Non-Target Effects of Genetically Modified Trees

Total Page:16

File Type:pdf, Size:1020Kb

Non-Target Effects of Genetically Modified Trees NON-TARGET EFFECTS OF GENETICALLY MODIFIED TREES Patrik Blomberg 2007 Department of Ecology and Environmental Science Umeå University SE-901 87 Umeå Sweden AKADEMISK AVHANDLING som med vederbörligt tillstånd av rektorsämbetet vid Umeå universitet för erhållande av filosofie doktorsexamen i ekologi kommer att offentligen försvaras lördagen den 6 oktober 2007, kl. 10.00 i Lilla hörsalen, KBC. Examinator: Professor Lars Ericson, Umeå universitet Opponent: Professor Jan Stenlid, Institutionen för skoglig mykologi och patologi, Sveriges lantbruksuniversitet, SLU, Uppsala ISBN: 978-91-7264-391-8 © PATRIK BLOMBERG 2007 Printed by VMC, KBC, Umeå University, Umeå 2007 ORGANISATION DOCUMENT NAME Dept. of Ecology and Environmental Science Doctoral Dissertation Umeå University DATE OF ISSUE SE-901 87 Umeå, Sweden October 2007 AUTHOR Patrik Blomberg TITLE Non-target Effects of Genetically Modified Trees ABSTRACT To date, few studies have focused on the effects of genetically modified trees (GM trees) on the environment. One concern with GM trees is that they may have unanticipated effects on non-target organisms, i.e. effects on organisms that are not direct targets of the genetically modified trait. The main objective of this thesis was to study potential non-target effects from the interaction between GM trees and natural enemies, including phytopathogens and herbivorous insects. To study this I used a system consisting of GM trees featuring changes in growth-related characteristics, and naturally occurring enemies. The GM trees used were the aspen hybrids Populus tremula x tremuloides: one unmodified wild type clone T89 (control) and transgenic lines with altered expression of gibberellin (GA 20-oxidase), sucrose (SPS) or pectin (PME); and Populus tremula x alba: one unmodified wild type clone INRA 717-1-B4 (control) and lines modified to suppress the activity of the enzymes in the lignin biosynthetic pathway, i.e. CAD, COMT, CCR or CCoAOMT. The natural enemies used were the parasitic phytopathogens Melampsora pinitorqua, M. populnea and Venturia tremulae, and the herbivorous leaf-beetle Phratora vitellinae. To address this question inoculation experiments, feeding preference experiments, analyses of secondary chemistry and field inventories were performed. The results of the studies showed that the GM trees significantly affected the interaction with the natural enemies, both in the laboratory as well as in the field. For instance, both M. pinitorqua and V. tremulae showed an altered disease incidence on the GM trees of P. tremula x tremuloides compared to the unmodified wild type T89, where all tested transgenic lines exhibited altered susceptibility to the pathogens. However, there were also differences in aggressiveness to the aspens depending on pathogen population. The results from the field inventory showed that lines within all tested transgenic construct, COMT, CAD, CCoAOMT and CCR of P. tremula x alba differed significantly from the wild type INRA 717-1-B4 in susceptibility to M. populnea. In addition, the susceptibility to the rust also differed significantly between lines carrying the same transgenic constructs. Furthermore, we found that overexpression of SPS in P. tremula x tremuloides, unintentionally induced changes in plant secondary chemistry, where the GM-line SPS33A exhibited the largest deviation from the wild type T89 in contents of plant phenolics and nitrogen, and that these changes coincide with a concurrent decrease in herbivory by P. vitellinae on this line. I argue that the altered interactions are the result of physiological changes in the trees. They can originate from direct effects i.e. altered expression of the modified trait, indirect effects of the genetic modification process e.g. pleiotropy, or effects from the transformation process e.g. position effects, to which the tested natural enemies respond. The result stresses the importance of further research on the causes and mechanisms responsible for the altered interaction between GM trees and non-target organisms, as well as evaluating the potential environmental effects of cultivation of GM trees in the field. Such research will require collaboration between researchers from different disciplines, such as plant ecology and physiology, functional genomics, proteomics and metabolomics. KEY WORDS: Genetically modified, GM trees, Populus, transgenic, non-target effects, natural enemies, plant-pathogen/herbivore interaction, environmental effects, parasitic fungi, herbivorous insect, secondary metabolism, phytochemistry LANGUAGE: English ISBN: 978-91-7264-391-8 NUMBER OF PAGES: 27 + 4 papers SIGNATURE: DATE: 2007-09-03 NON-TARGET EFFECTS OF GENETICALLY MODIFIED TREES Patrik Blomberg 2007 Department of Ecology and Environmental Science Umeå University SE-901 87 Umeå Sweden Dept. of Ecology and Environmental Science Umeå University SE-901 87 Umeå Sweden ISBN: 978-91-7264-391-8 © PATRIK BLOMBERG 2007 Printed by VMC, KBC, Umeå University, Umeå, Sweden, 2007 LIST OF PAPERS This thesis is based on the following papers, which will be referred to in the text by the corresponding Roman numerals: I Blomberg, P., Wennström, A., Hjältén, J., Lindau, A. & Ericson, L. Testing the effect of genetically modified hybrid aspen Populus tremula x tremuloides on the interaction with the non-target pathogen Melampsora pinitorqua. (Submitted manuscript) II Blomberg, P., Wennström, A., Hjältén, J., Lindau, A. & Ericson, L. Genetically engineered aspen (Populus tremula x tremuloides) alters its interactions with the non-target pathogen Venturia tremulae. (Accepted manuscript) III Hjältén, J., Lindau, A., Wennström, A., Blomberg, P., Witzell, J., Hurry, V. & Ericson, L. (2007). Unintentional changes of defence traits in GM trees can influence plant-herbivore interactions. Basic and Applied Ecology 8:434-443. IV Blomberg, P., Wennström, A., Hjältén, J., Lindau, A., Ericson, L. & Pilate, G. Field survey of genetically modified trees (Populus tremula x alba) with altered lignification unveils altered susceptibility to the non-target pathogen Melampsora populnea. (Manuscript) Paper III is reproduced with kind permission from the publisher. TABLE OF CONTENTS INTRODUCTION 7 OBJECTIVES OF THE THESIS 9 MATERIAL AND METHODS 9 Populus: a model tree 9 Study systems 10 Description of the studies 12 MAJOR RESULTS 14 DISCUSSION 15 Mechanisms responsible to altered interactions 15 Potential environmental effects 18 Future perspectives 19 ACKNOWLEDGEMENTS 20 REFERENCES 20 APPENDICES: PAPER I – IV INTRODUCTION Forestry and forest products are of great importance to the world economy, but forests are also important for biodiversity, creating potential conflicts between production and environmental goals. Forest trees have a wide range of commercial uses, providing wood for heating and cooking, timber for construction, raw materials for paper and pulp production and biofuel. Furthermore, due to increases in the world’s human population, economic development, and pressures to reduce the use of non-renewable resources, global demands for forest products are increasing (FAO, 2001). Thus, there is an increasing need to increase forest productivity and to create novel forest products while finding ways to protect biodiversity in forest ecosystem. Since improving trees by conventional breeding is heavily constrained by e.g. long reproductive cycles genetic engineering offers an attractive alternative, offering the potential to transfer specific traits into selected genotypes without affecting desirable aspects of their genetic background (Pena & Séguin, 2001). Plantation forestry combined with forest biotechnology and genetic engineering of trees is likely to become a major source for wood products in the future (Tzfira et al., 1998, Pullman et al., 1998, Sedjo, 2001, Fenning & Gershenzon, 2002, Campbell et al., 2003). Currently a number of ongoing research projects are exploring the possibilities to genetically modify forest trees for use in forestry applications. The major goals of such projects include: improving the productivity of trees by increasing their growth rates; altering wood quality and chemical parameters in desired ways for specific uses, e.g. to improve the cost efficiency of paper and pulp production; increasing their resistance to pests and herbicides; enhancing their tolerance of various kinds of abiotic stresses; controlling flowering and maturation; and optimizing their suitability for bio/phytoremediation of polluted land and water (Tzfira et al., 1998, Pena & Séguin, 2001, Bradshaw & Strauss, 2001, Campbell et al., 2003, Brunner & Nilsson, 2004). - 7 - Although genetically modified (GM) trees have great potential utility in forestry, a number of possible environmental risks associated with their release have been identified, as discussed in a number of reviews in the last decade (e.g. James et al., 1998, Mathews & Campbell, 2000, Wennström, 2004, Van Frankenhuyzen & Beardmore, 2004, Snow et al., 2005, Hoenicka & Fladung, 2006). However, little empirical information is available for assessing the probability and scale of the possible risks. In contrast to crops, on which most research concerning risks associated with GM organisms has focused, trees are essentially undomesticated, having long lifespans and defining the structure of many communities (Raffa, 2001). These features increase not only the likelihood of transgene escape and hybridization with wild relatives, but also the trees’ exposure to various abiotic and biotic stresses (Raffa, 2001, Van Frankenhuyzen & Beardmore,
Recommended publications
  • Overcoming the Challenges of Tamarix Management with Diorhabda Carinulata Through the Identification and Application of Semioche
    OVERCOMING THE CHALLENGES OF TAMARIX MANAGEMENT WITH DIORHABDA CARINULATA THROUGH THE IDENTIFICATION AND APPLICATION OF SEMIOCHEMICALS by Alexander Michael Gaffke A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Ecology and Environmental Sciences MONTANA STATE UNIVERSITY Bozeman, Montana May 2018 ©COPYRIGHT by Alexander Michael Gaffke 2018 All Rights Reserved ii ACKNOWLEDGEMENTS This project would not have been possible without the unconditional support of my family, Mike, Shelly, and Tony Gaffke. I must thank Dr. Roxie Sporleder for opening my world to the joy of reading. Thanks must also be shared with Dr. Allard Cossé, Dr. Robert Bartelt, Dr. Bruce Zilkowshi, Dr. Richard Petroski, Dr. C. Jack Deloach, Dr. Tom Dudley, and Dr. Dan Bean whose previous work with Tamarix and Diorhabda carinulata set the foundations for this research. I must express my sincerest gratitude to my Advisor Dr. David Weaver, and my committee: Dr. Sharlene Sing, Dr. Bob Peterson and Dr. Dan Bean for their guidance throughout this project. To Megan Hofland and Norma Irish, thanks for keeping me sane. iii TABLE OF CONTENTS 1. INTRODUCTION ...........................................................................................................1 Tamarix ............................................................................................................................1 Taxonomy ................................................................................................................1 Introduction
    [Show full text]
  • Final Report 1
    Sand pit for Biodiversity at Cep II quarry Researcher: Klára Řehounková Research group: Petr Bogusch, David Boukal, Milan Boukal, Lukáš Čížek, František Grycz, Petr Hesoun, Kamila Lencová, Anna Lepšová, Jan Máca, Pavel Marhoul, Klára Řehounková, Jiří Řehounek, Lenka Schmidtmayerová, Robert Tropek Březen – září 2012 Abstract We compared the effect of restoration status (technical reclamation, spontaneous succession, disturbed succession) on the communities of vascular plants and assemblages of arthropods in CEP II sand pit (T řebo ňsko region, SW part of the Czech Republic) to evaluate their biodiversity and conservation potential. We also studied the experimental restoration of psammophytic grasslands to compare the impact of two near-natural restoration methods (spontaneous and assisted succession) to establishment of target species. The sand pit comprises stages of 2 to 30 years since site abandonment with moisture gradient from wet to dry habitats. In all studied groups, i.e. vascular pants and arthropods, open spontaneously revegetated sites continuously disturbed by intensive recreation activities hosted the largest proportion of target and endangered species which occurred less in the more closed spontaneously revegetated sites and which were nearly absent in technically reclaimed sites. Out results provide clear evidence that the mosaics of spontaneously established forests habitats and open sand habitats are the most valuable stands from the conservation point of view. It has been documented that no expensive technical reclamations are needed to restore post-mining sites which can serve as secondary habitats for many endangered and declining species. The experimental restoration of rare and endangered plant communities seems to be efficient and promising method for a future large-scale restoration projects in abandoned sand pits.
    [Show full text]
  • Influence of Coarse Woody Debris on Seedlings and Saplings in A
    INFLUENCE OF COARSE WOODY DEBRIS ON SEEDLINGS AND SAPLINGS IN A PINUS PALUSTRIS WOODLAND by ALEXANDRA LOGAN JUSTIN L. HART, COMMITTEE CHAIR MATTHEW C. LAFEVOR ARVIND A.R. BHUTA A THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Geography in the Graduate School of The University of Alabama TUSCALOOSA, ALABAMA 2020 Copyright Alexandra Logan 2020 ALL RIGHTS RESERVED 2 ABSTRACT Coarse woody debris (CWD) has beneficial effects on plant growth and establishment. Longleaf pine (Pinus palustris Mill.) stands support relatively low amounts of CWD — 2 to 30 m3 ha-1. In April 2011, an EF3 tornado passed through the Oakmulgee Ranger District of the Talladega National Forest in the Fall Line Hills of Alabama. This disturbance resulted in the large addition of CWD to a longleaf pine woodland, and a rare opportunity to analyze how CWD can influence a managed, pine woodland. The goal of this study was to examine the effect of CWD on woody plant richness, density, and growth rate (quantified by height) in a longleaf pine woodland that experienced a catastrophic wind disturbance. A total of three 1 m2 quadrats were established against either side of a piece of CWD (> 3 m in length and ≥ 10 cm in diameter). Another quadrat was established at least 3 m away from the focal CWD piece. For each plot, the presence and height of every woody plant (< 5 cm dbh) were recorded. Sapling density, oak and hickory density, and organic matter were all found to be significantly higher in quadrats adjacent to CWD than away (all p < 0.05).
    [Show full text]
  • Biodiversa-Project Description-Final Version-110213
    1.A. Detailed description of the research area and research plan Context of the proposal Biological invasions (bioinvasions) are defined as the successful establishment and spread of species outside their native range. They act as a major driver of global changes in species distribution. Diverse organisms and ecosystems may be involved, and although not all invasions have a negative impact, the ecological consequences often include the loss of native biological diversity and changes in community structure and ecosystem activity. There may also be additional negative effects on agriculture, forests, fisheries, and human health. National governments, intergovernmental structures like the European Commission and international organizations such as EPPO, CABI and IUCN have therefore mobilized to (i) introduce international laws on invasive species, (ii) organize international networks of scientists and stakeholders to study bioinvasions, and (iii) formalize the cooperation between national environmental or agricultural protection agencies (e.g. the French Agence Nationale de Sécurité Sanitaire, ANSES). Several billion euros are spent annually to address the problems caused by bioinvasions and the scientific community has focused on predicting and controlling future invasions by understanding how they occur. A peer-reviewed journal entitled "Biological Invasions” has been published since 1999. Ecologists have long drawn attention to the negative ecological effects of invasive species, whereas the evolutionary aspects of bioinvasions have received comparatively little attention. This reflects the fact that: i) invasive populations were thought to experience significant bottlenecks during their introduction to new environments and thus possess a limited potential to evolve; and ii) evolution was considered too slow to play a significant role given the relatively short timescale of the invasion process.
    [Show full text]
  • Relative Impacts of Environmental Variation and Evolutionary History on the Nestedness and Modularity of Tree–Herbivo
    Relative impacts of environmental variation and evolutionary history on the nestedness and modularity of tree-herbivore networks Robinson, Kathryn M.; Hauzy, Céline; Loeuille, Nicolas; Albrectsen, Benedicte R. Published in: Ecology and Evolution DOI: 10.1002/ece3.1559 Publication date: 2015 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Robinson, K. M., Hauzy, C., Loeuille, N., & Albrectsen, B. R. (2015). Relative impacts of environmental variation and evolutionary history on the nestedness and modularity of tree-herbivore networks. Ecology and Evolution, 5(14), 2898-2915. https://doi.org/10.1002/ece3.1559 Download date: 05. Oct. 2021 Relative impacts of environmental variation and evolutionary history on the nestedness and modularity of tree–herbivore networks Kathryn M. Robinson1,2,Celine Hauzy3, Nicolas Loeuille3 & Benedicte R. Albrectsen2,4 1Department of Forest Genetics and Plant Physiology, Umea Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umea, Sweden 2Department of Plant Physiology, Umea Plant Science Centre, Umea University, 901 87, Umea, Sweden 3Institute of Ecology and Environmental Sciences of Paris, UMR7618, UPMC-CNRS, 7 quai St Bernard, 75005, Paris, France 4Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK 1871, Frederiksberg C, Denmark Keywords Abstract Antagonism, arthropod, aspen, bipartite networks, degree of specialization, Nestedness and modularity are measures of ecological networks whose causative modularity, nestedness, trophic strength. effects are little understood. We analyzed antagonistic plant–herbivore bipartite networks using common gardens in two contrasting environments comprised Correspondence of aspen trees with differing evolutionary histories of defence against herbivores. Benedicte R.
    [Show full text]
  • Implementing Sustainable Forest Management Using Six Concepts In
    Journal of Sustainable Forestry, 29:79–108, 2010 Copyright © Taylor & Francis Group, LLC ISSN: 1054-9811 print/1540-756X online DOI: 10.1080/10549810903463494 WJSF1054-98111540-756XJournalImplementing of Sustainable Forestry,Forestry Vol. 29, No. 1, January-March 2009: pp. 0–0 Sustainable Forest Management Using Six Concepts in an Adaptive Management Framework ForestB. C. Foster in an etAdaptive al. Management Framework BRYAN C. FOSTER1, DEANE WANG1, WILLIAM S. KEETON1, and MARK S. ASHTON2 1Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, USA 2School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA Certification and principles, criteria and indicators (PCI) describe desired ends for sustainable forest management (SFM) but do not address potential means to achieve those ends. As a result, forest owners and managers participating in certification and employing PCI as tools to achieving SFM may be doing so inefficiently: achiev- ing results by trial-and-error rather than by targeted management practices; dispersing resources away from priority objectives; and passively monitoring outcomes rather than actively establishing quantitative goals. In this literature review, we propose six con- cepts to guide SFM implementation. These concepts include: Best Management Practices (BMPs)/Reduced Impact Logging (RIL), biodiversity conservation, forest protection, multi-scale planning, participatory forestry, and sustained forest production. We place Downloaded By: [Keeton, W. S.] At: 16:17 8 March 2010 these concepts within an iterative decision-making framework of planning, implementation, and assessment, and provide brief definitions of and practices delimited by each concept. A case study describing SFM in the neo-tropics illustrates a potential application of our six concepts.
    [Show full text]
  • Diseases of Trees in the Great Plains
    United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here.
    [Show full text]
  • DIAGNOSIS of FOREST DISEASES DR. GEORGE H. HEFTING (L
    DIAGNOSIS OF FOREST DISEASES BY DR. GEORGE H. HEFTING (l) Diagnosis is well defined by Webster as "the art of recognizing a disease from its symptoms." In animals many diseases can be identified and their course predicted (prognosis) without knowing the cause. Such is the case with cancer, gout, mononucleosis, and many other familiar diseases for which the cause is not known, In the case of plant diseases, none of which are psychosomatic, diagnosis virtually requires determining the cause, Having told you what diagnosis is, I would like to tell you--with respect to forest pathology--one thing that it isn't. It is not, for most of us, a field to which the brave slogan, "Do it yourself" applies. If today's diagnosing physician had to trade places with a forest pathologist here are some of the things that he would discover: 1. Instead of one host species, Homo sapiens, he has to deal with 150 or more species. 2. The patient cannot say where, when or how it hurts. 3. He has no sophisticated techniques such as x-ray, electrocardiogram, blood sugar, and urine analysis, etc., at his disposal. 4. He is expected to cope with everything from awart to a cataract to leukemia. 5, He has over a thousand potential pathogens to consider among the causes of plant disease. Now you see where we are and why we need all the joint effort we can get from each other. Now we will look at how we go about diagnosing plant diseases. The sequence of steps is usually as follows: 1.
    [Show full text]
  • Forest Pathology in the Pacific (FSM, CNMI, Guam and Hawaii), 2015, Trip Report
    Forest Pathology in the Pacific (FSM, CNMI, Guam and Hawaii), 2015, Trip Report By Phil Cannon Figure1. A fresh orange and white mycelial weft of the butt-rotting fungus Phellinus noxius advances up the outside of a pengua tree (Macaranga thompsonii) near Ritidian, Guam. During Typhoon Dolphin, the bark of roots was cut by the sharp karst limestone as the strong winds rocked the trees. This made it easier for the fungus to become established. The heavy rains that accompanied the intense 2015 typhoon season were also conducive to high levels of mycelial growth and spore production. Summary In 2013, the author made his first major trip to investigate Phellinus noxius and other forest pathogens in FSM, CNMI and Guam. On that trip, four other forest pathologists joined in for the visits to Guam, Saipan and Pohnpei. Soon thereafter, a trip report and four publications were produced and DNA from isolations made during this trip were sent off for molecular assessment. In the ensuring two years, genetic information gathered from these analyses was generated. Some of these results are presented in the first chapter of this report. Then, from Oct 25th through Nov. 25th, 2015, the author again traveled to the Federated States of Micronesia (Kosrae, Pohnpei, Chuuk and Yap), the Commonwealth of Northern Marianas Islands (Saipan), Guam and Hawaii (Oahu and the Island of Hawaii) to work on Forest Pathology issues affecting these states and territories. In FSM, CNMI and Guam, the main disease worked on, again, was Phellinus noxius, a root and butt rotting fungus that speedily kills a very wide range of tropical tree species.
    [Show full text]
  • FOREST ECOLOGY and MANAGEMENT NEWS a Newsletter for Department of Forest Ecology and Management Staff, Students and Alumni
    FOREST ECOLOGY AND MANAGEMENT NEWS A Newsletter for Department of Forest Ecology and Management Staff, Students and Alumni Vol. 6, No. 1 March 2003 won’t deter them from following a family in Wisconsin. Check out the News from dream or allow them to accept failure. Land Between the Lakes web site at This year’s graduating class is no excep- <http://www.lbl.org/> as you plan your the Chair tion, and most already are immersed in next camping trip. Brian would love to graduate study, work, or travel, both see old (and young) classmates visit home and abroad. It is also a pleasure to him. Tuesday, February 18th ranks as a ‘dou- report that our department successfully ble barreled’kind of day – one that most completed its periodic Society of Kate Wipperman (BS 2002) is working chairs hope they never experience. The American Foresters accreditation review. as a Project Assistant for the Natural day began with a dean’s budget meeting We met all educational requirements and Heritage Land Trust (NHLT) in where I learned just what part of our col- satisfied every standard – a fine tribute Madison. Kate majored in Recreation lective hide we would lose to meet the to the university and our faculty. Resources Management and Botany and state-mandated 2003-04 budget cuts. also received an IES Certificate. In Forest Ecology and Management Please read and enjoy this newsletter. August she landed a position with returned a sum in excess of $10,000, but We like to think we put it together with NHLT, an organization dedicated to the I felt fortunate knowing that other our alumni and friends in mind.
    [Show full text]
  • An Evolutionary Ecology Perspective to Address Forest Pathology Challenges of Today and Tomorrow
    Annals of Forest Science DOI 10.1007/s13595-015-0487-4 REVIEW PAPER An evolutionary ecology perspective to address forest pathology challenges of today and tomorrow Marie-Laure Desprez-Loustau1,2 & Jaime Aguayo3 & Cyril Dutech1,2 & Katherine J. Hayden4,5 & Claude Husson4,5 & Boris Jakushkin 1,2 & Benoît Marçais4,5 & Dominique Piou1,6 & Cécile Robin1,2 & Corinne Vacher1,2 Received: 26 December 2014 /Accepted: 21 April 2015 # The Authors 2015. This article is published with open access at Springerlink.com Abstract & Context Forest pathology has historically relied on an eco- & Key message Increasing human impacts on forests, in- logical approach to understand and address the practical man- cluding unintentional movement of pathogens, climate agement of forest diseases. A widening of this perspective to change, and large-scale intensive plantations, are associated include evolutionary considerations has been increasingly de- with an unprecedented rate of new diseases. An evolution- veloped in response to the rising rates of genetic change in ary ecology perspective can help address these challenges both pathogen populations and tree populations due to human and provide direction for sustainable forest management. activities. & Aims Here, five topics for which the evolutionary perspec- tive is especially relevant are highlighted. Handling Editor: Jean-Michel Leban & Results The first relates to the evolutionary diversity of fungi Contribution of the co-authors J. Aguayo, C. Husson, and B. Marçais and fungal-like organisms, with issues linked to the identifi- wrote the first draft of the part dealing with fungal diversity, C. Dutech of cation of species and their ecological niches. The second the part dealing with pathogen evolution, M.-L.
    [Show full text]
  • National Poplar Commission of Sweden
    National Poplar Commission of Sweden Country Report 2008 – 2011 Lars Rytter1, Gabriele Engqvist2 and Martin Weih3 1The Forestry Research Institute of Sweden (Skogforsk),Ekebo 2250, SE-268 90 Svalöv, Sweden, email: [email protected] 2Lantmännen SW Seed AB Onsjövägen 13, SE-268 81 Svalöv email: [email protected] 3Swedish University of Agricultural Sciences (SLU), Dept. Crop Production Ecology, Ulls väg 16, SE-750 07 Uppsala, email: [email protected] I. POLICY AND LEGAL FRAMEWORK IPC aims to promote the cultivation, conservation and utilization of members of the family Salicaceae, which includes poplars and willows. In this context we see that the major interest for the species in Sweden lies in developing new cultivars, cultivation and utilization of them, and environmental effects of cultivation. That does not mean that conservation issues are lacking, but are of less size. The values of old sallow and aspen are well known and they constitute valuable ingredients in nature reserves and landscape planning. Europe and Sweden are implementing strategies for greenhouse gas emission objectives, including ambitious targets for renewable energy. In Sweden, biomass production with willows, aspens and poplars on agricultural land will play a key role in this development. During recent years, Sweden has been rather successful in introducing biomass as fuel for heat and electricity production and in 2011 bioenergy became the single largest energy source in the country representing 32 % of the energy consumption. Do date this source is dominated by black liquors and biofuels from forest residues, but new sources like aspens, poplars and willows are increasing. The success of bioenergy was initially the result of a combination of exogenous success factors such as high levels of available forestry resources, a strong forest products industry, and the existence of an established network of district heating systems.
    [Show full text]