Timofeev1,2 sensory gating and specific aspects of visual-spatial attention. Other 1Department of Psychiatry and Neuroscience, Université Laval, Québec, examples concern the added sensitivity of EEG and ERP measures, Canada; 2Centre de recherche de l’Institut universitaire en santé mentale relative to that of performance measures, in detecting effects of alco- de Québec (CRIUSMQ), Université Laval, Québec, Canada hol, and more generally in monitoring and predicting vigilance and Neuropsychiatric Electrophysiology 2016, 2(Suppl 1):A1 the ability to detect external signals in the immediate future. Rela- tions between brain signals and cognitive competences are revealed In waking and sleeping states, thalamocortical system generates a by either comparing different individuals, or moment-to-moment variety of oscillations ranging from 0.1 Hz to hundreds of Hz. Most of fluctuations within individuals, or differences in state (e.g., drug- them are present during NREM sleep, but slower activities prevail in induced) within individuals. this state of vigilance. Thalamocortical network is organized in a loop in which thalamocortical cells excite reticular thalamic and neocor- tical cells, reticular thalamic cells inhibit thalamocortical cells and A3 corticothalamic cells excite thalamocortical and reticular thalamic EEG and ERP as key techniques for functional brain alterations cells. -
Modelling Down Syndrome
UPDATES GENetICS AND COGNITIVE NeuROSCIENCE Modelling Down syndrome Frank Buckley Animal models are extensively used in genetics, neuroscience and biomedical research. Recent studies illustrate the usefulness and the challenges of research utilising genetically engineered mice to explore the developmental biology of Down syndrome. These studies highlight many of the issues at the centre of what we understand about Down syndrome, and may one day point to useful ways to improve quality of life for people living with Down syndrome. All people diagnosed with Down syn- drome have an extra copy of at least part of chromosome 21 in at least some of their cells. Most have a complete additional copy of chromosome 21 in every cell (BOX 1). These extra copies of genes, present from the point of conception, begin a complex cascade of consequences that depend (among other things) on the addi- tional genes from chromosome 21, other genes on other chromosomes, anatomical location, developmental progress and the environment. The precise details of how these processes work and interact are not clearly understood. Such questions lie at the heart of modern genetics and cogni- tive neuroscience research. Complex systems The organism of choice for much of modern biomedical research is The molecular biology of just a single cell the mouse. Several genetically engineered strains have been made to is complicated (FIGURE 1) and modelling complex systems is difficult[1,2]. Describing study the biology of Down syndrome. how disruptions in gene ‘doses’ at the cel- lular level in people with Down syndrome Box 1 | The genetics of Down syndrome contribute to (for example) particular dif- ficulties in verbal short-term memory[3] or Approximately 95% of people with Down syndrome have an additional copy of comparatively slower progress in language a whole chromosome 21 in every cell [4] development than reading development (trisomy 21). -
Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products. -
Evaluation of Antioxidant Activity in the Erythrocytes in Patients with Down Syndrome
PRACA ORYGINALNA/ORIGINAL ARTICLE Evaluation of antioxidant activity in the erythrocytes in patients with Down syndrome Ocena aktywności antyoksydacyjnej w erytocytach u pacjentów z zespołem Downa Magdalena Cholewa, Joanna Śmigielska-Kuzia, Krzysztof Sendrowski, Beata Olchowik, Anna Jakubiuk-Tomaszuk, Marta Nędzi Klinika Neurologii i Rehabilitacji Dziecięcej Uniwersytetu Medycznego w Białymstoku, STRESZCZENIE ABSTRACT Celem pracy byla ocena aktywności enzymów antyoksyda- The aim of this study was to evaluate the activity of antioxi- cyjnch: dysmutazy ponadtlenkowej (SOD), peroksydazy glu- dant enzymes: superoxide dismutase (SOD), glutathione per- tationowej (GSH-Px), reduktazy glutationowej (GSSG-R) oraz oxidase (GSH-Px), glutathione reductase (GSSG-R) and serum stężenia dialdehydu malonowego (MDA) w erytrocytach osób malondialdehyde (MDA) levels in the erythrocytes in patients z zespołem Downa (ZD). Materiał i metody. Badaniem objęto with Down syndrome (DS). Materials and methods. The study grupę 66 pacjentów (24 dzieci i 42 dorosłych )z trisomią 21 pary included 66 patients (24 children and 42 adults) with Trisomy chromosomów. Grupę kontrolną stanowiło 59 osób zdrowych 21. The control group consisted of 59 healthy individuals (24 (24 dzieci i 35 dorosłych). Aktywność SOD, GSH-Px, GSSG-R children and 35 adults). The activity of SOD, GSH-Px, GSSG-R oraz stężenie MDA w erytrocytach oznaczono metodami spek- and MDA levels in erythrocytes were determined spectro- trofotometrycznymi. Wyniki. Wykazano wyższą aktywność photometrically. Results. We found a greater activity, which enzymów antyoksydacyjnych: SOD, GSH-Px, GSSG-R u osób decreased with age, of antioxidant enzymes: SOD, GSH-Px, z ZD w porównaniu do grupy kontrolnej, która malała wraz GSSG-R in patients with DS compared with the control group. -
Enhanced Dendritic Inhibition and Impaired NMDAR Activation in a Mouse Model of Down Syndrome
This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Neurobiology of Disease Enhanced dendritic inhibition and impaired NMDAR activation in a mouse model of Down syndrome Jan M. Schulz1, Frederic Knoflach2, Maria-Clemencia Hernandez2 and Josef Bischofberger1 1Department of Biomedicine, University of Basel, Pestalozzistr. 20, CH-4056 Basel, Switzerland 2Pharma Research and Early Development, Discovery Neuroscience Department, F. Hoffmann-La Roche Ltd, Basel, Switzerland https://doi.org/10.1523/JNEUROSCI.2723-18.2019 Received: 22 October 2018 Revised: 9 April 2019 Accepted: 10 April 2019 Published: 18 April 2019 Author contributions: J.M.S., M.C.H., and J.B. designed research; J.M.S. and F.K. performed research; J.M.S. analyzed data; J.M.S. and J.B. wrote the first draft of the paper; J.M.S. and J.B. wrote the paper; F.K., M.C.H., and J.B. edited the paper. Conflict of Interest: The authors declare no competing financial interests. We would like to thank Tom Otis for helpful comments on the manuscript. We thank Selma Becherer and Martine Schwager for mouse genotyping, histochemical stainings and technical assistance, Marie-Claire Pflimlin for some electrophysiological recordings and Andrew Thomas for RO4938581 supply. This work was supported by a Roche Postdoctoral Fellowship and by the Swiss National Science Foundation (SNSF, Project 31003A_176321). The authors declare no competing financial interests. Correspondence: Dr. Josef Bischofberger, Department of Biomedicine, University of Basel, Pestalozzistr. 20, CH-4046 Basel, Switzerland, Phone: +41-61-2672729, E-mail: [email protected] Cite as: J. -
Strengthening Families Together 3Rd Edition Strengthening Families Together 3Rd Edition
Strengthening Families Together 3rd Edition Strengthening Families Together 3rd Edition Helping Canadians Live with Mental Illness The Schizophrenia Society of Canada is interested in hearing from you. If you find this resource helpful, or if you have any suggestions or questions, please let us know. E-mail messages can be sent to [email protected], or phone 905.415.2007. Production of the original materials for Strengthening Families Together was made possible by an educational grant from AstraZeneca Canada Inc. The Early Intervention adaptation was made possible by a grant from the Crabtree Foundation and Eli Lilly Canada. The views expressed herein do not necessarily reflect those of AstraZeneca Canada Inc., the Crabtree Foundation or Eli Lilly Canada. Copyright © 2008 Schizophrenia Society of Canada Revised and updated 2008 All rights reserved. The use of any part of this publication reproduced, transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, or stored in a retrieval system, without prior written consent of the publisher, is an infringement of the copyright law. Editing: Edna Barker Design: Hansen Design 1 Strengthening Families Together: 3rd Edition Helping Canadians Live with Mental Illness | handout Acknowledgements Production of the original Strengthening Families Together program (SFT) was made possible by a series of grants from AstraZeneca Canada Inc. The hard work of a number of people at the British Columbia Schizophrenia Society, including Ms. Nicole Chovil, Director of Education, and Gary Glacken, Executive Director, was instrumental in developing the original Strengthening Families Together program. This edition, designed to meet the needs of a range of families, including those who are newer to psychotic illness, was made possible by a grant from the Crabtree Foundation and Eli Lilly Canada. -
Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG . -
S41598-021-85062-3.Pdf
www.nature.com/scientificreports OPEN Genetic dissection of down syndrome‑associated alterations in APP/amyloid‑β biology using mouse models Justin L. Tosh1,2, Elena R. Rhymes1, Paige Mumford3, Heather T. Whittaker1, Laura J. Pulford1, Sue J. Noy1, Karen Cleverley1, LonDownS Consortium*, Matthew C. Walker4, Victor L. J. Tybulewicz2,5, Rob C. Wykes4,6, Elizabeth M. C. Fisher1* & Frances K. Wiseman3* Individuals who have Down syndrome (caused by trisomy of chromosome 21), have a greatly elevated risk of early‑onset Alzheimer’s disease, in which amyloid‑β accumulates in the brain. Amyloid‑β is a product of the chromosome 21 gene APP (amyloid precursor protein) and the extra copy or ‘dose’ of APP is thought to be the cause of this early‑onset Alzheimer’s disease. However, other chromosome 21 genes likely modulate disease when in three‑copies in people with Down syndrome. Here we show that an extra copy of chromosome 21 genes, other than APP, infuences APP/Aβ biology. We crossed Down syndrome mouse models with partial trisomies, to an APP transgenic model and found that extra copies of subgroups of chromosome 21 gene(s) modulate amyloid‑β aggregation and APP transgene‑associated mortality, independently of changing amyloid precursor protein abundance. Thus, genes on chromosome 21, other than APP, likely modulate Alzheimer’s disease in people who have Down syndrome. Down syndrome (DS), which occurs in approximately 1 in 1000 births, is the most common cause of early-onset Alzheimer’s disease-dementia (AD-DS)1. Approximately 6 million people have DS world-wide and by the age of 65 two-thirds of these individuals will have a clinical dementia diagnosis. -
Lääkeaineiden Yleisnimet (INN-Nimet) 21.6.2021
Lääkealan turvallisuus- ja kehittämiskeskus Säkerhets- och utvecklingscentret för läkemedelsområdet Finnish Medicines Agency Lääkeaineiden yleisnimet (INN-nimet) 21.6. -
World of Cognitive Enhancers
ORIGINAL RESEARCH published: 11 September 2020 doi: 10.3389/fpsyt.2020.546796 The Psychonauts’ World of Cognitive Enhancers Flavia Napoletano 1,2, Fabrizio Schifano 2*, John Martin Corkery 2, Amira Guirguis 2,3, Davide Arillotta 2,4, Caroline Zangani 2,5 and Alessandro Vento 6,7,8 1 Department of Mental Health, Homerton University Hospital, East London Foundation Trust, London, United Kingdom, 2 Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom, 3 Swansea University Medical School, Institute of Life Sciences 2, Swansea University, Swansea, United Kingdom, 4 Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy, 5 Department of Health Sciences, University of Milan, Milan, Italy, 6 Department of Mental Health, Addictions’ Observatory (ODDPSS), Rome, Italy, 7 Department of Mental Health, Guglielmo Marconi” University, Rome, Italy, 8 Department of Mental Health, ASL Roma 2, Rome, Italy Background: There is growing availability of novel psychoactive substances (NPS), including cognitive enhancers (CEs) which can be used in the treatment of certain mental health disorders. While treating cognitive deficit symptoms in neuropsychiatric or neurodegenerative disorders using CEs might have significant benefits for patients, the increasing recreational use of these substances by healthy individuals raises many clinical, medico-legal, and ethical issues. Moreover, it has become very challenging for clinicians to Edited by: keep up-to-date with CEs currently available as comprehensive official lists do not exist. Simona Pichini, Methods: Using a web crawler (NPSfinder®), the present study aimed at assessing National Institute of Health (ISS), Italy Reviewed by: psychonaut fora/platforms to better understand the online situation regarding CEs.