Effects of Large-Scale Wildfires on the Scorpion and Solifugid Communities of the San Diego MSCP Region

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Large-Scale Wildfires on the Scorpion and Solifugid Communities of the San Diego MSCP Region Effects of Large-scale Wildfires on the Scorpion and Solifugid Communities of the San Diego MSCP Region Data Summary Prepared for: San Diego Association of Governments U. S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY WESTERN ECOLOGICAL RESEARCH CENTER Effects of Large-scale Wildfires on the Scorpion and Solifugid Communities of the San Diego MSCP Region By Christopher W. Brown, Milan J. Mitrovich, Carlton J. Rochester, and Robert N. Fisher U. S. GEOLOGICAL SURVEY WESTERN ECOLOGICAL RESEARCH CENTER Data Summary Prepared for: San Diego Association of Governments San Diego Field Station USGS Western Ecological Research Center 4165 Spruance Road, Suite 200 San Diego CA, 92101 Sacramento, California 2010 i U.S. DEPARTMENT OF THE INTERIOR KEN SALAZAR, SECRETARY U.S. GEOLOGICAL SURVEY Martia McNutt, Director Suggested citation: Brown, C. W., M. J. Mitrovich, C. J. Rochester, and R. N. Fisher. 2010. Effects of large-scale wildfires on the scorpion and solifugid communities of the San Diego MSCP region. U.S. Geological Survey Data Summary prepared for San Diego Association of Governments. 45 pp. The use of firm, trade, or brand names in this report is for identification purposes only and does not constitute endorsement by the U. S. Geological Survey. For additional information, contact: Dr. Steven Schwarzbach, Center Director Western Ecological Research Center 3020 State University Dr. East Modoc Hall, Room 3006 Sacramento, CA 95819 ii TABLE OF CONTENTS ABSTRACT..................................................................................................................... 1 INTRODUCTION ........................................................................................................... 2 METHODS ...................................................................................................................... 5 Study areas. .........................................................................................................................5 Scorpion and solifugid sampling.........................................................................................7 Statistical analyses ..............................................................................................................8 RESULTS ...................................................................................................................... 10 DISCUSSION................................................................................................................ 12 ACKNOWLEDGEMENTS........................................................................................... 15 LITERATURE CITED .................................................................................................. 16 TABLES ........................................................................................................................ 19 Table 1. Species capture rate by site and condition .........................................................19 Table 2. Results from the hierarchical linear modeling analyses.....................................20 Table 3. Vegetation associations of scorpion and solifugid species ................................20 Table 4. Occupancy models for Anuroctonus p. pococki.................................................21 Table 5. Occupancy models for Vaejovis puritanus.........................................................21 FIGURES....................................................................................................................... 22 Figure 1. Schematic of the study areas.............................................................................23 Figure 2. Study plot design ..............................................................................................24 Figure 3. Vegetation composition by site.........................................................................25 Figure 4. Monthly activity patterns of the Solifugae and Scorpiones ..............................26 Figure 5. Pre-fire species composition at Little Cedar Ridge ..........................................28 Figure 6. Post-fire species composition at Little Cedar Ridge.........................................29 Figure 7. Pre-fire species composition at Elliott Chaparral Reserve................................30 Figure 8. Post-fire species composition at Elliott Chaparral Reserve..............................31 Figure 9. Pre-fire species composition at Rancho Jamul (reference)...............................32 Figure 10. Post-fire species composition at Rancho Jamul (reference) ...........................33 Figure 11. Pre-fire species composition at Rancho Jamul (impacted) .............................34 Figure 12. Post-fire species composition at Rancho Jamul (impacted)............................35 Figure 13. Pre-fire species composition at Santa Ysabel Preserve (reference)................36 Figure 14. Post-fire species composition at Santa Ysabel Preserve (reference) ..............37 Figure 15. Pre-fire species composition at Santa Ysabel Preserve (impacted) ................38 Figure 16. Post-fire species composition at Santa Ysabel Preserve (impacted)...............39 APPENDIX I. Scorpion species accounts .................................................................... 40 iii ABSTRACT To investigate the role of large-scale wildfires on the scorpion and solifugid species within San Diego County of southern California, we examined specimens that had been collected from four study sites distributed across the region from both before and after the 2003 wildfires: 1) Santa Ysabel Preserve, 2) Rancho Jamul Ecological Reserve-Hollenbeck Canyon Wildlife Area, 3) Little Cedar Ridge, and 4) Elliott Chaparral Reserve. In October and November of 2003, large-scale fires burned approximately 130,000 ha of San Diego County. We collected data to assess fire impacts on the local solifugid and scorpion communities using drift fence arrays with pitfall traps. Sampling prior to the fires was conducted between May 1998 and June 2003. Post-fire sampling was conducted between January 2005 and September 2007 with the objective of identifying impacts of wildfire on the scorpion and solifugid communities. We calculated monthly detection frequencies of each species to test for differences in seasonal activity patterns between scorpions and solifugids. We compared total species richness, rates of species accumulation, and average species richness detected per sample occasion between pre- and post-fire sample periods to describe major differences in the pre- and post-fire datasets. To test for the effects of wildfire on the community, we compared pre- to post-fire differences in the average species richness per sample occasion between burned and unburned plots, as well as modeled the effects of vegetation, plot condition (burned or unburned), and their interaction on the species richness measures for post-fire periods. We also tested for associations between vegetation types and individual scorpion and solifugid species and for the two most dominant species, constructed site occupancy models to compare occupancy among sites, vegetation types, and between burned and unburned plots. Seven scorpion and 14 solifugid species were detected across all of our trapping efforts. The scorpions Vaejovis puritanis and Anuroctonus pococki pococki were the most commonly detected species, occurring in 14.6% and 8.9% of the sample collections, respectively. The most abundant solifugid was Eremochelis andreasana, which we found in 1.7% of the samples. The majority of the species that we observed were only found in 1% or less of the samples that we collected. Of all of the species collected, three scorpions, A. p. pococki, V. puritanis, and Superstitionia donensis, and three solifugid species, Ammotrechula wasbaueri, E. andreasana, and Eremochelis kastoni, were detected at all four study sites. Our monthly detection frequencies showed that scorpions and solifugids reached their peak activity levels at different times of the year. Solifugids were most active in June while scorpions reached peak activity in August. Species richness and rate of species discovery increased in post-fire samples compared to pre-fire. The difference in average species richness per sample occasion between pre- and post-fire samples did not vary between burned and unburned plots. In the post-fire period, species richness per sample occasion for scorpions and solifugids varied by vegetation type but not plot condition, meaning there was a measured effect of vegetation but not fire on the average number of species detected. Approximately half of the scorpions and solifugids tested had a positive association between detection and vegetation type. Occupancy analyses revealed that the scorpions A. p. pococki and V. puritanus varied by site. A. p. pococki also varied by vegetation, but neither species varied by condition (i.e., burned or unburned) or across years. The overall absence of a negative effect of wildfire on the scorpion and solifugid communities in our analyses of pre- and post-fire sample data is not surprising given the biology 1 of both scorpions and solifugids is well suited to surviving both the short and long-term effects of fire. Both species groups are nocturnally active and readily use below-ground retreats during the daytime needing less shade cover. Scorpions and solifugids largely inhabit xeric environments, with seasonal peaks in activity occurring during the hottest and driest periods of the year. Both species-groups are comprised of generalist predators that
Recommended publications
  • Scorpion Venom: New Promise in the Treatment of Cancer
    Acta Biológica Colombiana ISSN: 0120-548X ISSN: 1900-1649 Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología SCORPION VENOM: NEW PROMISE IN THE TREATMENT OF CANCER GÓMEZ RAVE, Lyz Jenny; MUÑOZ BRAVO, Adriana Ximena; SIERRA CASTRILLO, Jhoalmis; ROMÁN MARÍN, Laura Melisa; CORREDOR PEREIRA, Carlos SCORPION VENOM: NEW PROMISE IN THE TREATMENT OF CANCER Acta Biológica Colombiana, vol. 24, no. 2, 2019 Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología Available in: http://www.redalyc.org/articulo.oa?id=319060771002 DOI: 10.15446/abc.v24n2.71512 PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative Revisión SCORPION VENOM: NEW PROMISE IN THE TREATMENT OF CANCER Veneno de escorpión: Una nueva promesa en el tratamiento del cáncer Lyz Jenny GÓMEZ RAVE 12* Institución Universitaria Colegio Mayor de Antioquia, Colombia Adriana Ximena MUÑOZ BRAVO 12 Institución Universitaria Colegio Mayor de Antioquia, Colombia Jhoalmis SIERRA CASTRILLO 3 [email protected] Universidad de Santander, Colombia Laura Melisa ROMÁN MARÍN 1 Institución Universitaria Colegio Mayor de Antioquia, Colombia Carlos CORREDOR PEREIRA 4 Acta Biológica Colombiana, vol. 24, no. 2, 2019 Universidad Simón Bolívar, Colombia Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología Received: 04 April 2018 ABSTRACT: Cancer is a public health problem due to its high worldwide Revised document received: 29 December 2018 morbimortality. Current treatment protocols do not guarantee complete remission, Accepted: 07 February 2019 which has prompted to search for new and more effective antitumoral compounds. Several substances exhibiting cytostatic and cytotoxic effects over cancer cells might DOI: 10.15446/abc.v24n2.71512 contribute to the treatment of this pathology.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9111799 Evolutionary morphology of the locomotor apparatus in Arachnida Shultz, Jeffrey Walden, Ph.D.
    [Show full text]
  • Species Composition and Abundance of Solpugids (Arachnida: Solifugae) in Ecotopes of the Transitional Coastal Desert of Chile
    Revista Mexicana de Biodiversidad 82: 1234-1242, 2011 Species composition and abundance of solpugids (Arachnida: Solifugae) in ecotopes of the transitional coastal desert of Chile Composición de especies y abundancia de solífugos (Arachnida: Solifugae) en ecotopos del desierto costero transicional de Chile Daniel Eugenio Valdivia1 , Jaime Pizarro-Araya2, Raúl Briones3, Andrés A. Ojanguren-Affilastro4 and Jorge Cepeda-Pizarro2 1Laboratorio de Aracnología. Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile. 2Laboratorio de Entomología Ecológica, Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, Casilla 599, La Serena, Chile. 3División Manejo Ecosistémico, Bioforets S.A. - Casilla 70-C, Concepción-Chile. 4División Aracnología, Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Avenida Ángel Gallardo 470, 1405 DJR Buenos Aires, Argentina. [email protected] Abstract. Using pitfall traps, the species composition and abundance of solpugids were studied in several ecotopes of Chile’s transitional coastal desert. The study was conducted in the area around Punta de Choros (29º15’S, 71º26’W) and in Los Choros Archipelago (29º32’S, 67º61’W), in 2005 and 2006. Five species were recorded: Procleobis sp.; Sedna pirata Muma, 1971 (Ammotrechidae); Mummucia sp.; Mummucia variegata (Gervais, 1849) (Mummuciidae); and Ammotrechelis goetschi Roewer, 1934 (Daesiidae). Solpugid abundance was higher on the continent (65%) than on the islands (35%). The ANOSIM used to evaluate any difference in species richness between ecotopes revealed no significant differences (R= 0.097,p = 0.13). The similarity dendrogram obtained from the Bray-Curtis matrix indicates that there are 3 groups of ecotopes: steppe, dune, and a miscellaneous group.
    [Show full text]
  • Phylogeny of the North American Vaejovid Scorpion Subfamily Syntropinae Kraepelin, 1905, Based on Morphology, Mitochondrial and Nuclear DNA
    Cladistics Cladistics 31 (2015) 341–405 10.1111/cla.12091 Phylogeny of the North American vaejovid scorpion subfamily Syntropinae Kraepelin, 1905, based on morphology, mitochondrial and nuclear DNA Edmundo Gonzalez-Santill an a,b,*,†,‡ and Lorenzo Prendinib aThe Graduate Center, City University of New York, CUNY, 365 Fifth Avenue, New York, NY, 10016, USA; bScorpion Systematics Research Group, Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024-5192, USA; †Present address: Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Km 9.6 Libramiento Norte Carretera Leon, C.P. 36821, Irapuato, Guanajuato, Mexico; ‡Present address: Laboratorio de Aracnologıa, Departamento de Biologıa Comparada, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Coyoacan, C.P. 04510, Mexico D.F., Mexico Accepted 25 June 2014 Abstract The first rigorous analysis of the phylogeny of the North American vaejovid scorpion subfamily Syntropinae is presented. The analysis is based on 250 morphological characters and 4221 aligned DNA nucleotides from three mitochondrial and two nuclear gene markers, for 145 terminal taxa, representing 47 species in 11 ingroup genera, and 15 species in eight outgroup genera. The monophyly and composition of Syntropinae and its component genera, as proposed by Soleglad and Fet, are tested. The follow- ing taxa are demonstrated to be para- or polyphyletic: Smeringurinae; Syntropinae; Vaejovinae; Stahnkeini; Syntropini; Syntrop- ina; Thorelliina; Hoffmannius; Kochius; and Thorellius. The spinose (hooked or toothed) margin of the distal barb of the sclerotized hemi-mating plug is demonstrated to be a unique, unambiguous synapomorphy for Syntropinae, uniting taxa previ- ously assigned to different subfamilies.
    [Show full text]
  • Arachnida, Solifugae) with Special Focus on Functional Analyses and Phylogenetic Interpretations
    HISTOLOGY AND ULTRASTRUCTURE OF SOLIFUGES Comparative studies of organ systems of solifuges (Arachnida, Solifugae) with special focus on functional analyses and phylogenetic interpretations HISTOLOGIE UND ULTRASTRUKTUR DER SOLIFUGEN Vergleichende Studien an Organsystemen der Solifugen (Arachnida, Solifugae) mit Schwerpunkt auf funktionellen Analysen und phylogenetischen Interpretationen I N A U G U R A L D I S S E R T A T I O N zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Anja Elisabeth Klann geboren am 28.November 1976 in Bremen Greifswald, den 04.06.2009 Dekan ........................................................................................................Prof. Dr. Klaus Fesser Prof. Dr. Dr. h.c. Gerd Alberti Erster Gutachter .......................................................................................... Zweiter Gutachter ........................................................................................Prof. Dr. Romano Dallai Tag der Promotion ........................................................................................15.09.2009 Content Summary ..........................................................................................1 Zusammenfassung ..........................................................................5 Acknowledgments ..........................................................................9 1. Introduction ............................................................................
    [Show full text]
  • California (Scorpiones: Vaejovidae)
    do PAN-PACIFIC ENTOMOLOGIST 62(4), 1986, pp. 359-362 A New Species of Uroctonus from the Sierra Nevada of California (Scorpiones: Vaejovidae) STANLEY C. WILLIAMS San Francisco State University, San Francisco, California 94132. Abstract. —A new species of Uroctonus is described and named Uroctonus franckei Williams. This species has only been found at elevations of over 2133 meters in the Sierra Nevada of California. The closest relative of this new species appears to be Uroctonus mordax Thorell. During 1980, a series of collecting trips was conducted along the eastern slope of the Sierra Nevada of California. Sampling at higher elevations (i.e., over 2000 meters) indicated an abundant and diverse scorpion community. Of particular interest was a large, dark, previously undescribed species which was only found at elevations above 2133 meters on slopes dominated by yellow pine (Pinus jeffreyi Grer. & Balf.). This new species is here described and named. Measurements cited are as defined by Williams (1980). I am indebted to Paul H. Arnaud, Jr. for furnishing research facilities at the California Academy of Sciences which aided this study. Much appreciation is due Vincent F. Lee, David Herlocker, and Jack T. Tomlinson who critically read this manuscript. Thanks also to Jett S. Chinn for help with illustrations. Uroctonus franckei Williams, NEW SPECIES (Fig. 1, Table 1) Diagnosis.—Total length up to 57 mm; base color of body dark reddish-brown, often appearing blackish; frontal margin of carapace bibbed, median ocelli small, ratio of carapace width to diameter of diad 6.2-6.8; pedipalps with palm swollen prolaterally in oblique plane, ratio of chela length to palm width 3.3-3.4; fixed finger of chela with trichobothrium id at finger origin, supernumerary denticles 7 on fixed finger, 8 on movable finger, primary row denticles divided into 6 subrows on fixed finger, 7 subrows on movable finger; brachium with three ventral trich- obothria; soles of telotarsi with single row of spiniform setae ventrally; pectine teeth 13-14 in males, 9-12 in females.
    [Show full text]
  • Venom Gland Transcriptomic and Proteomic
    toxins Article Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components Carlos E. Santibáñez-López 1, Jimena I. Cid-Uribe 1, Cesar V. F. Batista 2, Ernesto Ortiz 1,* and Lourival D. Possani 1,* 1 Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico; [email protected] (C.E.S.-L.); [email protected] (J.I.C.-U.) 2 Laboratorio Universitario de Proteómica, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico; [email protected] * Correspondence: [email protected] (E.O.); [email protected] (L.D.P.); Tel.: +52-777-329-1647 (E.O.); +52-777-317-1209 (L.D.P.) Academic Editor: Richard J. Lewis Received: 25 October 2016; Accepted: 1 December 2016; Published: 9 December 2016 Abstract: Venom gland transcriptomic and proteomic analyses have improved our knowledge on the diversity of the heterogeneous components present in scorpion venoms. However, most of these studies have focused on species from the family Buthidae. To gain insights into the molecular diversity of the venom components of scorpions belonging to the family Superstitioniidae, one of the neglected scorpion families, we performed a transcriptomic and proteomic analyses for the species Superstitionia donensis. The total mRNA extracted from the venom glands of two specimens was subjected to massive sequencing by the Illumina protocol, and a total of 219,073 transcripts were generated.
    [Show full text]
  • Microscopic Anatomy of Eukoenenia Spelaea (Palpigradi) — a Miniaturized Euchelicerate
    MICROSCOPIC ANATOMY OF EUKOENENIA SPELAEA (PALPIGRADI) — A MINIATURIZED EUCHELICERATE Sandra Franz-Guess Gröbenzell, Deutschland 2019 For my wife ii Diese Dissertation wurde angefertigt unter der Leitung von Herrn Prof. Dr. J. Matthias Starck im Bereich von Department Biologie II an der Ludwig‐Maximilians‐Universität München Erstgutachter: Prof. Dr. J. Matthias Starck Zweitgutachter: Prof. Dr. Roland Melzer Tag der Abgabe: 18.12.2018 Tag der mündlichen Prüfung: 01.03.2019 iii Erklärung Ich versichere hiermit an Eides statt, dass meine Dissertation selbständig und ohne unerlaubte Hilfsmittel angefertigt worden ist. Die vorliegende Dissertation wurde weder ganz, noch teilweise bei einer anderen Prüfungskommission vorgelegt. Ich habe noch zu keinem früheren Zeitpunkt versucht, eine Dissertation einzureichen oder an einer Doktorprüfung teilzunehmen. Gröbenzell, den 18.12.2018 Sandra Franz-Guess, M.Sc. iv List of additional publications Publication I Czaczkes, T. J.; Franz, S.; Witte, V.; Heinze, J. 2015. Perception of collective path use affects path selection in ants. Animal Behaviour 99: 15–24. Publication II Franz-Guess, S.; Klußmann-Fricke, B. J.; Wirkner, C. S.; Prendini, L.; Starck, J. M. 2016. Morphology of the tracheal system of camel spiders (Chelicerata: Solifugae) based on micro-CT and 3D-reconstruction in exemplar species from three families. Arthropod Structure & Development 45: 440–451. Publication III Franz-Guess, S.; & Starck, J. M. 2016. Histological and ultrastructural analysis of the respiratory tracheae of Galeodes granti (Chelicerata: Solifugae). Arthropod Structure & Development 45: 452–461. Publication IV Starck, J. M.; Neul, A.; Schmidt, V.; Kolb, T.; Franz-Guess, S.; Balcecean, D.; Pees, M. 2017. Morphology and morphometry of the lung in corn snakes (Pantherophis guttatus) infected with three different strains of ferlavirus.
    [Show full text]
  • Distribution and Conservation Genetics of the Cow Knob Salamander, Plethodon Punctatus Highton (Caudata: Plethodontidae)
    Distribution and Conservation Genetics of the Cow Knob Salamander, Plethodon punctatus Highton (Caudata: Plethodontidae) Thesis submitted to The Graduate College of Marshall University In partial fulfillment of the Requirements for the degree Master of Science Biological Sciences by Matthew R. Graham Thomas K. Pauley, Committee Chairman Victor Fet, Committee Member Guo-Zhang Zhu, Committee Member April 29, 2007 ii Distribution and Conservation Genetics of the Cow Knob Salamander, Plethodon punctatus Highton (Caudata: Plethodontidae) MATTHEW R. GRAHAM Department of Biological Sciences, Marshall University Huntington, West Virginia 25755-2510, USA email: [email protected] Summary Being lungless, plethodontid salamanders respire through their skin and are especially sensitive to environmental disturbances. Habitat fragmentation, low abundance, extreme habitat requirements, and a narrow distribution of less than 70 miles in length, makes one such salamander, Plethodon punctatus, a species of concern (S1) in West Virginia. To better understand this sensitive species, day and night survey hikes were conducted through ideal habitat and coordinate data as well as tail tips (10 to 20 mm in length) were collected. DNA was extracted from the tail tips and polymerase chain reaction (PCR) was used to amplify mitochondrial 16S rRNA gene fragments. Maximum parsimony, neighbor-joining, and UPGMA algorithms were used to produce phylogenetic haplotype trees, rooted with P. wehrlei. Based on our DNA sequence data, four disparate management units are designated. Surveys revealed new records on Jack Mountain, a disjunct population that expands the known distribution of the species 10 miles west. In addition, surveys by Flint verified a population on Nathaniel Mountain, WV and revealed new records on Elliot Knob, extending the known range several miles south.
    [Show full text]
  • A Global Accounting of Medically Significant Scorpions
    Toxicon 151 (2018) 137–155 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts T ∗ Micaiah J. Ward , Schyler A. Ellsworth1, Gunnar S. Nystrom1 Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA ARTICLE INFO ABSTRACT Keywords: Scorpions are an ancient and diverse venomous lineage, with over 2200 currently recognized species. Only a Scorpion small fraction of scorpion species are considered harmful to humans, but the often life-threatening symptoms Venom caused by a single sting are significant enough to recognize scorpionism as a global health problem. The con- Scorpionism tinued discovery and classification of new species has led to a steady increase in the number of both harmful and Scorpion envenomation harmless scorpion species. The purpose of this review is to update the global record of medically significant Scorpion distribution scorpion species, assigning each to a recognized sting class based on reported symptoms, and provide the major toxin classes identified in their venoms. We also aim to shed light on the harmless species that, although not a threat to human health, should still be considered medically relevant for their potential in therapeutic devel- opment. Included in our review is discussion of the many contributing factors that may cause error in epide- miological estimations and in the determination of medically significant scorpion species, and we provide suggestions for future scorpion research that will aid in overcoming these errors. 1. Introduction toxins (Possani et al., 1999; de la Vega and Possani, 2004; de la Vega et al., 2010; Quintero-Hernández et al., 2013).
    [Show full text]
  • Anatomically Modern Carboniferous Harvestmen Demonstrate Early Cladogenesis and Stasis in Opiliones
    ARTICLE Received 14 Feb 2011 | Accepted 27 Jul 2011 | Published 23 Aug 2011 DOI: 10.1038/ncomms1458 Anatomically modern Carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones Russell J. Garwood1, Jason A. Dunlop2, Gonzalo Giribet3 & Mark D. Sutton1 Harvestmen, the third most-diverse arachnid order, are an ancient group found on all continental landmasses, except Antarctica. However, a terrestrial mode of life and leathery, poorly mineralized exoskeleton makes preservation unlikely, and their fossil record is limited. The few Palaeozoic species discovered to date appear surprisingly modern, but are too poorly preserved to allow unequivocal taxonomic placement. Here, we use high-resolution X-ray micro-tomography to describe two new harvestmen from the Carboniferous (~305 Myr) of France. The resulting computer models allow the first phylogenetic analysis of any Palaeozoic Opiliones, explicitly resolving both specimens as members of different extant lineages, and providing corroboration for molecular estimates of an early Palaeozoic radiation within the order. Furthermore, remarkable similarities between these fossils and extant harvestmen implies extensive morphological stasis in the order. Compared with other arachnids—and terrestrial arthropods generally—harvestmen are amongst the first groups to evolve fully modern body plans. 1 Department of Earth Science and Engineering, Imperial College, London SW7 2AZ, UK. 2 Museum für Naturkunde at the Humboldt University Berlin, D-10115 Berlin, Germany. 3 Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA. Correspondence and requests for materials should be addressed to R.J.G. (email: [email protected]) and for phylogenetic analysis, G.G. (email: [email protected]).
    [Show full text]
  • Scorpiones: Vaejovidae)
    A New Species of Vaejovis from Chaparral Habitat Near Yarnell, Arizona (Scorpiones: Vaejovidae) Richard F. Ayrey July 2014 — No. 188 Euscorpius Occasional Publications in Scorpiology EDITOR: Victor Fet, Marshall University, ‘[email protected]’ ASSOCIATE EDITOR: Michael E. Soleglad, ‘[email protected]’ Euscorpius is the first research publication completely devoted to scorpions (Arachnida: Scorpiones). Euscorpius takes advantage of the rapidly evolving medium of quick online publication, at the same time maintaining high research standards for the burgeoning field of scorpion science (scorpiology). Euscorpius is an expedient and viable medium for the publication of serious papers in scorpiology, including (but not limited to): systematics, evolution, ecology, biogeography, and general biology of scorpions. Review papers, descriptions of new taxa, faunistic surveys, lists of museum collections, and book reviews are welcome. Derivatio Nominis The name Euscorpius Thorell, 1876 refers to the most common genus of scorpions in the Mediterranean region and southern Europe (family Euscorpiidae). Euscorpius is located at: http://www.science.marshall.edu/fet/Euscorpius (Marshall University, Huntington, West Virginia 25755-2510, USA) ICZN COMPLIANCE OF ELECTRONIC PUBLICATIONS: Electronic (“e-only”) publications are fully compliant with ICZN (International Code of Zoological Nomenclature) (i.e. for the purposes of new names and new nomenclatural acts) when properly archived and registered. All Euscorpius issues starting from No. 156 (2013) are archived in two electronic archives: Biotaxa, http://biotaxa.org/Euscorpius (ICZN-approved and ZooBank-enabled) Marshall Digital Scholar, http://mds.marshall.edu/euscorpius/. (This website also archives all Euscorpius issues previously published on CD-ROMs.) Between 2000 and 2013, ICZN did not accept online texts as "published work" (Article 9.8).
    [Show full text]