Integral Representations of Unbounded Operators by Infinitely Smooth Kernels

Total Page:16

File Type:pdf, Size:1020Kb

Integral Representations of Unbounded Operators by Infinitely Smooth Kernels CEJM 3(4) 2005 654{665 Central European Journal of Mathematics Integral representations of unbounded operators by infinitely smooth kernels Igor M. Novitski˘ı∗ Institute for Applied Mathematics Far-Eastern Branch of the Russian Academy of Sciences, 92, Zaparina Street, 680 000 Khabarovsk, Russia Abstract: In this paper, we prove that every unbounded linear operator satisfying the Korotkov-Weidmann characterization is unitarily equivalent to an integral operator in L2(R), with a bounded and infinitely smooth Carleman kernel. The established unitary equivalence is implemented by explicitly definable unitary operators. Keywords: Closed linear operator, integral linear operator, Carleman kernel, characterization theorems for integral operators MSC (2000): 47G10, 45P05 1 Introduction and statement of the main result The characterization theorems for integral operators in L2 spaces [4, 7] say that these operators are models for most linear operators in Hilbert spaces; and, therefore there is a series of important problems in operator theory, including the famous invariant subspace problem, which can be equivalently reformulated to the class of integral operators (see, e.g., Problem 6 in [8, x 3]). On the other hand, in order to be analytically usable, an integral model of an operator should have a kernel being tractable by means of analytical techniques, and our emphasis here is on the bounded, infinitely smooth Carleman kernels on R2, uniformly approximable by their restrictions to bounded rectangles, which are in turn perfect for applying classical methods of integral equation theory. The apparatus of Fredholm's minors has been adapted for such type kernels in [13, 14]. In a sense, the present paper can be thought of as a continuation of [12], where, in ∗ E-mail: [email protected] I.M. Novitski˘ı 655 particular, it was proved that if a bounded linear operator is unitarily equivalent to an integral operator, then that operator is unitarily equivalent to an integral operator with a Carleman kernel of any given degree of smoothness. Here, this result extends from the bounded to the unbounded operators in the assumption, and is restricted from the finitely differentiable to the infinitely differentiable kernels in the conclusion. The new result can be expressed by saying that if a closed linear operator is unitarily equivalent to an integral operator with a Carleman kernel, then that operator is unitarily equivalent to an integral operator with an infinitely smooth Carleman kernel. To state the result more precisely we need to record some definitions, and some known results along these lines, for comparison. Throughout this paper, H is a complex, separable, infinite-dimensional Hilbert space with norm ∥·∥H and inner product ⟨·; ·⟩H, and the symbols C, N, and Z, refer to the complex plane, the set of all positive integers, and the set of all integers, respectively. Let C(H) be the set of all closed, linear, densely defined operators in H, let R(H) be the algebra of all bounded linear operators on H, and let Sp(H) be the Schatten-von Neumann p-ideal of compact linear operators on H [2, Chapter III, x7]. For an operator ∗ S in C(H), DS stands for a linear manifold that is the domain of S, and S for the adjoint to S (w.r.t. ⟨·; ·⟩H). We let C0(H) denote the collection of all those operators S in C(H) ∗ for which there exists an orthonormal sequence feng ⊂ DS∗ such that lim kS enkH = 0. n!1 Let R be the real line (−∞; +1) equipped with the Lebesgue measure, and let R L2 = L2( ) be the Hilbert space of (equivalence classes of)R measurable complex-valued functions on R equipped with the inner product hf; gi = f(s)g(s) ds and the norm L2 R 1 kfk = hf; fi 2 . An operator T 2 C(L ) is said to be integral if there exists a measurable L2 L2 2 2 function T : R ! C, a kernel, such that, for each f 2 DT , Z (T f)(s) = T (s; t)f(t) dt for almost every s in R. R 2 A kernel T on R is said to be Carleman if T (s; ·) 2 L2 for almost every fixed s in R. Every Carleman kernel, T , induces a Carleman function t from R to L2 by t(s) = T (s; ·) for all s in R for which T (s; ·) 2 L2. The existence question for integral operators which are not in C0(L2) seems to be open at present (see Problem 1 in [8, x 5]). The question has the negative answer for integral operators whose domains are L2 (bounded integral operators) and for integral operators whose kernels are Carleman (Carleman integral operators), so both the classes indicated are included in C0(L2). On the other hand, a characterization theorem due to Korotkov [5] and Weidmann [18] asserts that unitary transformations can be constructed to bring operators of C0(L2) to integral form, with the representing kernels being at least simply Carleman. Here is a two-space version of that theorem. Proposition 1.1. If S 2 C0(H), then there exists a unitary operator U : H! L2 such −1 that the operator T = USU (DT = UDS) is an integral operator with a Carleman kernel. 656 I.M. Novitski˘ı The main point we are interested here is to try to adjust the unitary operators U in Proposition 1.1 so that the Carleman kernels of the output operators T are SK1-kernels, which we are going to define later. Fix any non-negative integer m and impose on a Carleman kernel T the following smoothness conditions: (i) the function T and all its partial derivatives on R2 up to order m are in C (R2; C), (ii) the Carleman function t, t(s) = T (s; ·), and all its (strong) derivatives on R up to order m are in C (R;L2). ∥·∥ Throughout this paper, C(X; B), where B is a Banach space (with norm B), denotes k k k k the Banach space (with the norm f C(X;B) = supx2X f(x) B) of continuous B-valued functions defined on a locally compact space X and vanishing at infinity (i.e., given any 2 ⊂ k k f C(X; B) and " > 0, there exists a compact subset X("; f) X such that f(x) B < " whenever x 62 X("; f)). A function T that satisfies conditions (i), (ii) is called an SKm-kernel [12]. In addition, an SKm-kernel T is called a Km-kernel [9, 11] if the conjugate transpose function T ∗ (T ∗(s; t) = T (t; s)) is also an SKm-kernel, i.e., ∗ (ii) the Carleman function t∗, t∗(s) = T ∗(s; ·), and all its (strong) derivatives on R up to order m are in C (R;L2). ∗ Note, incidentally, that Conditions (i), (ii), and (ii) , do not depend on each other in general, and that Condition (i) rules out the possibility for the nonzero SKm-kernels to be depending, for example, on only the difference or the sum of arguments; there are also less trivial examples of inadmissible dependences. The scale of the SKm(Km)-kernels can naturally be supplemented by infinitely smooth Carleman kernels, as follows. Definition 1.2. We say that a function T is an SK1(K1)-kernel if T is an SKm(Km)- kernel for each non-negative integer m. What follows is a thorough exposition in the chronological order of what has been published about integral representability of linear operators by Km- and SKm-kernels, whenever m is a priori fixed non-negative integer. Proposition 1.3. Let m be a fixed non-negative integer. Then (A) if for an operator S 2 C0(H) there exist a dense in H linear manifold D and an orthonormal sequence feng such that ∗ feng ⊂ D ⊂ DS \ DS∗ ; lim kSenkH = 0; lim kS enkH = 0; n!1 n!1 H! −1 then there exists a unitary operator Um : L2 such that T = UmSUm (DT = UmDS) is an integral operator with a Km-kernel (cf. [9], [10]), (B) if for an operator family fSα : α 2 Ag ⊂ C0(H) \ R(H) there exists an orthonor- mal sequence feng such that lim sup kS∗e k = 0; lim sup kS e k = 0; !1 α n H !1 α n H n α2A n α2A I.M. Novitski˘ı 657 then there exists a unitary operator Um : H! L2 such that for each α 2 A the operator −1 m Tα = UmSαUm (DTα = L2) is an integral operator with a K -kernel of Mercer type (cf. [11]), (C) if for a countable family fSr : r 2 Ng ⊂ C0(H)\R(H) there exists an orthonormal sequence feng such that k ∗ k ! ! 1 sup Sr en H 0 as n ; r2N then there exists a unitary operator Um : H! L2 such that for each r 2 N the operator −1 m Tr = UmSrUm (DTr = L2) is an integral operator with an SK -kernel (cf. [12]). It should be mentioned that the converse of (A), as well as of the singleton case of (B), also holds, and is due to a characterization theorem by Korotkov [6] for the so-called bi-Carleman integral operators. One more detail on Proposition 1.3 is that the proof of (C) given in [12] is not direct, and goes by a circuitous route, via Statements (B) and (A). Now we are ready to state our main result, which aims at the desirable sharpening of the conclusion of Proposition 1.1. Theorem 1.4. If S 2 C0(H), then there exists a unitary operator U1 : H! L2 such that −1 1 the operator T = U1SU1 (DT = U1DS) is an integral operator with an SK -kernel.
Recommended publications
  • On the Use of Boundary Integral Equations and Linear Operators in Room Acoustics
    Guimarães - Portugal paper ID: 169 /p.1 On the Use of Boundary Integral Equations and Linear Operators in Room Acoustics D. Alarcão and J. L. Bento Coelho CAPS – Instituto Superior Técnico, Av. Rovisco Pais, P-1049-001 Lisbon, Portugal, [email protected] RESUMO: Este artigo introduz alguns conceitos de base sobre equações integrais e mostra a sua aplicação na determinação da propagação de energia acústica em recintos fechados. Mostra-se que as equações integrais resultantes podem ser formuladas na linguagem dos operadores lineares, daí resultando uma notação simplificada em que as propriedades algébricas das equações que determinam a propagação da energia são mais facilmente caracterizadas. São apresentados alguns métodos gerais de resolução de equações integrais tal como métodos aproximados e métodos de bases vectoriais finitas. Apresentam-se, ainda, as definições necessárias envolvidas na descrição de campos de energia acústica, que servem de ponto de partida à aplicação das técnicas apresentadas. ABSTRACT: This paper introduces some basic concepts of boundary integral equations and their application for the determination of the propagation of sound energy inside enclosures. Linear operators are shown to provide a simplified notation and to emphasize the algebraic properties of the resulting integral equations. Some general methods of solving linear operator and integral equations are reviewed and discussed, such as approximation methods and finite basis methods. In addition, some of the necessary definitions involved in describing acoustic energy fields for applying these techniques in the field of room acoustics prediction are presented. 1. INTRODUCTION Energy based methods offer an interesting and valid alternative mid and high frequency technique to classical predictive methods such as FEM, BEM and others.
    [Show full text]
  • AMATH 731: Applied Functional Analysis Lecture Notes
    AMATH 731: Applied Functional Analysis Lecture Notes Sumeet Khatri November 24, 2014 Table of Contents List of Tables ................................................... v List of Theorems ................................................ ix List of Definitions ................................................ xii Preface ....................................................... xiii 1 Review of Real Analysis .......................................... 1 1.1 Convergence and Cauchy Sequences...............................1 1.2 Convergence of Sequences and Cauchy Sequences.......................1 2 Measure Theory ............................................... 2 2.1 The Concept of Measurability...................................3 2.1.1 Simple Functions...................................... 10 2.2 Elementary Properties of Measures................................ 11 2.2.1 Arithmetic in [0, ] .................................... 12 1 2.3 Integration of Positive Functions.................................. 13 2.4 Integration of Complex Functions................................. 14 2.5 Sets of Measure Zero......................................... 14 2.6 Positive Borel Measures....................................... 14 2.6.1 Vector Spaces and Topological Preliminaries...................... 14 2.6.2 The Riesz Representation Theorem........................... 14 2.6.3 Regularity Properties of Borel Measures........................ 14 2.6.4 Lesbesgue Measure..................................... 14 2.6.5 Continuity Properties of Measurable Functions...................
    [Show full text]
  • Arxiv:1709.09646V1 [Math.FA] 27 Sep 2017 Mensional Aahspace Banach Us-Opeetdin Quasi-Complemented Iesoa Aahspace Banach Dimensional Basis? Schauder a with Quotient 2
    ON THE SEPARABLE QUOTIENT PROBLEM FOR BANACH SPACES J. C. FERRANDO, J. KA¸KOL, M. LOPEZ-PELLICER´ AND W. SLIWA´ To the memory of our Friend Professor Pawe l Doma´nski Abstract. While the classic separable quotient problem remains open, we survey gen- eral results related to this problem and examine the existence of a particular infinite- dimensional separable quotient in some Banach spaces of vector-valued functions, linear operators and vector measures. Most of the results presented are consequence of known facts, some of them relative to the presence of complemented copies of the classic sequence spaces c0 and ℓp, for 1 ≤ p ≤ ∞. Also recent results of Argyros, Dodos, Kanellopoulos [1] and Sliwa´ [66] are provided. This makes our presentation supplementary to a previous survey (1997) due to Mujica. 1. Introduction One of unsolved problems of Functional Analysis (posed by S. Mazur in 1932) asks: Problem 1. Does any infinite-dimensional Banach space have a separable (infinite di- mensional) quotient? An easy application of the open mapping theorem shows that an infinite dimensional Banach space X has a separable quotient if and only if X is mapped on a separable Banach space under a continuous linear map. Seems that the first comments about Problem 1 are mentioned in [46] and [55]. It is already well known that all reflexive, or even all infinite-dimensional weakly compactly generated Banach spaces (WCG for short), have separable quotients. In [38, Theorem IV.1(i)] Johnson and Rosenthal proved that every infinite dimensional separable Banach arXiv:1709.09646v1 [math.FA] 27 Sep 2017 space admits a quotient with a Schauder basis.
    [Show full text]
  • Continuity of Convolution of Test Functions on Lie Groups
    Canad. J. Math. Vol. 66 (1), 2014 pp. 102–140 http://dx.doi.org/10.4153/CJM-2012-035-6 c Canadian Mathematical Society 2012 Continuity of Convolution of Test Functions on Lie Groups Lidia Birth and Helge Glockner¨ 1 1 1 Abstract. For a Lie group G, we show that the map Cc (G) × Cc (G) ! Cc (G), (γ; η) 7! γ ∗ η, taking a pair of test functions to their convolution, is continuous if and only if G is σ-compact. More generally, consider r; s; t 2 N0 [ f1g with t ≤ r + s, locally convex spaces E1, E2 and a continuous r s bilinear map b: E1 × E2 ! F to a complete locally convex space F. Let β : Cc (G; E1) × Cc(G; E2) ! t Cc(G; F), (γ; η) 7! γ ∗b η be the associated convolution map. The main result is a characterization of those (G; r; s; t; b) for which β is continuous. Convolution of compactly supported continuous functions on a locally compact group is also discussed as well as convolution of compactly supported L1-functions and convolution of compactly supported Radon measures. 1 Introduction and Statement of Results It has been known since the beginnings of distribution theory that the bilinear convo- 1 n 1 n 1 n lution map β : Cc (R )×Cc (R ) ! Cc (R ), (γ; η) 7! γ ∗η (and even convolution 1 n 0 1 n 1 n C (R ) × Cc (R ) ! Cc (R )) is hypocontinuous [39, p. 167]. However, a proof for continuity of β was published only recently [29, Proposition 2.3].
    [Show full text]
  • Random Linear Functionals
    RANDOM LINEAR FUNCTIONALS BY R. M. DUDLEYS) Let S be a real linear space (=vector space). Let Sa be the linear space of all linear functionals on S (not just continuous ones even if S is topological). Let 86{Sa, S) or @{S) denote the smallest a-algebra of subsets of Sa such that the evaluation x -> x(s) is measurable for each s e S. We define a random linear functional (r.l.f.) over S as a probability measure P on &(S), or more formally as the pair (Sa, P). In the cases we consider, S is generally infinite-dimensional, and in some ways Sa is too large for convenient handling. Various alternate characterizations of r.l.f.'s are useful and will be discussed in §1 below. If 7 is a topological linear space let 7" be the topological dual space of all con- tinuous linear functions on T. If 7" = S, then a random linear functional over S defines a " weak distribution " on 7 in the sense of I. E. Segal [23]. See the discussion of "semimeasures" in §1 below for the relevant construction. A central question about an r.l.f. (Sa, P), supposing S is a topological linear space, is whether P gives outer measure 1 to S'. Then we call the r.l.f. canonical, and as is well known P can be restricted to S' suitably (cf. 2.3 below). For simplicity, suppose that for each s e S, j x(s)2 dP(x) <oo. Let C(s)(x) = x(s).
    [Show full text]
  • On Limits of Sequences of Resolvent Kernels for Subkernels
    ON LIMITS OF SEQUENCES OF RESOLVENT KERNELS FOR SUBKERNELS IGOR M. NOVITSKII Abstract. In this paper, we approximate to continuous bi-Carleman kernels vanishing at in- finity by sequences of their subkernels of Hilbert-Schmidt type and try to construct the resolvent kernels for these kernels as limits of sequences of the resolvent kernels for the approximating subkernels. 1. Introduction In the general theory of integral equations of the second kind in L2 = L2(R), i.e., equations of the form f(s) λ T (s,t)f(t) dt = g(s) for almost every s R, (1.1) − R ∈ Z it is customary to call an integral kernel T |λ a resolvent kernel for T at λ if the integral operator 2 −1 it induces on L is the Fredholm resolvent T|λ := T (I λT ) of the integral operator T , which 2 − is induced on L by the kernel T . Once the resolvent kernel T |λ has been constructed, one can express the L2-solution f to equation (1.1) in a direct and simple fashion as f(s)= g(s)+ λ T |λ(s,t)g(t) dt for almost every s R, R ∈ Z regardless of the particular choice of the function g of L2. Here it should be noted that, in general, the property of being an integral operator is not shared by Fredholm resolvents of integral operators, and there is even an example, given in [17] (see also [18, Section 5, Theorem 8]), of an integral operator having the property that at each non-zero regular value of the parameter λ, its Fredholm resolvent is not an integral operator.
    [Show full text]
  • Essential Self-Adjointness of the Symplectic Dirac Operators
    Essential Self-Adjointness of the Symplectic Dirac Operators by A. Nita B.A., University of California, Irvine, 2007 M.A., University of Colorado, Boulder, 2010 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mathematics 2016 This thesis entitled: Essential Self-Adjointness of the Symplectic Dirac Operators written by A. Nita has been approved for the Department of Mathematics Prof. Alexander Gorokhovsky Prof. Carla Farsi Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Nita, A. (Ph.D., Mathematics) Essential Self-Adjointness of the Symplectic Dirac Operators Thesis directed by Prof. Alexander Gorokhovsky The main problem we consider in this thesis is the essential self-adjointness of the symplectic Dirac operators D and D~ constructed by Katharina Habermann in the mid 1990s. Her construc- tions run parallel to those of the well-known Riemannian Dirac operators, and show that in the symplectic setting many of the same properties hold. For example, the symplectic Dirac operators are also unbounded and symmetric, as in the Riemannian case, with one important difference: the bundle of symplectic spinors is now infinite-dimensional, and in fact a Hilbert bundle. This infinite dimensionality makes the classical proofs of essential self-adjointness fail at a crucial step, 2 n namely in local coordinates the coefficients are now seen to be unbounded operators on L (R ).
    [Show full text]
  • Abstracts of the 41St Annual Iranian Mathematics Conference
    Abstracts of the 41st Annual Iranian Mathematics Conference 12-15 September 2010, University of Urmia, Urmia, Iran Department of Mathematics Urmia University, Urmia-Iran ii Organizing Committee: M. A. Abolfathi R. Aghalari M. A. Asadi Gh. Azadi H. Azanchiler H. Behravesh P. Darania A. Ebadian K. H. Ghahremanlou M. Ghasemi Gh. Gholami A. R. Haghighi A. S. Janfada S. Ostadbashi B. Rezaei R. Sazeedeh Kh. Shahbazpour S. Shams J. Shokri S. Sohrabi S. Bohluli N. H. Ghahremanlou M. Heidarvand Sh. Mehrang Z. Mir Ali Ashrafi N. Mousavi A. Paknafs S. Roozegari N. Shafighi E. Yusefzadeh iii Scientific Committee: R. Aghalari M. A. Asadi Gh. Azadi H. Azanchiler H. Behravesh P. Darania A. Ebadian K. H. Ghahremanlou M. Ghasemi Gh. Gholami K. Ivaz A. S. Janfada M. Jelodari Mamaghani E. Mahmoodian M. S. Moslehian S. Ostadbashi B. Rezaei R. Sazeedeh S. Shams S. Sohrabi iv Supporting Organizations: H. Behravesh (Secretary of the Scientific Committee) B. Esmaielzadeh (Executive director of W. Azarbayjan P.T.T) H. Goudarzi (Dean Faculty of Sciences) Jalali (Sh. Rajaie Tarbiat Moallem Chancellor) V. Jalalzadeh (State Governor) M. Madadi (Rersearch Assistant of the State Governor) I. Mirzaie (Chancellor of Urmia Technology University) H. Molaie (Vise Chancellor of Elm o Fan College of Higher Education) S. Ostadbashi (Secretary of the Organizing Committee) H. Rezaie (Science and Technology Park Principal) N. Samadi (Financial Office Vise Chancellor) Samarghandi (Chief of the Educational Organization) H. Sedghi (Chansellor of Urmia University) A. Talebi (Research Vise Chancellor) M. Taleie (Student Vise Chancellor) v Invited Speakers: M. Asghari Iran D. Bakic Croatia V. D. Breaz Romania A.
    [Show full text]
  • On Finiteness Spaces and Extensional Presheaves Over the Lawvere Theory of Polynomials Thomas Ehrhard
    On finiteness spaces and extensional presheaves over the Lawvere theory of polynomials Thomas Ehrhard To cite this version: Thomas Ehrhard. On finiteness spaces and extensional presheaves over the Lawvere theory ofpoly- nomials. 2007. hal-00165230 HAL Id: hal-00165230 https://hal.archives-ouvertes.fr/hal-00165230 Preprint submitted on 25 Jul 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On finiteness spaces and extensional presheaves over the Lawvere theory of polynomials Thomas Ehrhard Preuves, Programmes, Syst`emes (UMR 7126) Universit´eParis Diderot – Paris 7 CNRS [email protected] July 25, 2007 Abstract We define a faithful functor from a cartesian closed category of linearly topologized vector spaces over a field and generalized polynomial functions to the category of “extensional” presheaves over the Lawvere theory of polynomial functions, and show that, under some conditions on the field, this functor is full and preserves the cartesian closed structure. Introduction We introduced in [Ehr05] the notion of finiteness space for defining a new denotational model1 of classical linear logic [Gir87]. Finiteness spaces are “discrete” objects presenting similarities with coherence [Gir87] or hypercoherence [Ehr93] spaces. There are many differences however.
    [Show full text]
  • Evaluation and Analyses of Some Finite Element and Finite Difference Procedures for Time-Dependent Problems
    'DO NOT RETURN TO LIB R A R / EVALUATION AND ANALYSES OF SOME FINITE ELEMENT AND FINITE DIFFERENCE PROCEDURES FOR TIME-DEPENDENT PROBLEMS by C. S. Desai, J. T. Oden, L. D. Johnson Soils and Pavements Laboratory U. S. Army Engineer Waterways Experiment Station P. O. Box 631, Vicksburg, Miss. 39180 April 1975 Final Report Approved For Public Release; Distribution Unlimited TA Prepared for Office, Chief of Engineers, U. S. Army 7 Washington, D. C. 2 0 3 14 .W34m S-75-7 1975 PROPERTY OF SUREAU OF RECLAMATION BUAEA.y..?,ÌlECLAMAT,0N DENVER LIBRARY -TA 92031039 Unclassified ^ 5 ^ 0 , \ SECURITY CLASSIFICATION OF THIS PAGE (When Data Enter'd) s -7^7 BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER h-?v 1. R E P O R T N U M B ER Miscellaneous Paper S-75-7 5. TYPE OF REPORT & PERIOD COVERED 4. T IT L E (end Subtitle) Final report EVALUATION AND ANALYSES OF SOME F] [NITE ELEMENT AND FINITE DIFFERENCE PROCEDURES I PO R T I M E - 6. PERFORMING ORG. REPORT NUMBER DEPENDENT PROBLEMS 8. CONTRACT OR GRANT NUMBERfe) 7. AUTHOR^; C. S. Desai J. T. Oden’ L . D . Johnson 10. PROGRAM ELEMENT, PROJECT, TASK 9. PERFORMING ORGANIZATION NAME AND AUU k ESS . AREA & WORK UNIT NUMBERS U. S. Army Engineer Waterways Experiment Station Soils and Pavements Laboratory P. 0. Box 631, Vicksburg, Miss. 39180 12. R E P O R T D A T E 11. CONTROLLING OFFICE NAME AND ADDRESS Office, Chief of Engineers, U . S. Army April 1975 Washington, D, C.
    [Show full text]
  • International Journal of Pure and Applied Mathematics ————————————————————————– Volume 54 No
    International Journal of Pure and Applied Mathematics ————————————————————————– Volume 54 No. 3 2009, 359-374 INTEGRAL REPRESENTATIONS OF UNBOUNDED OPERATORS BY INFINITELY SMOOTH BI-CARLEMAN KERNELS Igor M. Novitskii Institute for Applied Mathematics Far-Eastern Branch of the Russian Academy of Sciences Dzerzhinskiy Street 54, Khabarovsk, 680 000, RUSSIA e-mail: [email protected] Abstract: In this paper, we establish that if a closed linear operator in a separable Hilbert space H is unitarily equivalent to a bi-Carleman integral operator in an appropriate L2(Y,µ), then that operator is unitarily equivalent to a bi-Carleman integral operator in L2(R), whose kernel T : R2 → C and two Carleman functions t(s) = T (s, ·), t′(s) = T (·,s) : R → L2(R) are infinitely smooth and vanish at infinity together with all partial and all strong derivatives, respectively. The implementing unitary operator (from H onto L2(R)) is found by direct construction. AMS Subject Classification: 47G10, 45P05, 47B33, 47B38 Key Words: closed linear operator, integral linear operator, Carleman in- tegral operator, bi-Carleman integral operator, characterization theorems for integral operators, linear integral equation 1. Introduction and the Main Result The present paper may hopefully prove interesting for researchers who are inter- ested in the development of the theory of non-compact, non-self-adjoint linear integral operators in L2 spaces (see [6], [10]). In applications of this theory, such Received: June 6, 2009 c 2009 Academic Publications 360 I.M. Novitskii as occur, for instance, in the theory of singular integral equations of the second kind, it is often desirable to have the kernel function with special properties that make its associated integral operator easier to work with.
    [Show full text]
  • Random Matrices
    Random Matrices Estelle Basor Mathematics Department California Polytechnic State University San Luis Obispo, 93407 Winter 1995 and Spring 2007 1 Contents 2 1 Introduction These notes are based on a series of lectures given by Estelle Basor in an applied analysis graduate course at Cal Poly first done in Winter of 1996. They were based on notes taken by the students in the class, typed by Mike Robertson, and then finally edited by Estelle Basor and Jon Jacobsen. The notes were again used in Spring of 2007 and corrections to the notes were provided by the students in the class and some other sections were added. These notes are not meant to be complete or perfect, but rather an informal set of notes describing a new and lively field in mathematics. It is the intention of the author that they provide a heuristic background so that one can begin to understand random matrices and consider future questions in the subject. The notes provide an introduction to the basics of the Gaussian Unitary Ensemble (GUE), a derivation of the semi-circle law, a derivation of the Painlev´eequation connected to the basic probabilites of the GUE and at the end a derivation of the distribution function for linear statistics. Many of the tools used are provided in the text, while others are missing. In particular, the asymptotics of the relevant orthogonal polynomials are used but not derived. Several properties of Hilbert spaces, operators, trace class operators are used and not proved. 3 4 2 The probability distribution for the eigenvalues of a random hermitian matrix Given a random Hermitian matrix what can we say about its eigenvalues? Some questions include: What is the largest one? How are they spaced? What is the probability that one does (or does not) lie in a given interval? This section will describe a probability distribution on the space of matrices and show how this distribution induces one on the space of eigenvalues.
    [Show full text]