Essential Self-Adjointness of the Symplectic Dirac Operators

Total Page:16

File Type:pdf, Size:1020Kb

Essential Self-Adjointness of the Symplectic Dirac Operators Essential Self-Adjointness of the Symplectic Dirac Operators by A. Nita B.A., University of California, Irvine, 2007 M.A., University of Colorado, Boulder, 2010 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mathematics 2016 This thesis entitled: Essential Self-Adjointness of the Symplectic Dirac Operators written by A. Nita has been approved for the Department of Mathematics Prof. Alexander Gorokhovsky Prof. Carla Farsi Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Nita, A. (Ph.D., Mathematics) Essential Self-Adjointness of the Symplectic Dirac Operators Thesis directed by Prof. Alexander Gorokhovsky The main problem we consider in this thesis is the essential self-adjointness of the symplectic Dirac operators D and D~ constructed by Katharina Habermann in the mid 1990s. Her construc- tions run parallel to those of the well-known Riemannian Dirac operators, and show that in the symplectic setting many of the same properties hold. For example, the symplectic Dirac operators are also unbounded and symmetric, as in the Riemannian case, with one important difference: the bundle of symplectic spinors is now infinite-dimensional, and in fact a Hilbert bundle. This infinite dimensionality makes the classical proofs of essential self-adjointness fail at a crucial step, 2 n namely in local coordinates the coefficients are now seen to be unbounded operators on L (R ). A new approach is needed, and that is the content of these notes. We use the decomposition of the spinor bundle into countably many finite-dimensional subbundles, the eigenbundles of the harmonic oscillator, along with the simple behavior of D and D~ with respect to this decomposition, to con- struct an inductive argument for their essential self-adjointness. This requires the use of ancillary operators, constructed out of the symplectic Dirac operators, whose behavior with respect to the decomposition is transparent. By an analysis of their kernels we manage to deduce the main result one eigensection at a time. Dedication I would like to dedicate this thesis to my parents, Alexander and Maria Nita, who were angels throughout the entire project, giving me the support and encouragement without which I could not have made it. Their selfless dedication to me throughout this difficult intellectual endeavor will never be forgotten. v Acknowledgements I would like to thank first and foremost my advisor Alexander Gorokhovsky, whose patience and guidance saw this project through to its conclusion through the many hurdles I faced along the way. Sebastian Casailina-Martin also provided much encouragement and opportunities to flesh out much of the material on analysis on manifolds, through talks I gave in his complex geometry seminar. I would also like to thank Carla Farsi for giving me the opportunity to talk about K- theory and algebraic topology, and Jeffrey Fox for several important discussions on the relationship between physics and index theory. There are many others I should thank, particularly Marty Walter and Pedro Berrizbeitia, who took valuable time away from their own work to come to my aid in the final stages of the thesis. Contents Chapter 1 Introduction 1 2 Symplectic Manifolds 1 2.1 Preliminaries on Bilinear Spaces.............................1 2.1.1 Matrix Representations of Bilinear Forms....................1 2.1.2 Orthogonality and Isotropy............................2 2.1.3 Symmetry and Skew-Symmetry..........................4 2.1.4 Reflexivity and Degeneracy............................5 2.1.5 Symmetric Spaces.................................9 2.1.6 Skew-Symmetric Spaces.............................. 13 2.1.7 Morphisms of Bilinear Spaces........................... 18 2.2 Grassmannians....................................... 21 2.2.1 Topological Manifold Structure of Grassmanians................ 21 2.2.2 Smooth Manifold Structure of Grassmanians.................. 27 2.2.3 Homogeneous Space Structure of Grassmannians................ 31 2.3 Symplectic Vector Spaces................................. 37 2.3.1 Complexifications and Complex Structures................... 37 2.3.2 Symplectic Forms.................................. 47 2n 2.3.3 The Symplectic Space (R ;!0).......................... 48 vii 2.3.4 The Symplectic Group Sp(n; R) and the Symplectic Lie Algebra sp(n; R).. 52 2.3.5 The Interaction between Inner Products, Symplectic Forms, and Complex Structures...................................... 66 2.3.6 Sums and Subspaces of Symplectic Vector Spaces................ 96 2.4 Symplectic Manifolds.................................... 107 2.4.1 Symplectic Vector Bundles and Chern Classes.................. 107 2.4.2 Symplectic Manifolds: Definitions and Examples................ 114 2.4.3 Darboux's Theorem................................ 131 2.4.4 The Poisson Bracket................................ 133 2.4.5 Hamiltonian Vector Fields............................. 137 2.4.6 Symplectic Connections.............................. 140 3 Self-Adjoint and Elliptic Operators 162 3.1 Function Spaces and Differential Operators on Manifolds................ 162 3.1.1 Function Spaces in the Euclidean Space Setting................. 162 3.1.2 Function Spaces in the Manifold Setting..................... 180 3.1.3 Differential Operators on Manifolds....................... 188 3.2 Essentially Self-Adjoint Operators............................ 203 3.2.1 The General Theory of Essential Self-Adjointness on a Hilbert Space..... 203 3.2.2 The Position and Momentum Operators..................... 224 3.3 Elliptic Differential Operators............................... 230 4 The Metaplectic Representation 234 4.1 The Weyl Algebra..................................... 234 4.2 The Harmonic Oscillator and the Hermite Functions.................. 240 4.3 The Metaplectic Representation.............................. 248 4.4 Symplectic Clifford Multiplication............................ 255 viii 5 The Symplectic Dirac Operators 261 5.1 The Symplectic Spinor Bundle.............................. 261 5.2 The Spinor Derivative................................... 265 5.3 The Symplectic Dirac Operators and Related Operators................ 268 5.4 Properties and Relations among the Operators..................... 271 5.5 Essential Self-Adjointness of the Symplectic Dirac Operators............. 288 5.6 Local Form of the Symplectic Dirac Operators..................... 309 Bibliography 315 Chapter 1 Introduction We shall give here a proof of the essential self-adjointness of the symplectic Dirac operators D and D~ acting on sections the symplectic spinor bundle Q over a compact symplectic manifold (M; !). This is a preliminary result in the larger quest for a symplectic analog of the well-known Atiyah-Singer index theorem on a Riemannian manifold. To understand the importance of Dirac operators and their self-adjointness in this quest, it is necessary to briefly review the historical development of the classical index theorem, its generalizations, and various proofs. The classical index theorem originated in the famous papers of Atiyah, Singer and Segal of the 1960s and early 1970s, [5], [6], [7], [8], [9], and [10], and gave an equivalence between the analytic index of an elliptic operator P acting on sections of a complex vector bundle E over a Riemannian manifold (M; g) and that manifold's topological index, via the equation index(P ) = fch(P ) · T (M)g[M] The term on the left is the analytic index, defined as index(P ) = dim ker P − dim coker(P ), while the term on the right consists of topological invariants: the Chern character, a ring homomorphism • ch : K(M) ! H (M; Q), taking the symbol of P , realized as an element of the K-theory ring • K(M), into the rational cohomology ring H (M; Q) of M, the Todd class T (M) of M, and the fundamental class [M] of M. The motivation for this theorem was Gel'fand's 1960 observation [36] that the analytical index index(P ) of an elliptic operator is always homotopy invariant, and so should describe a topological invariant. It had also been proven by Borel and Hirzebruch in 2 1958, [18], that the A^-genus of a spin manifold was always an integer, even though this topological quantity was defined in terms of an infinite series. Atiyah and Singer's paper [5] explained this unusual result as the index of the manifold's Dirac operator. The first announcement of the general theorem came in that same 1963 paper [5], though its proof arrived somewhat later, in Palais' 1965 book [86]. According to Atiyah and Singer themselves, [6], this early proof used the computationally taxing and ill suited methods of cobordism and rational cohomology groups, which failed to reveal the basic underlying mechanics of the theorem's simple statement, while also making difficult the theorem's generalizations. The three papers of 1968, [6], [7], [8], replaced cobordism and homology with just K-theory, which was more in line with Grothendieck's outlook on such matters. The years 1968-1973 saw several advances, the most important of which, for us, was the introduction heat equation methods to the proof method of the index theorem. These brought with them some revealing simplifications in certain cases, and reduced the dependency on topological machinery with the introduction of more analytic tools. The first inroads were made by
Recommended publications
  • On the Use of Boundary Integral Equations and Linear Operators in Room Acoustics
    Guimarães - Portugal paper ID: 169 /p.1 On the Use of Boundary Integral Equations and Linear Operators in Room Acoustics D. Alarcão and J. L. Bento Coelho CAPS – Instituto Superior Técnico, Av. Rovisco Pais, P-1049-001 Lisbon, Portugal, [email protected] RESUMO: Este artigo introduz alguns conceitos de base sobre equações integrais e mostra a sua aplicação na determinação da propagação de energia acústica em recintos fechados. Mostra-se que as equações integrais resultantes podem ser formuladas na linguagem dos operadores lineares, daí resultando uma notação simplificada em que as propriedades algébricas das equações que determinam a propagação da energia são mais facilmente caracterizadas. São apresentados alguns métodos gerais de resolução de equações integrais tal como métodos aproximados e métodos de bases vectoriais finitas. Apresentam-se, ainda, as definições necessárias envolvidas na descrição de campos de energia acústica, que servem de ponto de partida à aplicação das técnicas apresentadas. ABSTRACT: This paper introduces some basic concepts of boundary integral equations and their application for the determination of the propagation of sound energy inside enclosures. Linear operators are shown to provide a simplified notation and to emphasize the algebraic properties of the resulting integral equations. Some general methods of solving linear operator and integral equations are reviewed and discussed, such as approximation methods and finite basis methods. In addition, some of the necessary definitions involved in describing acoustic energy fields for applying these techniques in the field of room acoustics prediction are presented. 1. INTRODUCTION Energy based methods offer an interesting and valid alternative mid and high frequency technique to classical predictive methods such as FEM, BEM and others.
    [Show full text]
  • AMATH 731: Applied Functional Analysis Lecture Notes
    AMATH 731: Applied Functional Analysis Lecture Notes Sumeet Khatri November 24, 2014 Table of Contents List of Tables ................................................... v List of Theorems ................................................ ix List of Definitions ................................................ xii Preface ....................................................... xiii 1 Review of Real Analysis .......................................... 1 1.1 Convergence and Cauchy Sequences...............................1 1.2 Convergence of Sequences and Cauchy Sequences.......................1 2 Measure Theory ............................................... 2 2.1 The Concept of Measurability...................................3 2.1.1 Simple Functions...................................... 10 2.2 Elementary Properties of Measures................................ 11 2.2.1 Arithmetic in [0, ] .................................... 12 1 2.3 Integration of Positive Functions.................................. 13 2.4 Integration of Complex Functions................................. 14 2.5 Sets of Measure Zero......................................... 14 2.6 Positive Borel Measures....................................... 14 2.6.1 Vector Spaces and Topological Preliminaries...................... 14 2.6.2 The Riesz Representation Theorem........................... 14 2.6.3 Regularity Properties of Borel Measures........................ 14 2.6.4 Lesbesgue Measure..................................... 14 2.6.5 Continuity Properties of Measurable Functions...................
    [Show full text]
  • Arxiv:1709.09646V1 [Math.FA] 27 Sep 2017 Mensional Aahspace Banach Us-Opeetdin Quasi-Complemented Iesoa Aahspace Banach Dimensional Basis? Schauder a with Quotient 2
    ON THE SEPARABLE QUOTIENT PROBLEM FOR BANACH SPACES J. C. FERRANDO, J. KA¸KOL, M. LOPEZ-PELLICER´ AND W. SLIWA´ To the memory of our Friend Professor Pawe l Doma´nski Abstract. While the classic separable quotient problem remains open, we survey gen- eral results related to this problem and examine the existence of a particular infinite- dimensional separable quotient in some Banach spaces of vector-valued functions, linear operators and vector measures. Most of the results presented are consequence of known facts, some of them relative to the presence of complemented copies of the classic sequence spaces c0 and ℓp, for 1 ≤ p ≤ ∞. Also recent results of Argyros, Dodos, Kanellopoulos [1] and Sliwa´ [66] are provided. This makes our presentation supplementary to a previous survey (1997) due to Mujica. 1. Introduction One of unsolved problems of Functional Analysis (posed by S. Mazur in 1932) asks: Problem 1. Does any infinite-dimensional Banach space have a separable (infinite di- mensional) quotient? An easy application of the open mapping theorem shows that an infinite dimensional Banach space X has a separable quotient if and only if X is mapped on a separable Banach space under a continuous linear map. Seems that the first comments about Problem 1 are mentioned in [46] and [55]. It is already well known that all reflexive, or even all infinite-dimensional weakly compactly generated Banach spaces (WCG for short), have separable quotients. In [38, Theorem IV.1(i)] Johnson and Rosenthal proved that every infinite dimensional separable Banach arXiv:1709.09646v1 [math.FA] 27 Sep 2017 space admits a quotient with a Schauder basis.
    [Show full text]
  • Continuity of Convolution of Test Functions on Lie Groups
    Canad. J. Math. Vol. 66 (1), 2014 pp. 102–140 http://dx.doi.org/10.4153/CJM-2012-035-6 c Canadian Mathematical Society 2012 Continuity of Convolution of Test Functions on Lie Groups Lidia Birth and Helge Glockner¨ 1 1 1 Abstract. For a Lie group G, we show that the map Cc (G) × Cc (G) ! Cc (G), (γ; η) 7! γ ∗ η, taking a pair of test functions to their convolution, is continuous if and only if G is σ-compact. More generally, consider r; s; t 2 N0 [ f1g with t ≤ r + s, locally convex spaces E1, E2 and a continuous r s bilinear map b: E1 × E2 ! F to a complete locally convex space F. Let β : Cc (G; E1) × Cc(G; E2) ! t Cc(G; F), (γ; η) 7! γ ∗b η be the associated convolution map. The main result is a characterization of those (G; r; s; t; b) for which β is continuous. Convolution of compactly supported continuous functions on a locally compact group is also discussed as well as convolution of compactly supported L1-functions and convolution of compactly supported Radon measures. 1 Introduction and Statement of Results It has been known since the beginnings of distribution theory that the bilinear convo- 1 n 1 n 1 n lution map β : Cc (R )×Cc (R ) ! Cc (R ), (γ; η) 7! γ ∗η (and even convolution 1 n 0 1 n 1 n C (R ) × Cc (R ) ! Cc (R )) is hypocontinuous [39, p. 167]. However, a proof for continuity of β was published only recently [29, Proposition 2.3].
    [Show full text]
  • Random Linear Functionals
    RANDOM LINEAR FUNCTIONALS BY R. M. DUDLEYS) Let S be a real linear space (=vector space). Let Sa be the linear space of all linear functionals on S (not just continuous ones even if S is topological). Let 86{Sa, S) or @{S) denote the smallest a-algebra of subsets of Sa such that the evaluation x -> x(s) is measurable for each s e S. We define a random linear functional (r.l.f.) over S as a probability measure P on &(S), or more formally as the pair (Sa, P). In the cases we consider, S is generally infinite-dimensional, and in some ways Sa is too large for convenient handling. Various alternate characterizations of r.l.f.'s are useful and will be discussed in §1 below. If 7 is a topological linear space let 7" be the topological dual space of all con- tinuous linear functions on T. If 7" = S, then a random linear functional over S defines a " weak distribution " on 7 in the sense of I. E. Segal [23]. See the discussion of "semimeasures" in §1 below for the relevant construction. A central question about an r.l.f. (Sa, P), supposing S is a topological linear space, is whether P gives outer measure 1 to S'. Then we call the r.l.f. canonical, and as is well known P can be restricted to S' suitably (cf. 2.3 below). For simplicity, suppose that for each s e S, j x(s)2 dP(x) <oo. Let C(s)(x) = x(s).
    [Show full text]
  • On Limits of Sequences of Resolvent Kernels for Subkernels
    ON LIMITS OF SEQUENCES OF RESOLVENT KERNELS FOR SUBKERNELS IGOR M. NOVITSKII Abstract. In this paper, we approximate to continuous bi-Carleman kernels vanishing at in- finity by sequences of their subkernels of Hilbert-Schmidt type and try to construct the resolvent kernels for these kernels as limits of sequences of the resolvent kernels for the approximating subkernels. 1. Introduction In the general theory of integral equations of the second kind in L2 = L2(R), i.e., equations of the form f(s) λ T (s,t)f(t) dt = g(s) for almost every s R, (1.1) − R ∈ Z it is customary to call an integral kernel T |λ a resolvent kernel for T at λ if the integral operator 2 −1 it induces on L is the Fredholm resolvent T|λ := T (I λT ) of the integral operator T , which 2 − is induced on L by the kernel T . Once the resolvent kernel T |λ has been constructed, one can express the L2-solution f to equation (1.1) in a direct and simple fashion as f(s)= g(s)+ λ T |λ(s,t)g(t) dt for almost every s R, R ∈ Z regardless of the particular choice of the function g of L2. Here it should be noted that, in general, the property of being an integral operator is not shared by Fredholm resolvents of integral operators, and there is even an example, given in [17] (see also [18, Section 5, Theorem 8]), of an integral operator having the property that at each non-zero regular value of the parameter λ, its Fredholm resolvent is not an integral operator.
    [Show full text]
  • Abstracts of the 41St Annual Iranian Mathematics Conference
    Abstracts of the 41st Annual Iranian Mathematics Conference 12-15 September 2010, University of Urmia, Urmia, Iran Department of Mathematics Urmia University, Urmia-Iran ii Organizing Committee: M. A. Abolfathi R. Aghalari M. A. Asadi Gh. Azadi H. Azanchiler H. Behravesh P. Darania A. Ebadian K. H. Ghahremanlou M. Ghasemi Gh. Gholami A. R. Haghighi A. S. Janfada S. Ostadbashi B. Rezaei R. Sazeedeh Kh. Shahbazpour S. Shams J. Shokri S. Sohrabi S. Bohluli N. H. Ghahremanlou M. Heidarvand Sh. Mehrang Z. Mir Ali Ashrafi N. Mousavi A. Paknafs S. Roozegari N. Shafighi E. Yusefzadeh iii Scientific Committee: R. Aghalari M. A. Asadi Gh. Azadi H. Azanchiler H. Behravesh P. Darania A. Ebadian K. H. Ghahremanlou M. Ghasemi Gh. Gholami K. Ivaz A. S. Janfada M. Jelodari Mamaghani E. Mahmoodian M. S. Moslehian S. Ostadbashi B. Rezaei R. Sazeedeh S. Shams S. Sohrabi iv Supporting Organizations: H. Behravesh (Secretary of the Scientific Committee) B. Esmaielzadeh (Executive director of W. Azarbayjan P.T.T) H. Goudarzi (Dean Faculty of Sciences) Jalali (Sh. Rajaie Tarbiat Moallem Chancellor) V. Jalalzadeh (State Governor) M. Madadi (Rersearch Assistant of the State Governor) I. Mirzaie (Chancellor of Urmia Technology University) H. Molaie (Vise Chancellor of Elm o Fan College of Higher Education) S. Ostadbashi (Secretary of the Organizing Committee) H. Rezaie (Science and Technology Park Principal) N. Samadi (Financial Office Vise Chancellor) Samarghandi (Chief of the Educational Organization) H. Sedghi (Chansellor of Urmia University) A. Talebi (Research Vise Chancellor) M. Taleie (Student Vise Chancellor) v Invited Speakers: M. Asghari Iran D. Bakic Croatia V. D. Breaz Romania A.
    [Show full text]
  • On Finiteness Spaces and Extensional Presheaves Over the Lawvere Theory of Polynomials Thomas Ehrhard
    On finiteness spaces and extensional presheaves over the Lawvere theory of polynomials Thomas Ehrhard To cite this version: Thomas Ehrhard. On finiteness spaces and extensional presheaves over the Lawvere theory ofpoly- nomials. 2007. hal-00165230 HAL Id: hal-00165230 https://hal.archives-ouvertes.fr/hal-00165230 Preprint submitted on 25 Jul 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On finiteness spaces and extensional presheaves over the Lawvere theory of polynomials Thomas Ehrhard Preuves, Programmes, Syst`emes (UMR 7126) Universit´eParis Diderot – Paris 7 CNRS [email protected] July 25, 2007 Abstract We define a faithful functor from a cartesian closed category of linearly topologized vector spaces over a field and generalized polynomial functions to the category of “extensional” presheaves over the Lawvere theory of polynomial functions, and show that, under some conditions on the field, this functor is full and preserves the cartesian closed structure. Introduction We introduced in [Ehr05] the notion of finiteness space for defining a new denotational model1 of classical linear logic [Gir87]. Finiteness spaces are “discrete” objects presenting similarities with coherence [Gir87] or hypercoherence [Ehr93] spaces. There are many differences however.
    [Show full text]
  • Evaluation and Analyses of Some Finite Element and Finite Difference Procedures for Time-Dependent Problems
    'DO NOT RETURN TO LIB R A R / EVALUATION AND ANALYSES OF SOME FINITE ELEMENT AND FINITE DIFFERENCE PROCEDURES FOR TIME-DEPENDENT PROBLEMS by C. S. Desai, J. T. Oden, L. D. Johnson Soils and Pavements Laboratory U. S. Army Engineer Waterways Experiment Station P. O. Box 631, Vicksburg, Miss. 39180 April 1975 Final Report Approved For Public Release; Distribution Unlimited TA Prepared for Office, Chief of Engineers, U. S. Army 7 Washington, D. C. 2 0 3 14 .W34m S-75-7 1975 PROPERTY OF SUREAU OF RECLAMATION BUAEA.y..?,ÌlECLAMAT,0N DENVER LIBRARY -TA 92031039 Unclassified ^ 5 ^ 0 , \ SECURITY CLASSIFICATION OF THIS PAGE (When Data Enter'd) s -7^7 BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER h-?v 1. R E P O R T N U M B ER Miscellaneous Paper S-75-7 5. TYPE OF REPORT & PERIOD COVERED 4. T IT L E (end Subtitle) Final report EVALUATION AND ANALYSES OF SOME F] [NITE ELEMENT AND FINITE DIFFERENCE PROCEDURES I PO R T I M E - 6. PERFORMING ORG. REPORT NUMBER DEPENDENT PROBLEMS 8. CONTRACT OR GRANT NUMBERfe) 7. AUTHOR^; C. S. Desai J. T. Oden’ L . D . Johnson 10. PROGRAM ELEMENT, PROJECT, TASK 9. PERFORMING ORGANIZATION NAME AND AUU k ESS . AREA & WORK UNIT NUMBERS U. S. Army Engineer Waterways Experiment Station Soils and Pavements Laboratory P. 0. Box 631, Vicksburg, Miss. 39180 12. R E P O R T D A T E 11. CONTROLLING OFFICE NAME AND ADDRESS Office, Chief of Engineers, U . S. Army April 1975 Washington, D, C.
    [Show full text]
  • International Journal of Pure and Applied Mathematics ————————————————————————– Volume 54 No
    International Journal of Pure and Applied Mathematics ————————————————————————– Volume 54 No. 3 2009, 359-374 INTEGRAL REPRESENTATIONS OF UNBOUNDED OPERATORS BY INFINITELY SMOOTH BI-CARLEMAN KERNELS Igor M. Novitskii Institute for Applied Mathematics Far-Eastern Branch of the Russian Academy of Sciences Dzerzhinskiy Street 54, Khabarovsk, 680 000, RUSSIA e-mail: [email protected] Abstract: In this paper, we establish that if a closed linear operator in a separable Hilbert space H is unitarily equivalent to a bi-Carleman integral operator in an appropriate L2(Y,µ), then that operator is unitarily equivalent to a bi-Carleman integral operator in L2(R), whose kernel T : R2 → C and two Carleman functions t(s) = T (s, ·), t′(s) = T (·,s) : R → L2(R) are infinitely smooth and vanish at infinity together with all partial and all strong derivatives, respectively. The implementing unitary operator (from H onto L2(R)) is found by direct construction. AMS Subject Classification: 47G10, 45P05, 47B33, 47B38 Key Words: closed linear operator, integral linear operator, Carleman in- tegral operator, bi-Carleman integral operator, characterization theorems for integral operators, linear integral equation 1. Introduction and the Main Result The present paper may hopefully prove interesting for researchers who are inter- ested in the development of the theory of non-compact, non-self-adjoint linear integral operators in L2 spaces (see [6], [10]). In applications of this theory, such Received: June 6, 2009 c 2009 Academic Publications 360 I.M. Novitskii as occur, for instance, in the theory of singular integral equations of the second kind, it is often desirable to have the kernel function with special properties that make its associated integral operator easier to work with.
    [Show full text]
  • Random Matrices
    Random Matrices Estelle Basor Mathematics Department California Polytechnic State University San Luis Obispo, 93407 Winter 1995 and Spring 2007 1 Contents 2 1 Introduction These notes are based on a series of lectures given by Estelle Basor in an applied analysis graduate course at Cal Poly first done in Winter of 1996. They were based on notes taken by the students in the class, typed by Mike Robertson, and then finally edited by Estelle Basor and Jon Jacobsen. The notes were again used in Spring of 2007 and corrections to the notes were provided by the students in the class and some other sections were added. These notes are not meant to be complete or perfect, but rather an informal set of notes describing a new and lively field in mathematics. It is the intention of the author that they provide a heuristic background so that one can begin to understand random matrices and consider future questions in the subject. The notes provide an introduction to the basics of the Gaussian Unitary Ensemble (GUE), a derivation of the semi-circle law, a derivation of the Painlev´eequation connected to the basic probabilites of the GUE and at the end a derivation of the distribution function for linear statistics. Many of the tools used are provided in the text, while others are missing. In particular, the asymptotics of the relevant orthogonal polynomials are used but not derived. Several properties of Hilbert spaces, operators, trace class operators are used and not proved. 3 4 2 The probability distribution for the eigenvalues of a random hermitian matrix Given a random Hermitian matrix what can we say about its eigenvalues? Some questions include: What is the largest one? How are they spaced? What is the probability that one does (or does not) lie in a given interval? This section will describe a probability distribution on the space of matrices and show how this distribution induces one on the space of eigenvalues.
    [Show full text]
  • Extension of Vector-Valued Integral Polynomials
    Extension of vector-valued integral polynomials Daniel Carando Departamento de Matem´atica, Universidad de San Andr´es, Vito Dumas 284 (B1644BID) Victoria, Buenos Aires, Argentina. and Silvia Lassalle ∗ Departamento de Matem´atica - Pab I, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina Abstract We study the extendibility of integral vector-valued polynomials on Banach spaces. We prove that an X-valued Pietsch-integral polynomial on E extends to an X- valued Pietsch-integral polynomial on any space F containing E, with the same integral norm. This is not the case for Grothendieck-integral polynomials: they do not always extend to X-valued Grothendieck-integral polynomials. However, they are extendible to X-valued polynomials. The Aron-Berner extension of an integral polynomial is also studied. A canonical integral representation is given for domains not containing `1. Key words: Integral polynomials, extendibility Introduction In this note we study extendibility properties of Pietsch and Grothendieck inte- gral polynomials. Generally, polynomials on Banach spaces do not extend to larger spaces, even in the scalar valued case [20]. In other words, there is no Hahn-Banach ∗ Corresponding author Email addresses: [email protected] (Daniel Carando), [email protected] (Silvia Lassalle). Preprint submitted to Elsevier Science 9 February 2005 extension theorem for polynomials. However, since the symmetric injective tensor product respects subspaces, scalar-valued integral polynomials are extendible. For vector-valued polynomials, the word “extendible” needs to be properly defined. We say that a polynomial P : E → X is extendible if for any Banach space F con- taining E, there exists Pe : F → X extending P ([20], see also [5]).
    [Show full text]