Signaling by Hydrogen Sulfide (H2S) and Polysulfides (H2sn) in The

Total Page:16

File Type:pdf, Size:1020Kb

Signaling by Hydrogen Sulfide (H2S) and Polysulfides (H2sn) in The Neurochemistry International 126 (2019) 118–125 Contents lists available at ScienceDirect Neurochemistry International journal homepage: www.elsevier.com/locate/neuint Signaling by hydrogen sulfide (H2S) and polysulfides (H2Sn) in the central nervous system T Hideo Kimura National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan ABSTRACT Hydrogen sulfide (H2S) is a signaling molecule used to modify neuronal transmission, regulate vascular tone, protect tissues from oxidative stress, sense oxygen, and generate ATP. Hydrogen polysulfides (H2Sn) have recently been identified as signaling molecules that mediate the activation of ion channels, regulation of tumor growth, and the transcriptional regulation of oxidative stress; some of which were previously ascribed to H2S. Cystathionine β-synthetase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST) are known as H2S-producing enzymes. 3MST also produces H2Sn and other persulfurated molecules such as cysteine persulfide, glutathione persulfide, and persulfurated proteins. The chemical interaction of H2S and nitric oxide (NO) also produces H2Sn, which may be the mechanism underlying the synergistic effect of H2S and NO that was initially reported on vascular relaxation. H2Sn and other persulfurated molecules elicit their effect via S-sulfuration (S-sulfhydration) of specific cysteine residues of the target proteins. This review article focuses on the production and roles of H2Sn as well as H2S in the central nervous system. 1. Introduction 2013, 2015; Koike et al., 2017; Nagahara et al., 2018). Several other targets of H2Sn have been found; a tumor suppresser Memory loss is often observed in individuals exposed to toxic levels phosphatase and tensin homolog (PTEN) (Greiner et al., 2013), a of hydrogen sulfide (H2S), and the levels of neurotransmitters change in transcription factor complex consisting of Kelch ECH-associating pro- animals intoxicated with this molecule (Reiffenstein et al., 1992; tein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) com- Warenycia et al., 1989). The endogenous levels of H2S were evaluated plex that up-regulates antioxidant genes (Koike et al., 2013), a vascular in the brains of bovines, humans, and rats, though the levels were tension regulator protein kinase G1α (Stubbert et al., 2014), and gly- overestimated because of the method used (Goodwin et al., 1989; ceraldehyde-3-phosphate dehydrogenase (GAPDH), an enzyme that Warenycia et al., 1989; Savage and Gould, 1990; Ishigami et al., 2009). catalyzes glycolysis (Jarosz et al., 2015). They have been re-evaluated but still show significantly different values The chemical interaction of H2S and NO also generates H2Sn (Furne et al., 2008; Ishigami et al., 2009; Koike et al., 2017). H2Sis (EberhardtDux et al., 2014; Cortese-KrottKuhnle et al., 2015; Moustafa produced by cystathionine β-synthetase (CBS), cystathionine γ-lyase and Habara, 2016; Miyamoto et al., 2017). We identified synergy be- (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST) in various tween H2S and nitric oxide (NO) during the relaxation of vascular tissues (Stipanuk and Beck, 1982; Abe and Kimura, 1996; Hosoki et al., smooth muscle (Hosoki et al., 1997), and a similar effect was observed 1997; Zhao et al., 2001; Shibuya et al., 2009; Chiku et al., 2009; Singh in the ileum (Teague et al., 2002). A mechanism of the synergy has been et al., 2009). studied, and several potential chemical entities generated from H2S and H2S facilitates the induction of hippocampal long-term potentiation NO have been proposed: nitrosothiol (Whiteman et al., 2006), thioni- (LTP) by enhancing the activity of N-methyl-D-aspartate (NMDA) re- trous acid (HSNO) (Filipovic et al., 2012), nitroxyl (HNO) ceptors (Abe and Kimura, 1996). In addition, we found that H2S acti- (EberhardtDux et al., 2014), nitrosopersulfide (SSNO-) (Cortese- vates transient receptor potential ankyrin 1 (TRPA1) channels in as- KrottKuhnle et al., 2015), and H2Sn (EberhardtDux et al., 2014; Cortese- trocytes, which regulate synaptic transmission by releasing KrottKuhnle et al., 2015; Moustafa and Habara, 2016; Miyamoto et al., gliotransmitters to the synaptic cleft to facilitate LTP induction (Nagai 2017). Concerning the characteristics of the product, such as the sen- et al., 2004; Oosumi et al., 2010; Shigetomi et al., 2012, 2013; Kimura sitivity to cyanide and reducing substances, H2Sn may be a potential et al., 2013). Subsequently, we identified H2Sn (n ≥ 2) which induce chemical entity that is produced from H2S and NO to activate TRPA1 2+ Ca influx in astrocytes more potently than H2S(Nagai et al., 2006; channels (EberhardtDux et al., 2014; Cortese-KrottKuhnle et al., 2015; Oosumi et al., 2010; Kimura et al., 2013). H2Sn are produced by 3MST, Miyamoto et al., 2017). and H2S2 and H2S3 have been identified in the brain (Kimura et al., H2S protects neurons from oxidative stress by enhancing the activity E-mail address: [email protected]. https://doi.org/10.1016/j.neuint.2019.01.027 Received 8 January 2019; Received in revised form 29 January 2019; Accepted 31 January 2019 Available online 06 March 2019 0197-0186/ © 2019 Elsevier Ltd. All rights reserved. H. Kimura Neurochemistry International 126 (2019) 118–125 of the cystine/glutamate antiporter and cysteine transporter to increase 3. S-sulfuration and bound sulfane sulfur the intracellular levels of cysteine, a substrate for the production of glutathione (GSH), a major intracellular antioxidant (Kimura and S-sulfuration (S-sulfhydration) was proposed by Snyder and col- Kimura, 2004). H2S also enhances the activity of glutamate cysteine leagues as a mode of action of H2S where H2S adds a sulfur atom to thiol ligase (GCL) also known as γ-glutamyl cysteine synthetase (γ-GCS), a of cysteine residues (R-Cys-SH) to make R-Cys-SSH (Mustafa et al., rate limiting enzyme for GSH production (Kimura and Kimura, 2004; 2009). However, this requires theoretical revision (Kimura, 2015). The Kimura et al., 2006, 2010). By these integrated effects, H2S increases oxidation state of sulfur in H2S and cysteine is −2 and atoms with the the production of GSH. same oxidation state do not react with each other. In contrast, the It has been reported that H2S also up- or down-regulates genes that oxidation state of sulfur in H2Sn is −1 or 0 and can S-sulfurate cysteine are activated by NMDA to induce excitotoxicity in neurons (Chen et al., residues. In contrast, under oxidative conditions some cysteine residues 2011). Although its mechanism is not well understood, the application are oxidized to become R-Cys-SOH, and at the exposure to NO, R-Cys- of H2S in diseases caused by oxidative stress may require the co-ad- SH is oxidized to R-Cys-SNO. Both R-Cys-SOH and R-Cys-SNO can be S- ministration of inhibitors of NMDA receptors to prevent excitotoxicity. sulfurated by H2S to R-Cys-SSH (Kabil et al., 2014). H2Sn also involved in the protection of neurons against oxidative Because Cys-SH has a pKa of 8.29 and the predicted pKa for Cys-SSH − + stress (Koike et al., 2013). H2S4 releases Nrf2 from the Keap1/Nrf2 is 4.34 (Cuevasanta et al., 2015), CysSSH dissociates to CysSS and H , complex so it can be transferred to the nucleus where Nrf2 upregulates while CysSH exists as non-dissociated form at physiological pH. S-sul- the transcription of antioxidant genes including enzymes involved in furation increases mass of 32 and adds one negative charge to the target the production of GSH. Recently, we demonstrated that sulfite (H2SO3) proteins. Compared to protein phosphorylation, which increases mass protects neurons from oxidative stress by potentially reacting with ex- of 95 and adds two negative charges, S-sulfuration may induce less tracellular cystine to generate cysteine that is more efficiently trans- conformational changes in target proteins. However, some of the ported into cells and used for GSH production (Kimura et al., 2018). known target proteins such as TRPA1 channels, PTEN, and protein ki- H2S and H2Sn may be involved in neurodegenerative diseases such nase G1α have two cysteine residues responsible for their activity as Parkinson's disease (PD), Huntington's diseases (HD), ethylmalonyl regulation. It is possible that one of the two cysteine residues could be encephalopathy, and even in cancer (Vandiver et al., 2013; Shiota et al., S-sulfurated and reacts with the remaining non-S-sulfurated cysteine 2018). Mutations encoded in the gene parkin cause hereditary PD. residue to produce a disulfide bond, which may induce greater con- Parkin of PD patients is nitrosylated, while that of healthy individuals is formational change than a simple S-sulfuration in TRPA1 channel and S-sulfurated (S-sulfhydrated) (Chung et al., 2004; Yao et al., 2004; PTEN and also enables two monomers of protein kinase G1α to gen- Vandiver et al., 2013). The expression of CSE in the brains of patients erate its dimer. with HD is significantly lower than that of normal individuals (Paul Bound sulfane sulfur, which is measured as H2S released from tis- et al., 2014). Patients with ethylmalonyl encephalopathy are defective sues or cells by reduction, includes H2Sn, Cys-SSH, GSSH, and S-sulfu- in ETHE1, persulfide dioxygenase, and are unable to metabolize H2S. rated cysteine residues (WarenyciaGoodwin et al., 1990; Ogasawara The increased levels of H2S exert its toxic effect on organs such as the et al., 1993, 1994; Ishigami et al., 2009; Shibuya et al., 2009). Cells brain and skeletal muscle (Tiranti et al., 2009). A recent study showed expressing 3MST contain greater levels of bound sulfane sulfur than that the higher concentrations of polysulfides including H2Sn are con- control cells (Shibuya et al., 2009), and oral administration of D-cy- tained in glioblastoma cells but not in glioblastoma-free control hemi- steine, which is metabolized by D-amino acid oxidase to 3-mercapto- spheres (Shiota et al., 2018). pyruvate a substrate of 3MST, is given to mice to increase the levels of bound sulfane sulfur (Shibuya et al., 2013).
Recommended publications
  • Identification and Characterization of Enzymes Involved in Post- Translational Modifications of Phycobiliproteins in the Cyanobacterium Synechocystis Sp
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 8-8-2007 Identification and Characterization of Enzymes Involved in Post- translational Modifications of Phycobiliproteins in the Cyanobacterium Synechocystis sp. PCC 6803 Crystal Miller University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/td Recommended Citation Miller, Crystal, "Identification and Characterization of Enzymes Involved in Post-translational Modifications of Phycobiliproteins in the Cyanobacterium Synechocystis sp. PCC 6803" (2007). University of New Orleans Theses and Dissertations. 572. https://scholarworks.uno.edu/td/572 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Identification and Characterization of Enzymes Involved in Post-translational Modifications of Phycobiliproteins in the Cyanobacterium Synechocystis sp. PCC 6803 A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for degree of Master of Science in Biological Sciences by Crystal Miller B.S. University of New Orleans, 2004 August, 2007 ACKNOWLEDGMENTS I would first like to thank my fiancé, Gus Mugnier, for always being there for me and supporting me through my graduate career.
    [Show full text]
  • Anti-CTH (Aa 250-350) Polyclonal Antibody (DPABH-26846) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-CTH (aa 250-350) polyclonal antibody (DPABH-26846) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Antigen Description Catalyzes the last step in the transsulfuration pathway from methionine to cysteine. Has broad substrate specificity. Converts cystathionine to cysteine, ammonia and 2-oxobutanoate. Converts two cysteine molecules to lanthionine and hydrogen sulfide. Can also accept homocysteine as substrate. Specificity depends on the levels of the endogenous substrates. Generates the endogenous signaling molecule hydrogen sulfide (H2S), and so contributes to the regulation of blood pressure. Immunogen Synthetic peptide conjugated to KLH derived from within residues 250 - 350 of Human Cystathionase. Isotype IgG Source/Host Rabbit Species Reactivity Human Purification Immunogen affinity purified Conjugate Unconjugated Applications WB, ICC/IF Format Liquid Size 100 μg Buffer pH: 7.40; Constituent: PBS Preservative 0.02% Sodium Azide Storage Store at 4°C short term (1-2 weeks). Aliquot and store at -20°C or -80°C. Avoid repeated freeze / thaw cycles. GENE INFORMATION Gene Name CTH cystathionase (cystathionine gamma-lyase) [ Homo sapiens ] 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Official Symbol CTH Synonyms CTH; cystathionase (cystathionine gamma-lyase); cystathionine gamma-lyase; gamma- cystathionase; homoserine deaminase; cysteine desulfhydrase; homoserine dehydratase;
    [Show full text]
  • Orphan Enzymes Could Be an Unexplored Reservoir of New Drug Targets
    Drug Discovery Today Volume 11, Numbers 7/8 April 2006 REVIEWS Reviews GENE TO SCREEN Orphan enzymes could be an unexplored reservoir of new drug targets Olivier Lespinet and Bernard Labedan Institut de Ge´ne´tique et Microbiologie, CNRS UMR 8621, Universite´ Paris Sud, Baˆtiment 400, 91405 Orsay Cedex, France Despite the immense progress of genomics, and the current availability of several hundreds of thousands of amino acid sequences, >39% of well-defined enzyme activities (as represented by enzyme commission, EC, numbers) are not associated with any sequence. There is an urgent need to explore the 1525 orphan enzymes (enzymes having EC numbers without an associated sequence) to bridge the wide gap that separates knowledge of biochemical function and sequence information. Strikingly, orphan enzymes can even be found among enzymatic activities successfully used as drug targets. Here, knowledge of sequence would help to develop molecular-targeted therapies, suppressing many drug-related side-effects. Biology is exploring numerous and diverse fields, each of which discovered before, despite intensive research by thousands of is very complex and difficult to study in its entirety. For many people studying the genetics and biochemistry of Saccharomyces years, immense advances in disclosing molecular functions have cerevisiae over the past 50 years. This observation has been con- been made using reductionist approaches, such as molecular firmed repeatedly, with the cohort of genomes that have been biology. Combining genetic, biophysical and biochemical con- sequenced, at a steady pace, over the past ten years. We now know cepts and methodologies has helped to disclose details of com- that many genes have been missed by reductionist approaches plex molecular mechanisms such as DNA replication.
    [Show full text]
  • X-Ray Fluorescence Analysis Method Röntgenfluoreszenz-Analyseverfahren Procédé D’Analyse Par Rayons X Fluorescents
    (19) & (11) EP 2 084 519 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 23/223 (2006.01) G01T 1/36 (2006.01) 01.08.2012 Bulletin 2012/31 C12Q 1/00 (2006.01) (21) Application number: 07874491.9 (86) International application number: PCT/US2007/021888 (22) Date of filing: 10.10.2007 (87) International publication number: WO 2008/127291 (23.10.2008 Gazette 2008/43) (54) X-RAY FLUORESCENCE ANALYSIS METHOD RÖNTGENFLUORESZENZ-ANALYSEVERFAHREN PROCÉDÉ D’ANALYSE PAR RAYONS X FLUORESCENTS (84) Designated Contracting States: • BURRELL, Anthony, K. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Los Alamos, NM 87544 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Albrecht, Thomas Kraus & Weisert (30) Priority: 10.10.2006 US 850594 P Patent- und Rechtsanwälte Thomas-Wimmer-Ring 15 (43) Date of publication of application: 80539 München (DE) 05.08.2009 Bulletin 2009/32 (56) References cited: (60) Divisional application: JP-A- 2001 289 802 US-A1- 2003 027 129 12164870.3 US-A1- 2003 027 129 US-A1- 2004 004 183 US-A1- 2004 017 884 US-A1- 2004 017 884 (73) Proprietors: US-A1- 2004 093 526 US-A1- 2004 235 059 • Los Alamos National Security, LLC US-A1- 2004 235 059 US-A1- 2005 011 818 Los Alamos, NM 87545 (US) US-A1- 2005 011 818 US-B1- 6 329 209 • Caldera Pharmaceuticals, INC. US-B2- 6 719 147 Los Alamos, NM 87544 (US) • GOLDIN E M ET AL: "Quantitation of antibody (72) Inventors: binding to cell surface antigens by X-ray • BIRNBAUM, Eva, R.
    [Show full text]
  • Sulfur Metabolism in Escherichia Coli and Related Bacteria: Facts and Fiction
    J. Mol. Microbiol. Biotechnol. (2000) 2(2): 145-177. Sulfur Metabolism inJMMB Enterobacteria Review 145 Sulfur Metabolism in Escherichia coli and Related Bacteria: Facts and Fiction Agnieszka Sekowska1,2, Hsiang-Fu Kung3, sulfur metabolism (anabolism, transport and catabolism and Antoine Danchin1,2* and recycling), then emphasize the special situation of the metabolism of S-adenosylmethionine (AdoMet), ending 1Hong Kong University Pasteur Research Centre, with special situations where sulfur is involved, in particular Dexter Man Building, 8, Sassoon Road, synthesis of coenzyme and prosthetic groups as well as Pokfulam, Hong Kong tRNA modifications. Finally, we point to the chemical kinship 2Regulation of Gene Expression, Institut Pasteur, between sulfur and selenium, a building block of the 21st 28 rue du Docteur Roux, 75724 Paris Cedex 15, France amino acid in proteins, selenocysteine. 3Institute of Molecular Biology, The University of Hong Kong, South Wing, General Sulfur Metabolism 8/F Kadoorie Biological Sciences Bldg., Pokfulam Road, Hong Kong In the general metabolism of sulfur one must distinguish three well differentiated aspects: synthesis of the sulfur- containing amino acids (cysteine and methionine), together Abstract with that of the sulfur-containing coenzymes or prosthetic groups; catabolism and equilibration of the pool of sulfur Living organisms are composed of macromolecules containing molecules; and methionine recycling (a topic in made of hydrogen, carbon, nitrogen, oxygen, itself, because of the role of methionine as the first residue phosphorus and sulfur. Much work has been devoted of all proteins). Five databases for metabolism allow one to the metabolism of the first five elements, but much to retrieve extant data relevant to sulfur metabolism: the remains to be understood about sulfur metabolism.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
    US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
    US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006.
    [Show full text]
  • Hydrogen Sulfide Is a Weak Acid with Pka~7.0 (Figure 1)
    antioxidants Review Biosynthesis, Quantification and Genetic Diseases of the Smallest Signaling Thiol Metabolite: Hydrogen Sulfide Joanna Myszkowska 1, Ilia Derevenkov 2 , Sergei V. Makarov 2, Ute Spiekerkoetter 3 and Luciana Hannibal 1,* 1 Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; [email protected] 2 Department of Food Chemistry, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; [email protected] (I.D.); [email protected] (S.V.M.) 3 Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; [email protected] * Correspondence: [email protected] Abstract: Hydrogen sulfide (H2S) is a gasotransmitter and the smallest signaling thiol metabolite with important roles in human health. The turnover of H2S in humans is mainly governed by enzymes of sulfur amino acid metabolism and also by the microbiome. As is the case with other small signaling molecules, disease-promoting effects of H2S largely depend on its concentration and compartmentalization. Genetic defects that impair the biogenesis and catabolism of H2S have been described; however, a gap in knowledge remains concerning physiological steady-state concentra- tions of H2S and their direct clinical implications. The small size and considerable reactivity of H2S Citation: Myszkowska, J.; renders its quantification in biological samples an experimental challenge. A compilation of methods Derevenkov, I.; Makarov, S.V.; currently employed to quantify H2S in biological specimens is provided in this review. Substan- Spiekerkoetter, U.; Hannibal, L.
    [Show full text]
  • Purification of Lysine Decarboxylase: a Model System for Plp Enzyme Inhibitor Development and Study
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Student Research Projects, Dissertations, and Theses - Chemistry Department Chemistry, Department of 5-2011 PURIFICATION OF LYSINE DECARBOXYLASE: A MODEL SYSTEM FOR PLP ENZYME INHIBITOR DEVELOPMENT AND STUDY Leah C. Zohner University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/chemistrydiss Part of the Chemistry Commons Zohner, Leah C., "PURIFICATION OF LYSINE DECARBOXYLASE: A MODEL SYSTEM FOR PLP ENZYME INHIBITOR DEVELOPMENT AND STUDY" (2011). Student Research Projects, Dissertations, and Theses - Chemistry Department. 21. https://digitalcommons.unl.edu/chemistrydiss/21 This Article is brought to you for free and open access by the Chemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Student Research Projects, Dissertations, and Theses - Chemistry Department by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. PURIFICATION OF LYSINE DECARBOXYLASE: A MODEL SYSTEM FOR PLP ENZYME INHIBITOR DEVELOPMENT AND STUDY By Leah Zohner A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Chemistry Under the Supervision of Professor David B. Berkowitz Lincoln, Nebraska May, 2011 PURIFICATION OF LYSINE DECARBOXYLASE: A MODEL SYSTEM FOR PLP ENZYME INHIBITOR DEVELOPMENT AND STUDY Leah Zohner, M.S. University of Nebraska, 2011 Advisor: David Berkowitz Pyridoxal phosphate (PLP) dependent enzymes have the ability to manipulate amino acid substrates, serving variously as (i) racemases, transaminases, and beta- or gamma eliminases (all involving Cα-H bond cleavage); (ii) decarboxylases (Cα-CO2- bond cleavage), or (iii) retroaldolases (Cα-Cβ bond cleavage).
    [Show full text]
  • The Transsulfuration Pathway: a Source of Cysteine for Glutathione in Astrocytes
    Amino Acids (2012) 42:199–205 DOI 10.1007/s00726-011-0864-8 REVIEW ARTICLE The transsulfuration pathway: a source of cysteine for glutathione in astrocytes Gethin J. McBean Received: 20 December 2010 / Accepted: 17 February 2011 / Published online: 3 March 2011 Ó Springer-Verlag 2011 Abstract Astrocyte cells require cysteine as a substrate NF-jB Nuclear factorjB for glutamate cysteine ligase (c-glutamylcysteine synthase; SAPK Stress-activated protein kinase EC 6.3.2.2) catalyst of the rate-limiting step of the TNFa Tumour necrosis factora - c-glutamylcycle leading to formation of glutathione (L-c- xCT Subunit of the xc cystine-glutamate exchanger glutamyl-L-cysteinyl-glycine; GSH). In both astrocytes and glioblastoma/astrocytoma cells, the majority of cysteine - originates from reduction of cystine imported by the xc cystine-glutamate exchanger. However, the transsulfura- An overview of sulfur amino acid metabolism tion pathway, which supplies cysteine from the indispens- and the transsulfuration pathway able amino acid, methionine, has recently been identified as a significant contributor to GSH synthesis in astrocytes. Sulfur amino acid metabolism is critically important in The purpose of this review is to evaluate the importance of mammalian cells and is linked to provision of methyl the transsulfuration pathway in these cells, particularly in groups for a large number of biochemical processes. Die- the context of a reserve pathway that channels methionine tary methionine is activated by conversion to S-adenosyl- towards cysteine when the demand for glutathione is high, methionine in an ATP-dependent reaction catalysed by or under conditions in which the supply of cystine by the methionine adenosyltransferase that, through action of - xc exchanger may be compromised.
    [Show full text]